SlideShare uma empresa Scribd logo
1 de 127
1
2
‫الكليـــــــــــــة‬ ‫رؤيــــــــــــة‬
‫الكليــــــــــــة‬ ‫رســـــــــــــــالة‬
‫الريادة‬
ً
‫محليا‬
ً
‫واقليميا‬
ً
‫ودوليا‬
‫لالرتقاء‬
‫بصحة‬
‫االنسان‬
‫من‬
‫خالل‬
‫استخدام‬
‫االب‬
‫تكارات‬
‫فى‬
‫مجال‬
‫التعليم‬
‫والبحوث‬
‫العلمية‬
‫والممارسات‬
‫التطبيقية‬
.
‫توفير‬
‫أفضل‬
‫الممارسات‬
‫في‬
‫مجال‬
‫التعليم‬
‫والتعلم‬
‫والتدريب‬
‫وإستمرارية‬
‫خلق‬
‫ف‬
‫رص‬
‫للطالب‬
‫والخريجين‬
‫بإبتكار‬
‫ونشر‬
‫وتطبيق‬
‫المعرفة‬
‫الحديثة‬
‫المرتكزة‬
‫على‬
‫البحوث‬
‫وال‬
‫تطبيقات‬
‫في‬
‫العلوم‬
‫الصيدلية‬
‫واإلكلينيكية‬
‫واإلجتماعية‬
‫للنهوض‬
‫بالصحة‬
2
4
Upon successful completion of this course the student
should be able to;
 Describe the physicochemical and physiological factors that
influence the absorption of drugs from extra and intravascular
routs of administration, their distribution within the body, and
the irroutes and mechanisms of elimination.
5
WHAT IS BIOPHARMACEUTICS?
Biopharmaceutics can be defined as the study of
how
• the physicochemical properties of drugs,
• dosage forms and
• routes of administration
affect the rate and extent of drug absorption.
Bioavailability is therefore defined as:
the rate and extent of drug absorption
6
If a drug is given intravenously it is administered
directly into the blood, and therefore we can be sure
that all the drug reaches the systemic circulation.
The drug is therefore said to be 100% bioavailable
All other routes of administration where a systemic
action is required, involve the absorption of the drug
into the blood.
7
MSC
MEC
Cmax
tmax
AUC
Therapeutic
range
(window)
Absorption
phase
Elimination
phase
Plasma
Concentration
Time
A typical blood plasma concentration-time curve obtained following
the peroral administration of a single dose of a drug in a tablet
8
Cmax: the highest plasma drug concentration observed.
Tmax: the time at which Cmax occurs following
administration of an extravascular dose.
AUC: Area under the curve
MSC: Maximum safe concentration
MEC: Minimum effective concentration
Therapeutic range: The range of plasma concentrations
between the minimally effective concentration
and the maximum safe concentration
Absorption phase: Absorption rate > Elimination rate
Elimination phase: Elimination rate > Absorption rate
9
Routes of drug administration
The route of administration determines
the site of application of the drug product.
Often the goal is to attain a therapeutic drug
concentration in plasma from which drug enters the tissue
(therapeutic window between toxic concentration and
minimal effective concentration).
10
Routes of administration are classified into:
ENTERAL and PARENTERAL
Enteral means through the GI tract and includes oral,
buccal, and rectal.
Parenteral means not through the alimentary canal and
commonly refers to injections such as IV, IM, and SC; but
could also include topical and inhalation
11
1. Sublingual (buccal)
Certain drugs are best given beneath the
tongue (sublingual) or retained in the cheek
pouch (buccal) and are absorbed from these
regions into the local circulation.
A. Enteral Routes
12
These vascular areas are ideal for lipid-soluble drugs that
would be metabolized in the gut or liver, since the blood
vessels in the mouth bypass the liver (do not undergo first
pass liver metabolism), and drain directly into the
systemic circulation.
This route is usually reserved
for nitrates and certain hormones.
13
Diagram of first pass effect
liver
gut
biliary tract
to circulation
metabolised drug
portal
vein
unmetabolised
drug
14
2. Oral
By far the most common route.
The passage of drug from the gut into the blood is
influenced by biologic and physicochemical factors and
by the dosage form.
For most drugs, 2- to 5-fold differences in the rate or
extent of gastrointestinal absorption can occur,
depending on the dosage form.
Generally, the bioavailability of oral
drugs follows the order: solution >
suspension > capsule > tablet > coated
tablet.
15
3. Rectal
The administration of suppositories is usually reserved
for situations in which oral administration is difficult.
This route is more frequently used in small children.
It by-passes the liver
16
1. Intravenous injection
Used when a rapid clinical response is necessary, e.g., an
acute asthmatic episode.
This route allows one to achieve relatively precise drug
concentrations in the plasma, since bioavailability is
100%.
B. Parenteral Routes
17
Most drugs should be injected over 1-2 minutes in order
to prevent the occurrence of very high drug
concentrations in the injected vein, possibly causing
adverse effects.
Some drugs, particularly those with narrow therapeutic
indices or short half-lives, are best administered as a slow
IV infusion or drip.
18
2. Intramuscular injection
Drugs may be injected into the arm (deltoid), thigh (vastus
lateralis) or buttocks (gluteus maximus).
Because of differences in vascularity, the rates of absorption
differ, with arm > thigh > buttocks.
Drug absorption may be slow and erratic.
Lipid solubility and degree of ionization influence
absorption.
It should not be assumed that the IM route is as reliable as
the IV route.
19
3. Subcutaneous injection
Some drugs, notably insulin, are routinely administered SC.
Drug absorption is generally slower SC than IM, WHY?
due to poorer vascularity.
Absorption can be facilitated by heat, massage or
vasodilators.
It can be slowed by coadministration of vasoconstrictors, a
practice commonly used to prolong the local action of local
anesthetics.
As above, arm > thigh.
20
21
4. Topical application
a. Eye
For desired local effects.
b. Intravaginal
For infections or contraceptives.
c. Intranasal
For alleviation of local symptoms.
Directly from nasal capillaries into
circulation.
22
d. Skin
Systemic absorption does occur and
varies with the area, site, drug, and
state of the skin. Dimethyl sulfoxide
(DMSO) enhances the percutaneous
absorption of many drugs.
e. Drug patches
(drug enters systemic circulation by
zero order kinetics – a constant amount
of drug enters the circulation per unit
time).
23
5. Inhalation
Volatile anesthetics, as well as many drugs which affect
pulmonary function, are administered as aerosols.
The large alveolar area and blood supply lead to rapid
absorption into the blood.
Drugs administered via this route are not subject to
first-pass liver metabolism.
24
6. Other ROA's
Other routes of administration include:
• intra-arterial for cancer chemotherapy to maximize drug
concentrations at the tumor site
• intrathecal directly into the cerebrospinal fluid.
25
Why are there different routes?
1.Solubility or stability of the drug
2.The absorption from the different sites. Many drugs
are absorbed from stomach and small intestine and
not absorbed rectally.
3.Toxic when given by certain routes.
4.Ineffective, destroyed or inactivated in certain
organs e.g. penicillin in stomach.
5.Convenience of the patient
26
Time until Effect
Route for
Administration
30-60 sec
IV
2-3 min
Inhalation
3-5 min
Sublingual
10-20 min
IM
15-30 min
SC
5-30 min
Rectal
30-90 min
Ingestion
Variable (minutes-hours)
Transdermal (Topical)
27
The concentration of the drug in blood plasma depends on
LADME
L = Liberation
the release of the drug from it's dosage form.
A = Absorption
the movement of drug from the site of administration to
the blood circulation.
D = Distribution
the process by which drug diffuses or is transferred from
intravascular space to extravascular space (body
tissues).
28
The concentration of the drug in blood plasma depends on
LADME
M = Metabolism
the chemical conversion or transformation of drugs into
compounds which are easier to eliminate.
E = Excretion
the elimination of unchanged drug or metabolite from
the body via renal, biliary, or pulmonary processes.
29
30
31
32
Absorption
The absorption of a drug from the GIT is the passage of
the substance from the lumen through several
membranes into the blood stream.
Main factors affecting oral absorption:
• Physiological factors
• Physical-chemical factors
• Formulation factors
GIT BLOOD
33
A- Membrane physiology
B- Passage of drugs across membranes
Active transport
Facilitated diffusion
Passive diffusion
Pinocytosis
Pore transport
Ion pair formation
1. Physiological Factors Affecting Oral Absorption
34
C- Gastrointestinal physiology
GIT physiology and drug absorption
Gastric emptying time and motility
Effect of food on drug absorption
Enterohepatic circulation
First pass effect
35
Membrane structure (Fluid Mosaic Model)
The biologic membrane consists mainly of a lipid
bilayer containing primarily phospholipids and
cholesterol, with imbedded proteins.
The membrane contains also small aqueous
channels or pores.
A. Membrane physiology
36
Phospholipid Bilayers
Phospholipids are amphiphilic in nature. Polar heads
are oriented toward the water and the fatty acid tails
are oriented toward the inside of the bilayer.
The fatty acid tails are flexible, causing the lipid bilayer
to be flexible. At body temperature, membranes are a
liquid with a consistency that is similar to cooking oil.
37
Cholesterol
Cholesterol is a major membrane lipid. It may be equal
in amount to phospholipids. It is similar to
phospholipids in that one end is hydrophilic the other
end is hydrophobic.
Cholesterol makes the membrane less permeable to
most biological molecules.
Proteins
Proteins are scattered throughout the membrane.
They may be attached to inner surface,
embedded in the bilayer, or
attached to the outer surface.
38
39
Channel
Functions of Membrane Proteins
40
A. Channel proteins
A protein that allows a particular molecule or ion to
freely cross the membrane as it enters or leaves the
cell.
B. Carrier proteins
A protein that selectively interacts with a specific
molecule or ion so that it can cross the cell
membrane to enter or exit the cell.
41
C. Receptor proteins
A protein that has a specific shape so that specific
molecules can bind to them. The binding of a
molecule, such as a hormone, can influence the
metabolism of the cell.
D. Enzyme proteins
An enzyme that catalyzes a specific reaction.
42
E. Cell-recognition proteins
Glycoproteins that identify the cell. They make up
the cellular fingerprint by which cells can recognize
each other.
F. Cell Adhesion Proteins
Adjacent cells stick together via interlocking
proteins on their membranes
43
The membrane can be viewed as a semipermeable
lipoidal sieve that allows the passage of:
- lipid-soluble molecules across it by passive lipid
diffusion
- water and small hydrophilic molecules through
its numerous aqueous pores.
-other molecules by a number of transporter
proteins or carrier molecules that exist in the
membrane.
B. Passage of Drugs Across Membranes
44
There are two main mechanisms of drug transport across
the gastrointestinal epithelium:
Paracellular: i.e. between the cells.
Transcellular: i.e. across the cells
The transcellular pathway is further divided into simple
passive diffusion, carrier-mediated transport (active
transport and facilitated diffusion) and endocytosis.
45
Most (many) drugs cross biological
membranes by passive diffusion.
• Diffusion occurs when the drug
concentration on one side of the membrane
is higher than that on the other side
(according to concentration gradient).
• Drug diffuses across the membrane in an
attempt to equalize the drug concentration
on both sides of the membrane.
1. Passive Transport
46
• The rate of transport of drug across the membrane can be
described by Fick's first law of diffusion:-
D: diffusion coefficient
This parameter is related to:
• the size of the drug
• lipid solubility of the drug
• viscosity of the diffusion medium, the membrane.
As lipid solubility increases or molecular size decreases then
D increases and thus diffusion rate also increases.
47
A: surface area
As the surface area increases the rate of diffusion also
increase. The surface of the intestinal lining (with villae and
microvillae) is much larger than the stomach. Therefore
absorption is generally faster from intestine compared to
stomach.
x: membrane thickness
The smaller the membrane thickness the quicker the
diffusion process.
e.g. the membrane in the lung is quite thin thus inhalation
absorption can be quite rapid.
48
(Ch -Cl): concentration difference.
Since V, the apparent volume of distribution, is at least four
liters and often much higher the drug concentration in blood
or plasma will be quite low compared with the concentration
in the GI tract. It is this concentration gradient which allows
the rapid complete absorption of many drug substances.
Normally Cl << Ch then:-
Thus the absorption of many drugs from the G-I tract can
often appear to be first-order.
49
• Is also the movement of molecules from a high
concentration to a low concentration.
• Lipid insoluble substances such as glucose and amino
acids are taken across by "carrier proteins".
• No chemical energy is required in this process, WHY?
• eg. amino acids, glucose and other breakdown products
of food are absorbed by the small intestine facilitated
diffusion
2. Facilitated Transport
50
Active Transport
It is the movement of molecules across a living membrane
 from an area of low concentration to an area of
high concentration
 with the aid of a carrier protein and
 using energy or ATP .
The rate of drug absorption increases with drug
concentration until the carrier molecules are completely
saturated, the rate then remains constant
3. Active Transport
51
52
Mechanism of Drug Transport ?
53
Surrounding a substance with the cell membrane and
the subsequent formation of a vesicle to bring these
substances into the cell.
This process is energy dependent.
4. Endocytosis
54
There are two main kinds of Endocytosis:
a. Phagocytosis (cell eating) - involves the ingestion of
particles larger than 500 nm. This process is important
in the absorption of polio and other vaccines from the
GIT.
b. Pinocytosis (cell drinking) - involves the ingestion of
fluids or dissolved particles. Fat soluble vitamins A, D, E
and K are absorbed via pinocytosis
55
• Very small molecules (hydrophilic, water soluble such as
water, urea and sugar) are able to rapidly cross cell
membrane as if the membrane contained pores or
channels.
• This model of transportation is used to explain renal
excretion of drugs and uptake of drugs into the liver.
5. Pore Transport
• A certain type of protein may
form an open channel across
the lipid membrane of cell.
56
Strong electrolyte drugs are highly ionized and
maintain their charge at physiological pH.
• These drugs penetrate membranes poorly, WHY?
• When linked up with an oppositely charged ion, an
ion pair is formed in which the overall charge of the
pair is neutral.
• The neutral complex diffuses more easily across the
membrane, WHY?
• An example of this in case of propranolol, a basic
drugs that forms an ion pair with oleic acid.
Ion pair formation
57
 Two pathways exist for the passage of water and
electrolytes across the intestinal mucosa,
transcellular and paracellular.
 The transcellular pathway allows the passage of
hyrophilic molecules of low molecular weight and
with small molecular size through the water filled
pores in the cell membranes.
Paracellular Transport
58
 The paracellular pathway allows access of larger
molecules through the junction between the cells.
 Although the intercellular spaces occupy less than
1% of the surface area of the epithelium it is by this
way the hydrophilic drug molecules are absorbed e.g.
ranitidine , acyclovir.
59
I- Characteristics of GI physiology and Drug Absorption
The gastrointestinal tract is a muscular tube approximately
6 m in length with varying diameters.
It stretches from the mouth to the anus and consists of four
main anatomical areas: - oesophagus
- stomach
- small intestine
- large intestine or colon.
The luminal surface of the tube is not smooth but very
rough, thereby increasing the surface area for absorption.
C. Gastrointestinal (GI) Physiology
60
61
By-
pass
liver
Transit Time
Surface
Area
Blood
Supply
Membrane
pH
Organs
yes
Short unless
controlled
small
Good, fast
absorption
with low
dose
thin
approx
6
Buccal
-
short, a few
seconds,
small
-
Very thick
no
absorption
6-7
Esophagus
no
30 min
delayed stomach
emptying
 intestinal
absorption
small
good
normal
1.7-4.5
Stomach
no
very short (6"
long),
very
large
good
normal
5 - 7
Duodenu
m
no
about 3 hours
very
large
good
normal
6 -7
Small
Intestine
lower
colon,
rectum
yes
long, up to 24 hr
not
very
large
good
-
6.8 - 7
Large
Intestine
62
II. Gastric emptying and motility
Generally drugs are better absorbed in the small
intestine, WHY? (because of the larger surface
area) than in the stomach, therefore quicker
stomach emptying will increase drug absorption.
e.g. a good correlation has been found between
stomach emptying time and peak plasma
concentration for acetaminophen. The quicker
the stomach emptying the higher the plasma
concentration.
63
Also slower stomach emptying can cause
increased degradation of drugs in the stomach's
lower pH; e.g. L-dopa.
64
Bulky material tends to empty more slowly
than liquids
Volume of
Ingested
Material
Decrease
Fatty food
Type of Meal
Decrease
Carbohydrate
Increase in temperature, increase in emptying
rate
Temperature
of Food
Lying on the left side decreases emptying
rate. Standing versus lying (delayed)
Body
Position
Decrease
Anticholinergics (e.g. atropine),
Narcotic (e.g. morphine, alfentanil),
Analgesic (e.g. aspirin)
Drugs
Increase
Metoclopramide, Domperidone,
Erythromycin, Bethanchol
Factors Affecting Gastric Emptying
65
III. Effect of Food
The presence of food in the gastrointestinal tract can
influence the rate and extent of absorption
Complexation of drugs with components in the diet
e.g. Tetracycline forms non-absorbable complexes with
calcium and iron (don’t take milk or iron preparations
at the same time of day as the tetracycline WHY?).
66
Alteration of pH
In general, food tends to increase stomach pH by acting
as a buffer. This is liable to decrease the rate of
dissolution and subsequent absorption of a weakly basic
drug and increase that of a weakly acidic one.
Alteration of gastric emptying
Particularly fatty foods, and some drugs, tend to reduce
gastric emptying and thus delay the onset of action of
certain drugs.
67
Stimulation of gastrointestinal secretions
e.g. pepsin produced in response to food may result in
the degradation of drugs that are susceptible to
enzymatic metabolism, and hence in a reduction in
their bioavailability.
Food, particularly fats, stimulates the secretion of bile.
Bile salts are surface active agents and can increase the
dissolution of poorly soluble drugs, thereby enhancing
their absorption.
e.g. Griseofulvin (antifungal)
68
Competition between food components and drugs for
specialized absorption mechanisms
In the case of those drugs that have a chemical
structure similar to nutrients required by the body for
which specialized absorption mechanisms exist, there
is a possibility of competitive inhibition of drug
absorption.
69
Increased viscosity of gastrointestinal contents
The presence of food in the gastrointestinal tract
provides a viscous environment which may result in a
reduction in the rate of drug dissolution and the rate of
diffusion of a drug in solution from the lumen to the
absorbing membrane.
70
Food-induced changes in presystemic metabolism
Certain foods may increase the bioavailability of drugs
that are susceptible to presystemic intestinal
metabolism by interacting with the metabolic process.
e.g. Grapefruit juice is capable of inhibiting the
intestinal cytochrome P450 and thus, taken with drugs
that are susceptible to cytochrome P450 metabolism,
is likely to result in their increased bioavailability.
71
IV. Enterohepatic circulation (Biliary recycling)
•Some drugs when absorbed from intestine they are
carried via the portal vein into the liver.
•In the liver they are metabolized and secreted into
the bile
72
•As a conjugated drug they are transported again via
bile duct into intestine (In the conjugated form they are
not absorbed again from intestine).
•After meals the secretion of bile is stimulated. The bile
release the drug from its conjugate, thus it will be
reabsorbed again as if a new dose was given.
•Biliary recycling of a drug results in prolonging drug
action.
73
liver
gut
unconjugated
drug
biliary tract
to circulation
conjugated drug
portal vein
Diagram of biliary recycling
74
IV. First pass effect
Is a phenomenon of drug metabolism whereby the
concentration of a drug is greatly reduced before it
reaches the systemic circulation.
After a drug is swallowed, it is absorbed by the
digestive system and enters the hepatic portal system.
It is carried through the portal vein into the liver before
it reaches the rest of the body.
75
The liver metabolizes many drugs, sometimes to such
an extent that only a small amount of active drug
emerges from the liver to the rest of the circulatory
system .
This first pass through the liver thus greatly reduces
the bioavailability of the drug.
76
Diagram of first pass effect
77
• pH-partition theory
• Lipid solubility of drugs
• Dissolution and pH
• Salts
• Crystal form
• Drug stability and hydrolysis in GIT
• Complexation
• Adsorption
2. Physicochemical Factors Affecting Oral Absorption
78
The pH - partition theory explains the influence of GI
pH and drug pKa on the extent of drug absorption.
A. pH - Partition Theory
As most drugs are weak electrolytes, the unionized
form of weakly acidic or basic drugs (i.e. the lipid-
soluble form) will pass across the gastrointestinal
epithelia, whereas the gastrointestinal epithelia is
impermeable to the ionized (i.e. poorly lipid-soluble)
form of such drugs.
79
According to the pH-partition hypothesis, the
absorption of a weak electrolyte will be determined
chiefly by the extent to which the drug exists in its
unionized form at the site of absorption.
80
The extent to which a weakly acidic or basic drug ionizes
in solution in the gastrointestinal fluid is determined by:
its pKa & the pH at the absorption site and may be
calculated using the appropriate form of the Henderson-
Hasselbach equation
81
What is acid?
acid is a substance that liberates hydrogen ions [H+] in
solution.
What is a base?
A base is a substance that can bind H+ and remove them
from solution.
pH = - log [H+]
Strong acids, strong bases, as well as strong electrolytes
are essentially completely ionized in aqueous solution.
Weak acids and weak bases are only partially ionized in
aqueous solution and yield a mixture of the
undissociated compound and ions.
82
HA H+ + A-
Ka =
[H+] [A-]
[HA]
In solutions of weak acids
equilibria exist between
undissociated molecules and
their ions.
The ionization constant Ka of a
weak acid can be obtained by
applying the Law of Mass Action:
83
pKa = pH - log
[A-]
[HA]
log
[A-]
[HA]
= pH - pKa
Henderson - Hasselbalch
Equation
pKa = the negative logarithm
of Ka
From the pKa, one can
calculate the proportions of
drug in the charged and
uncharged forms at any pH:
For acidic drugs, the lower
the pKa the stronger the acid
84
Some Typical pKa Values for Weak Acids at 25 °C
pKa
Weak Acid
4.76
Acetic
3.49
Acetylsalicyclic
9.24
Boric
2.73
Penicillin V
8.1
Phenytoin
2.97
Salicyclic
7.12
Sulfathiazole
85
In solutions of weak bases equilibria
exist between undissociated
molecules and their ions.
The ionization constant Ka of a
protonated weak base can be
obtained by applying the Law of
Mass Action:
B + H+ BH+
Ka =
[H+] [B]
[BH+]
86
pKa = the negative logarithm of Ka
From the pKa, one can
calculate the proportions of
drug in the charged and
uncharged forms at any pH:
pKa = pH - log
[B]
[BH+]
Henderson - Hasselbalch
Equation
log
[B]
[BH+]
= pH - pKa
For basic drugs, the higher the
pKa the stronger the base
87
Therefore, according to these equations:
a weakly acidic drug, pKa 3.0, will be:
predominantly unionized in gastric fluid at pH 1.2
(98.4%) and almost totally ionized in intestinal fluid at
pH 6.8 (99.98%),
a weakly basic drug, pKa 5, will be:
almost entirely ionized (99.98%) at gastric pH of 1.2
and predominantly unionized at intestinal pH of 6.8
(98.4%).
88
This means that, according to the pH-partition
hypothesis, a weakly acidic drug is more likely to be
absorbed from the stomach where it is unionized,
and a weakly basic drug from the intestine where it is
predominantly unionized.
However, in practice, other factors need to be taken into
consideration.
89
Lipid solubility :weak acids and weak bases
HA <==> H+ + A- B + HCl <==> BH+ + Cl-
[ UI ] [ I ] [ UI ] [ I ]
pKa=pH + log (HA/A-) pKa= pH + log(BH+/B)
ASPIRIN pKa = 4.5 (weak acid)
100mg orally
99.9 = [ UI ] [ UI ]
Stomach
pH = 2
Blood
pH = 7.4
0.1 = [ I ]
Aspirin is reasonably absorbed Strychnine not absorbed until
from stomach (fast action) enters duodenum
0.1 = [ UI ] [ UI ]
Blood
pH = 7.4
99.9 = [ I ]
STRYCHNINE pKa = 9.5 (weak base)
100mg orally
Stomach
pH = 2
90
Limitations of the pH-partition hypothesis
 Weak acids are also absorbed from the small intestine
due to:
 The significantly larger surface area that is
available for absorption in the small intestine in
contrast to stomach
 The longer small intestinal residence time
 The microclimate pH, that exists at the surface
of the intestinal mucosa and is lower than that
of the luminal pH of the small intestine
91
 The pH -partition hypothesis cannot explain the fact
that certain drugs (e.g. tetracyclines) are readily
absorbed despite being ionized over the entire pH
range of the gastrointestinal tract. One suggestion for
this is that such drugs interact with endogenous
organic ions of opposite charge to form an absorbable
neutral species - an ion pair - which is capable of
partitioning into the lipoidal GIT barrier and be
absorbed via passive diffusion.
92
Barbitone and thiopentone, have similar dissociation
constants - pKa 7.8 and 7.6, respectively - and
therefore similar degrees of ionization at intestinal pH.
However, thiopentone is absorbed much better than
barbitone. WHY? the absorption of drugs is also
affected by the lipid solubility of the drug.
Thiopentone, being more lipid soluble than barbitone,
exhibits a greater affinity for the gastrointestinal
membrane and is thus far better absorbed.
B. Lipid Solubility of Drugs
93
An indication of the lipid solubility of a drug, and (its
absorption) is given by its ability to partition between a
lipid-like solvent (usually octanol) and water.
This is known as the drug's partition coefficient, and is a
measure of its lipophilicity.
How can we measure lipid solubility??
94
The partition coefficient P is the ratio of the drug
concentration in the organic phase to its concentration
in the aqueous phase
Partition coefficient (p) = [ L] conc / [W] conc
[ L] conc is the concentration of the drug in lipid phase,
[W] conc is the concentration of the drug in aqueous
phase.
The higher p value, the more absorption is observed.
Polar molecules, i.e. those that are poorly lipid soluble
and relatively large, such as heparin are poorly
absorbed after oral administration and therefore have
to be given by injection.
95
A prodrug is a chemical modification,
frequently an ester of an existing drug.
The ester linkage increases the
lipophilicity of the compound thus
enhances the absorption.
A prodrug has no pharmocological activity
itself but it converts back to the parent
compound as a result of metabolism by
the body. (e.g. Rivampicillin a prodrug for
ampicillin)
The drug is too hydrophilic, what can be done??
Prodrug is one of the options that can be used to
enhance p value and absorption as sequence.
96
So far we have looked at the transfer of drugs in
solution in the G-I tract, through a membrane, into
solution in the blood.
However, many drugs are given in solid dosage forms
and therefore must dissolve before absorption can take
place.
C. Drug Dissolution
97
The rate of solution may be explained using Fick’s First
Low of Diffusion: It is the rate at which a dissolved
solute particle diffuses through the stagnant layer to the
bulk solution
If absorption is slow relative to dissolution then all we
are concerned with is absorption. However, if dissolution
is the slow, rate determining step (the step controlling
the overall rate) then factors affecting dissolution will
control the overall process.
98
Fick's first law
By Fick's first law of diffusion:
D diffusion coefficient,
A surface area,
Cs solubility of the drug,
Cb concentration of drug in the bulk solution,
h thickness of the stagnant layer.
As Cb is much smaller than Cs
the equation reduces to :
Solid
Stagnant
Layer
Cs Cb
h
Bulk Solution
99
There are a number of factors which affect drug dissolution:
Surface area, A
The surface area per gram (or per dose) of a solid drug
can be changed by altering the particle size.
e.g. a cube 3 cm on each side has a surface area of 54
cm2. If this cube is broken into cubes with sides of 1 cm,
the total surface area is 162 cm2.
100
Generally as A increases the dissolution rate will also
increase. Improved bioavailability has been observed
with griseofulvin, digoxin, etc.
Methods of particle size reduction include mortar and
pestle, mechanical grinders, fluid energy mills, solid
dispersions in readily soluble materials (PEG's).
101
Diffusion layer thickness, h
This thickness is affected by the agitation in the bulk
solution.
In vivo we usually have very little control over this
parameter.
It is important though when we perform in vitro
dissolution studies because we have to control the
agitation rate so that we get similar results in vitro as
we would in vivo.
102
Diffusion coefficient, D
The value of D depends on the size of the molecule and
the viscosity of the dissolution medium.
Increasing the viscosity will decrease the diffusion
coefficient and thus the dissolution rate.
This could be used to produce a sustained release
effect by including a larger proportion of something
like sucrose or acacia in a tablet formulation.
103
Drug solubility, Cs
Solubility is another determinant of dissolution rate.
As Cs increases so does the dissolution rate.
We can look at ways of changing the solubility of a drug:
104
base, therefore if the drug
can be given as a salt the
solubility can be increased
and we should have
improved dissolution. One
example is Penicillin V.
D. (1) Salt Form
If we look at the dissolution profile of various salts.
Salts of weak acids and weak bases generally have
much higher aqueous solubility than the free acid or
105
Some drugs exist in a number of crystal forms or
polymorphs.
These different forms may well have different solubility
properties and thus different dissolution characteristics.
Chloramphenicol palmitate is one example which exists
in at least two polymorphs.
E. (2) Crystal Form
106
Plot of Cp versus Time for
Three Formulations of
Chloramphenicol Palmitate
The B form is apparently more bioavailable. This is
attributed to the more rapid in vivo rate of dissolution.
The recommendation
might be that
manufacturers should
use polymorph B for
maximum solubility and
absorption.
107
In addition to different polymorphic crystalline forms, a
drug may exist in an amorphous form.
Because the amorphous form usually dissolves more
rapidly than the corresponding crystalline forms there
will be significant differences in the bioavailabilities.
e.g. antibiotic novobiocin. The more soluble and rapidly
dissolving amorphous form of novobiocin was readily
absorbed.
However, the less soluble and slower-dissolving
crystalline form of novobiocin was not absorbed to any
significant extent thus therapeutically ineffective.
108
Acid and enzymatic hydrolysis of drugs in GIT is one of
the reasons for poor bioavailability.
Penicillin G (half life of degradation = 1 min at pH= 1)
Rapid dissolution leads to poor bioavailability WHY? (due
to release large portion of the drug in the stomach, pH =
1.2)
How to protect the drug from the gastric juice?
1. Enteric coating the tablet containing the drug.
2. Prodrug that exhibits limited solubility in gastric fluid
but liberates the parent drug in intestine to be absorbed.
F. Drug Stability and Hydrolysis in GIT
109
G. Adsorption
Certain insoluble substances may adsorb
co-administrated drugs leading to poor
absorption.
Charcoal (antidote in drug intoxication).
110
Complexation of a drug in the GIT fluids may alter rate
and extent of drug absorption.
1. GIT component- drug interaction:
Intestinal mucosa + Streptomycin = poorly absorbed
complex
2. Food-drug interaction:
Calcium + Tetracycline = poorly absorbed complex
3. Tablet additive – drug interaction:
Carboxyl methylcellulose (CMC) + Amphetamine =
poorly absorbed complex
H. Complexation
111
4. Complexing agent + polar drugs:
Dialkylamides + prednisone = well-absorbed lipid
soluble complex
5. Lipid soluble drug + water soluble complexing agent
Miconazole + cyclodextrine = water soluble complex
112
Role of dosage forms
 Solutions
 Suspensions
 Capsules
 Tablets
- uncoated
- coated
3. Formulation Factors Affecting Oral Absorption
113
With any drug it is possible to alter its bioavailability
considerably by formulation modification.
Since a drug must be in solution to be absorbed efficiently
from the G-I tract, you may expect the bioavailability of a
drug to decrease in the order:
solution > suspension > capsule > tablet > coated tablet.
This order may not always be followed but it is a useful
guide.
One example is the results for pentobarbital.
Here the order was found to be:
aq solution > aq suspension = capsule > tablet of free
acid form.
114
Drugs are commonly given in solution in cough/cold
remedies and in medication for the young and elderly.
In general, drugs must be in solution in gastrointestinal
fluids before absorption can occur.
For drugs that are water soluble and chemically stable
in aqueous solution, formulation as a solution normally
eliminates the in vivo dissolution step and presents the
drug in the most readily available form for absorption
I. Solution dosage form
115
therefore absorption from an oral solution is rapid and
complete, compared with administration in any other
oral dosage form.
The rate limiting step is often the rate of gastric
emptying since absorption will generally be more rapid
in the intestine.
•However, dilution of an aqueous solution of a poorly
water-soluble drug whose aqueous solubility had been
increased by:
formulation techniques such as 1cosolvency, 2complex
formation or 3solubilization can result in precipitation
of the drug in the gastric fluids.
116
•Similarly, exposure of an aqueous solution of a 4salt of
a weak acidic compound to gastric pH can also result in
precipitation of the free acid form of the drug.
In most cases the extremely fine nature of the resulting
precipitate permits a more rapid rate of dissolution
than if the drug had been administered in other types
of oral dosage forms, such as aqueous suspension, hard
gelatin capsule or tablet.
117
 A well formulated suspension is second to a solution
(nonprecipitating) in terms of superior
bioavailability.
 Absorption may well be dissolution limited, however
a suspension of a finely divided powder and hence
large surface area will maximize the potential for
rapid dissolution.
 With very fine particle sizes the dispersibility of the
powder becomes important.
II. Suspension dosage form
118
 The addition of a surface active agent will improve
dispersion of a suspension.
 As a suspension ages there is potential for increased
particle size with an accompanying decrease in
dissolution rate.
119
Provided:
 the hard gelatin shell dissolves
rapidly in the GI fluids
 encapsulated mass disperses
rapidly and efficiently,
 a relatively large effective
surface area of drug will be
exposed to the gastrointestinal
fluids, thereby facilitating
dissolution.
III. Capsule dosage form
120
The capsule contents should not be subjected to high
compression forces which would tend to reduce the
effective surface area, thus tightly packed capsules
may have reduced dissolution and bioavailability.
The inclusion of excipients (e.g. diluents, lubricants and
surfactants) in a capsule formulation can have a
significant effect on the rate of dissolution of drugs,
particularly those that are poorly soluble and
hydrophobic.
121
However, the diluent should exhibit
no tendency to adsorb or complex
with the drug, as either can impair
absorption from the gastrointestinal
tract.
If a drug is hydrophobic a dispersing agent should be
added to the capsule formulation.
A hydrophilic diluent (e.g. sorbitol, lactose) often serves
to increase the rate of penetration of the aqueous
gastrointestinal fluids into the contents of the capsule,
and to aid the dispersion and subsequent dissolution of
the drug in these fluids.
122
123
Uncoated tablets
Tablets are the most widely used dosage form.
When a drug is formulated as a compressed tablet there is
an enormous reduction in the effective surface area of the
drug, owing to the granulation and compression
processes involved in tablet making.
The tablets should disintegrate rapidly and completely in
the GIT fluids so that a fine, well dispersed suspension of
drug particles in the GIT fluids is generated following the
administration of a tablet.
IV. Tablet dosage form
124
The overall rate of tablet disintegration influenced by
several interdependent factors: the concentration and
type of drug, diluent, binder, disintegrant, lubricant and
wetting agent as well as the compaction pressure.
125
Film Coated Tablet
Tablet coatings may be employed to:
- mask an unpleasant taste or odour or
- to protect an ingredient from
decomposition during storage.
126
Enteric coating protects drugs
which would otherwise be
destroyed if released into gastric
fluid and also protects the
stomach against drugs which can
produce nausea or mucosal
irritation (e.g. aspirin, ibuprofen)
if released at this site.
Enteric Coated Tablet
An enteric coat is designed to:
resist the low pH of gastric fluids but to disrupt or dissolve
when the tablet enters the higher pH of the duodenum.
127
The presence of a coating presents a physical barrier
between the tablet core and the gastrointestinal fluids.
Coated tablets therefore not only possess all the
potential bioavailability problems associated with
uncoated conventional tablets, but are subject to the
additional potential problem of being surrounded by a
physical barrier.

Mais conteúdo relacionado

Semelhante a biopharmaceutics - Copy (2).ppt

Pharmacokineticsppt 130126012953-phpapp02
Pharmacokineticsppt 130126012953-phpapp02Pharmacokineticsppt 130126012953-phpapp02
Pharmacokineticsppt 130126012953-phpapp02Linda Amos
 
Introduction to pharmacology Part 2 ppt.pptx
Introduction to pharmacology Part 2 ppt.pptxIntroduction to pharmacology Part 2 ppt.pptx
Introduction to pharmacology Part 2 ppt.pptxImranUllah81
 
Controlled release drug delivery system
Controlled release drug delivery system Controlled release drug delivery system
Controlled release drug delivery system MOHAMMEDABDULSALAM32
 
Nasopulmonary-DDS-NDDS.7th semester notes
Nasopulmonary-DDS-NDDS.7th semester notesNasopulmonary-DDS-NDDS.7th semester notes
Nasopulmonary-DDS-NDDS.7th semester notesPayelMukherjee33
 
Nasopulmonary- drug delivery system pptx
Nasopulmonary- drug delivery system pptxNasopulmonary- drug delivery system pptx
Nasopulmonary- drug delivery system pptxNatasha313161
 
Nasopulmonary-DDS-NDDS (1).pptx
Nasopulmonary-DDS-NDDS (1).pptxNasopulmonary-DDS-NDDS (1).pptx
Nasopulmonary-DDS-NDDS (1).pptxVKJoshi4
 
pharmacokineticsppt-4.pdfghjjjjkkkkkkkkkkjjj
pharmacokineticsppt-4.pdfghjjjjkkkkkkkkkkjjjpharmacokineticsppt-4.pdfghjjjjkkkkkkkkkkjjj
pharmacokineticsppt-4.pdfghjjjjkkkkkkkkkkjjjsanyAhmed3
 
Pharmacokinetics
Pharmacokinetics Pharmacokinetics
Pharmacokinetics Moha Haji
 
Pharmacokinetics and pharmacodynamics of biotechnological products
Pharmacokinetics  and  pharmacodynamics  of  biotechnological  productsPharmacokinetics  and  pharmacodynamics  of  biotechnological  products
Pharmacokinetics and pharmacodynamics of biotechnological productsPV. Viji
 
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptxPharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptxDr. Baqir Raza Naqvi
 
3 drug absorption from the git
3 drug absorption from the git3 drug absorption from the git
3 drug absorption from the gitbernard kathewera
 
Pharmacokinetics absorption,distribution,metabolism,excretion
Pharmacokinetics  absorption,distribution,metabolism,excretionPharmacokinetics  absorption,distribution,metabolism,excretion
Pharmacokinetics absorption,distribution,metabolism,excretionHeena Parveen
 
Fundamental concept of modified drug release
Fundamental concept of modified drug releaseFundamental concept of modified drug release
Fundamental concept of modified drug releaseAbhinayJha3
 
Fundamental concept of modified drug release
Fundamental concept of modified drug releaseFundamental concept of modified drug release
Fundamental concept of modified drug releaseAbhinayJha3
 
Pharmacokinetics dynamics and genetics
Pharmacokinetics dynamics and geneticsPharmacokinetics dynamics and genetics
Pharmacokinetics dynamics and geneticskrishna prasad dahal
 
Pharmacokinetic_absorption_and_distribut.pptx
Pharmacokinetic_absorption_and_distribut.pptxPharmacokinetic_absorption_and_distribut.pptx
Pharmacokinetic_absorption_and_distribut.pptxSumant Saini
 
GIT ABSORPTION FOR ORAL Administered Drug
GIT ABSORPTION FOR ORAL Administered DrugGIT ABSORPTION FOR ORAL Administered Drug
GIT ABSORPTION FOR ORAL Administered DrugAli Mashwani
 

Semelhante a biopharmaceutics - Copy (2).ppt (20)

Pharmacokineticsppt 130126012953-phpapp02
Pharmacokineticsppt 130126012953-phpapp02Pharmacokineticsppt 130126012953-phpapp02
Pharmacokineticsppt 130126012953-phpapp02
 
Pharmacokinetic principles
Pharmacokinetic principlesPharmacokinetic principles
Pharmacokinetic principles
 
Introduction to pharmacology Part 2 ppt.pptx
Introduction to pharmacology Part 2 ppt.pptxIntroduction to pharmacology Part 2 ppt.pptx
Introduction to pharmacology Part 2 ppt.pptx
 
ADME
ADMEADME
ADME
 
Controlled release drug delivery system
Controlled release drug delivery system Controlled release drug delivery system
Controlled release drug delivery system
 
Nasopulmonary-DDS-NDDS.7th semester notes
Nasopulmonary-DDS-NDDS.7th semester notesNasopulmonary-DDS-NDDS.7th semester notes
Nasopulmonary-DDS-NDDS.7th semester notes
 
Nasopulmonary- drug delivery system pptx
Nasopulmonary- drug delivery system pptxNasopulmonary- drug delivery system pptx
Nasopulmonary- drug delivery system pptx
 
Nasopulmonary-DDS-NDDS (1).pptx
Nasopulmonary-DDS-NDDS (1).pptxNasopulmonary-DDS-NDDS (1).pptx
Nasopulmonary-DDS-NDDS (1).pptx
 
pharmacokineticsppt-4.pdfghjjjjkkkkkkkkkkjjj
pharmacokineticsppt-4.pdfghjjjjkkkkkkkkkkjjjpharmacokineticsppt-4.pdfghjjjjkkkkkkkkkkjjj
pharmacokineticsppt-4.pdfghjjjjkkkkkkkkkkjjj
 
Pharmacokinetics
Pharmacokinetics Pharmacokinetics
Pharmacokinetics
 
Pharmacokinetics and pharmacodynamics of biotechnological products
Pharmacokinetics  and  pharmacodynamics  of  biotechnological  productsPharmacokinetics  and  pharmacodynamics  of  biotechnological  products
Pharmacokinetics and pharmacodynamics of biotechnological products
 
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptxPharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
Pharmacokinetics, Lecture by, Dr. Baqir Naqvi.pptx
 
3 drug absorption from the git
3 drug absorption from the git3 drug absorption from the git
3 drug absorption from the git
 
Pharmacokinetics
PharmacokineticsPharmacokinetics
Pharmacokinetics
 
Pharmacokinetics absorption,distribution,metabolism,excretion
Pharmacokinetics  absorption,distribution,metabolism,excretionPharmacokinetics  absorption,distribution,metabolism,excretion
Pharmacokinetics absorption,distribution,metabolism,excretion
 
Fundamental concept of modified drug release
Fundamental concept of modified drug releaseFundamental concept of modified drug release
Fundamental concept of modified drug release
 
Fundamental concept of modified drug release
Fundamental concept of modified drug releaseFundamental concept of modified drug release
Fundamental concept of modified drug release
 
Pharmacokinetics dynamics and genetics
Pharmacokinetics dynamics and geneticsPharmacokinetics dynamics and genetics
Pharmacokinetics dynamics and genetics
 
Pharmacokinetic_absorption_and_distribut.pptx
Pharmacokinetic_absorption_and_distribut.pptxPharmacokinetic_absorption_and_distribut.pptx
Pharmacokinetic_absorption_and_distribut.pptx
 
GIT ABSORPTION FOR ORAL Administered Drug
GIT ABSORPTION FOR ORAL Administered DrugGIT ABSORPTION FOR ORAL Administered Drug
GIT ABSORPTION FOR ORAL Administered Drug
 

Mais de HebaYassin10

Pharmaceutics-I-DOSAGE-FORM.ppt
Pharmaceutics-I-DOSAGE-FORM.pptPharmaceutics-I-DOSAGE-FORM.ppt
Pharmaceutics-I-DOSAGE-FORM.pptHebaYassin10
 
lecture 2 (1).pptx
lecture 2 (1).pptxlecture 2 (1).pptx
lecture 2 (1).pptxHebaYassin10
 
tablets_part_1.pdf
tablets_part_1.pdftablets_part_1.pdf
tablets_part_1.pdfHebaYassin10
 
states_of_matter.ppt
states_of_matter.pptstates_of_matter.ppt
states_of_matter.pptHebaYassin10
 
pharmaceuticalcreams-151214135634.pdf
pharmaceuticalcreams-151214135634.pdfpharmaceuticalcreams-151214135634.pdf
pharmaceuticalcreams-151214135634.pdfHebaYassin10
 
creamsandgels-191212173159.pdf
creamsandgels-191212173159.pdfcreamsandgels-191212173159.pdf
creamsandgels-191212173159.pdfHebaYassin10
 
cream-170204113026.pdf
cream-170204113026.pdfcream-170204113026.pdf
cream-170204113026.pdfHebaYassin10
 
Office hours, Dosge form II.docx
Office hours, Dosge form II.docxOffice hours, Dosge form II.docx
Office hours, Dosge form II.docxHebaYassin10
 
Lecture 7 cream.pptx
Lecture 7 cream.pptxLecture 7 cream.pptx
Lecture 7 cream.pptxHebaYassin10
 
liquid dosage form.pptx
liquid dosage form.pptxliquid dosage form.pptx
liquid dosage form.pptxHebaYassin10
 
شريحة الرؤية والرسالة.ppt
شريحة الرؤية والرسالة.pptشريحة الرؤية والرسالة.ppt
شريحة الرؤية والرسالة.pptHebaYassin10
 
Menstrual -Intestinal gas discomfort - lactose-Practice-2018.pptx
Menstrual -Intestinal gas discomfort - lactose-Practice-2018.pptxMenstrual -Intestinal gas discomfort - lactose-Practice-2018.pptx
Menstrual -Intestinal gas discomfort - lactose-Practice-2018.pptxHebaYassin10
 
مراحل وتشخيص الأزمة .pptx
مراحل وتشخيص الأزمة .pptxمراحل وتشخيص الأزمة .pptx
مراحل وتشخيص الأزمة .pptxHebaYassin10
 
كيفية إدارة الأزمات 000.pptx
كيفية إدارة الأزمات 000.pptxكيفية إدارة الأزمات 000.pptx
كيفية إدارة الأزمات 000.pptxHebaYassin10
 
Semisolid_Dosage_Forms_SCU_2016.pptx
Semisolid_Dosage_Forms_SCU_2016.pptxSemisolid_Dosage_Forms_SCU_2016.pptx
Semisolid_Dosage_Forms_SCU_2016.pptxHebaYassin10
 
kinetics (Lec 2).pptx
kinetics (Lec 2).pptxkinetics (Lec 2).pptx
kinetics (Lec 2).pptxHebaYassin10
 
Surfactant lec 2.ppt
Surfactant lec 2.pptSurfactant lec 2.ppt
Surfactant lec 2.pptHebaYassin10
 

Mais de HebaYassin10 (20)

Pharmaceutics-I-DOSAGE-FORM.ppt
Pharmaceutics-I-DOSAGE-FORM.pptPharmaceutics-I-DOSAGE-FORM.ppt
Pharmaceutics-I-DOSAGE-FORM.ppt
 
lecture 2 (1).pptx
lecture 2 (1).pptxlecture 2 (1).pptx
lecture 2 (1).pptx
 
tablets_part_1.pdf
tablets_part_1.pdftablets_part_1.pdf
tablets_part_1.pdf
 
states_of_matter.ppt
states_of_matter.pptstates_of_matter.ppt
states_of_matter.ppt
 
pharmaceuticalcreams-151214135634.pdf
pharmaceuticalcreams-151214135634.pdfpharmaceuticalcreams-151214135634.pdf
pharmaceuticalcreams-151214135634.pdf
 
creamsandgels-191212173159.pdf
creamsandgels-191212173159.pdfcreamsandgels-191212173159.pdf
creamsandgels-191212173159.pdf
 
cream-170204113026.pdf
cream-170204113026.pdfcream-170204113026.pdf
cream-170204113026.pdf
 
Office hours, Dosge form II.docx
Office hours, Dosge form II.docxOffice hours, Dosge form II.docx
Office hours, Dosge form II.docx
 
Lecture 7 cream.pptx
Lecture 7 cream.pptxLecture 7 cream.pptx
Lecture 7 cream.pptx
 
liquid dosage form.pptx
liquid dosage form.pptxliquid dosage form.pptx
liquid dosage form.pptx
 
شريحة الرؤية والرسالة.ppt
شريحة الرؤية والرسالة.pptشريحة الرؤية والرسالة.ppt
شريحة الرؤية والرسالة.ppt
 
Menstrual -Intestinal gas discomfort - lactose-Practice-2018.pptx
Menstrual -Intestinal gas discomfort - lactose-Practice-2018.pptxMenstrual -Intestinal gas discomfort - lactose-Practice-2018.pptx
Menstrual -Intestinal gas discomfort - lactose-Practice-2018.pptx
 
Lecture 4.ppt
Lecture 4.pptLecture 4.ppt
Lecture 4.ppt
 
lecture 2.ppt
lecture 2.pptlecture 2.ppt
lecture 2.ppt
 
مراحل وتشخيص الأزمة .pptx
مراحل وتشخيص الأزمة .pptxمراحل وتشخيص الأزمة .pptx
مراحل وتشخيص الأزمة .pptx
 
كيفية إدارة الأزمات 000.pptx
كيفية إدارة الأزمات 000.pptxكيفية إدارة الأزمات 000.pptx
كيفية إدارة الأزمات 000.pptx
 
Semisolid_Dosage_Forms_SCU_2016.pptx
Semisolid_Dosage_Forms_SCU_2016.pptxSemisolid_Dosage_Forms_SCU_2016.pptx
Semisolid_Dosage_Forms_SCU_2016.pptx
 
kinetics (Lec 2).pptx
kinetics (Lec 2).pptxkinetics (Lec 2).pptx
kinetics (Lec 2).pptx
 
lecture 5.pdf
lecture 5.pdflecture 5.pdf
lecture 5.pdf
 
Surfactant lec 2.ppt
Surfactant lec 2.pptSurfactant lec 2.ppt
Surfactant lec 2.ppt
 

Último

CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxAnupam32727
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQuiz Club NITW
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6Vanessa Camilleri
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Celine George
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfChristalin Nelson
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWQuiz Club NITW
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1GloryAnnCastre1
 
CHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptxCHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptxAneriPatwari
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 

Último (20)

CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
 
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITWQ-Factor General Quiz-7th April 2024, Quiz Club NITW
Q-Factor General Quiz-7th April 2024, Quiz Club NITW
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17Tree View Decoration Attribute in the Odoo 17
Tree View Decoration Attribute in the Odoo 17
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdf
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITW
 
Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1Reading and Writing Skills 11 quarter 4 melc 1
Reading and Writing Skills 11 quarter 4 melc 1
 
CHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptxCHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptx
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 

biopharmaceutics - Copy (2).ppt

  • 1. 1
  • 2. 2 ‫الكليـــــــــــــة‬ ‫رؤيــــــــــــة‬ ‫الكليــــــــــــة‬ ‫رســـــــــــــــالة‬ ‫الريادة‬ ً ‫محليا‬ ً ‫واقليميا‬ ً ‫ودوليا‬ ‫لالرتقاء‬ ‫بصحة‬ ‫االنسان‬ ‫من‬ ‫خالل‬ ‫استخدام‬ ‫االب‬ ‫تكارات‬ ‫فى‬ ‫مجال‬ ‫التعليم‬ ‫والبحوث‬ ‫العلمية‬ ‫والممارسات‬ ‫التطبيقية‬ . ‫توفير‬ ‫أفضل‬ ‫الممارسات‬ ‫في‬ ‫مجال‬ ‫التعليم‬ ‫والتعلم‬ ‫والتدريب‬ ‫وإستمرارية‬ ‫خلق‬ ‫ف‬ ‫رص‬ ‫للطالب‬ ‫والخريجين‬ ‫بإبتكار‬ ‫ونشر‬ ‫وتطبيق‬ ‫المعرفة‬ ‫الحديثة‬ ‫المرتكزة‬ ‫على‬ ‫البحوث‬ ‫وال‬ ‫تطبيقات‬ ‫في‬ ‫العلوم‬ ‫الصيدلية‬ ‫واإلكلينيكية‬ ‫واإلجتماعية‬ ‫للنهوض‬ ‫بالصحة‬
  • 3. 2
  • 4. 4 Upon successful completion of this course the student should be able to;  Describe the physicochemical and physiological factors that influence the absorption of drugs from extra and intravascular routs of administration, their distribution within the body, and the irroutes and mechanisms of elimination.
  • 5. 5 WHAT IS BIOPHARMACEUTICS? Biopharmaceutics can be defined as the study of how • the physicochemical properties of drugs, • dosage forms and • routes of administration affect the rate and extent of drug absorption. Bioavailability is therefore defined as: the rate and extent of drug absorption
  • 6. 6 If a drug is given intravenously it is administered directly into the blood, and therefore we can be sure that all the drug reaches the systemic circulation. The drug is therefore said to be 100% bioavailable All other routes of administration where a systemic action is required, involve the absorption of the drug into the blood.
  • 7. 7 MSC MEC Cmax tmax AUC Therapeutic range (window) Absorption phase Elimination phase Plasma Concentration Time A typical blood plasma concentration-time curve obtained following the peroral administration of a single dose of a drug in a tablet
  • 8. 8 Cmax: the highest plasma drug concentration observed. Tmax: the time at which Cmax occurs following administration of an extravascular dose. AUC: Area under the curve MSC: Maximum safe concentration MEC: Minimum effective concentration Therapeutic range: The range of plasma concentrations between the minimally effective concentration and the maximum safe concentration Absorption phase: Absorption rate > Elimination rate Elimination phase: Elimination rate > Absorption rate
  • 9. 9 Routes of drug administration The route of administration determines the site of application of the drug product. Often the goal is to attain a therapeutic drug concentration in plasma from which drug enters the tissue (therapeutic window between toxic concentration and minimal effective concentration).
  • 10. 10 Routes of administration are classified into: ENTERAL and PARENTERAL Enteral means through the GI tract and includes oral, buccal, and rectal. Parenteral means not through the alimentary canal and commonly refers to injections such as IV, IM, and SC; but could also include topical and inhalation
  • 11. 11 1. Sublingual (buccal) Certain drugs are best given beneath the tongue (sublingual) or retained in the cheek pouch (buccal) and are absorbed from these regions into the local circulation. A. Enteral Routes
  • 12. 12 These vascular areas are ideal for lipid-soluble drugs that would be metabolized in the gut or liver, since the blood vessels in the mouth bypass the liver (do not undergo first pass liver metabolism), and drain directly into the systemic circulation. This route is usually reserved for nitrates and certain hormones.
  • 13. 13 Diagram of first pass effect liver gut biliary tract to circulation metabolised drug portal vein unmetabolised drug
  • 14. 14 2. Oral By far the most common route. The passage of drug from the gut into the blood is influenced by biologic and physicochemical factors and by the dosage form. For most drugs, 2- to 5-fold differences in the rate or extent of gastrointestinal absorption can occur, depending on the dosage form. Generally, the bioavailability of oral drugs follows the order: solution > suspension > capsule > tablet > coated tablet.
  • 15. 15 3. Rectal The administration of suppositories is usually reserved for situations in which oral administration is difficult. This route is more frequently used in small children. It by-passes the liver
  • 16. 16 1. Intravenous injection Used when a rapid clinical response is necessary, e.g., an acute asthmatic episode. This route allows one to achieve relatively precise drug concentrations in the plasma, since bioavailability is 100%. B. Parenteral Routes
  • 17. 17 Most drugs should be injected over 1-2 minutes in order to prevent the occurrence of very high drug concentrations in the injected vein, possibly causing adverse effects. Some drugs, particularly those with narrow therapeutic indices or short half-lives, are best administered as a slow IV infusion or drip.
  • 18. 18 2. Intramuscular injection Drugs may be injected into the arm (deltoid), thigh (vastus lateralis) or buttocks (gluteus maximus). Because of differences in vascularity, the rates of absorption differ, with arm > thigh > buttocks. Drug absorption may be slow and erratic. Lipid solubility and degree of ionization influence absorption. It should not be assumed that the IM route is as reliable as the IV route.
  • 19. 19 3. Subcutaneous injection Some drugs, notably insulin, are routinely administered SC. Drug absorption is generally slower SC than IM, WHY? due to poorer vascularity. Absorption can be facilitated by heat, massage or vasodilators. It can be slowed by coadministration of vasoconstrictors, a practice commonly used to prolong the local action of local anesthetics. As above, arm > thigh.
  • 20. 20
  • 21. 21 4. Topical application a. Eye For desired local effects. b. Intravaginal For infections or contraceptives. c. Intranasal For alleviation of local symptoms. Directly from nasal capillaries into circulation.
  • 22. 22 d. Skin Systemic absorption does occur and varies with the area, site, drug, and state of the skin. Dimethyl sulfoxide (DMSO) enhances the percutaneous absorption of many drugs. e. Drug patches (drug enters systemic circulation by zero order kinetics – a constant amount of drug enters the circulation per unit time).
  • 23. 23 5. Inhalation Volatile anesthetics, as well as many drugs which affect pulmonary function, are administered as aerosols. The large alveolar area and blood supply lead to rapid absorption into the blood. Drugs administered via this route are not subject to first-pass liver metabolism.
  • 24. 24 6. Other ROA's Other routes of administration include: • intra-arterial for cancer chemotherapy to maximize drug concentrations at the tumor site • intrathecal directly into the cerebrospinal fluid.
  • 25. 25 Why are there different routes? 1.Solubility or stability of the drug 2.The absorption from the different sites. Many drugs are absorbed from stomach and small intestine and not absorbed rectally. 3.Toxic when given by certain routes. 4.Ineffective, destroyed or inactivated in certain organs e.g. penicillin in stomach. 5.Convenience of the patient
  • 26. 26 Time until Effect Route for Administration 30-60 sec IV 2-3 min Inhalation 3-5 min Sublingual 10-20 min IM 15-30 min SC 5-30 min Rectal 30-90 min Ingestion Variable (minutes-hours) Transdermal (Topical)
  • 27. 27 The concentration of the drug in blood plasma depends on LADME L = Liberation the release of the drug from it's dosage form. A = Absorption the movement of drug from the site of administration to the blood circulation. D = Distribution the process by which drug diffuses or is transferred from intravascular space to extravascular space (body tissues).
  • 28. 28 The concentration of the drug in blood plasma depends on LADME M = Metabolism the chemical conversion or transformation of drugs into compounds which are easier to eliminate. E = Excretion the elimination of unchanged drug or metabolite from the body via renal, biliary, or pulmonary processes.
  • 29. 29
  • 30. 30
  • 31. 31
  • 32. 32 Absorption The absorption of a drug from the GIT is the passage of the substance from the lumen through several membranes into the blood stream. Main factors affecting oral absorption: • Physiological factors • Physical-chemical factors • Formulation factors GIT BLOOD
  • 33. 33 A- Membrane physiology B- Passage of drugs across membranes Active transport Facilitated diffusion Passive diffusion Pinocytosis Pore transport Ion pair formation 1. Physiological Factors Affecting Oral Absorption
  • 34. 34 C- Gastrointestinal physiology GIT physiology and drug absorption Gastric emptying time and motility Effect of food on drug absorption Enterohepatic circulation First pass effect
  • 35. 35 Membrane structure (Fluid Mosaic Model) The biologic membrane consists mainly of a lipid bilayer containing primarily phospholipids and cholesterol, with imbedded proteins. The membrane contains also small aqueous channels or pores. A. Membrane physiology
  • 36. 36 Phospholipid Bilayers Phospholipids are amphiphilic in nature. Polar heads are oriented toward the water and the fatty acid tails are oriented toward the inside of the bilayer. The fatty acid tails are flexible, causing the lipid bilayer to be flexible. At body temperature, membranes are a liquid with a consistency that is similar to cooking oil.
  • 37. 37 Cholesterol Cholesterol is a major membrane lipid. It may be equal in amount to phospholipids. It is similar to phospholipids in that one end is hydrophilic the other end is hydrophobic. Cholesterol makes the membrane less permeable to most biological molecules. Proteins Proteins are scattered throughout the membrane. They may be attached to inner surface, embedded in the bilayer, or attached to the outer surface.
  • 38. 38
  • 40. 40 A. Channel proteins A protein that allows a particular molecule or ion to freely cross the membrane as it enters or leaves the cell. B. Carrier proteins A protein that selectively interacts with a specific molecule or ion so that it can cross the cell membrane to enter or exit the cell.
  • 41. 41 C. Receptor proteins A protein that has a specific shape so that specific molecules can bind to them. The binding of a molecule, such as a hormone, can influence the metabolism of the cell. D. Enzyme proteins An enzyme that catalyzes a specific reaction.
  • 42. 42 E. Cell-recognition proteins Glycoproteins that identify the cell. They make up the cellular fingerprint by which cells can recognize each other. F. Cell Adhesion Proteins Adjacent cells stick together via interlocking proteins on their membranes
  • 43. 43 The membrane can be viewed as a semipermeable lipoidal sieve that allows the passage of: - lipid-soluble molecules across it by passive lipid diffusion - water and small hydrophilic molecules through its numerous aqueous pores. -other molecules by a number of transporter proteins or carrier molecules that exist in the membrane. B. Passage of Drugs Across Membranes
  • 44. 44 There are two main mechanisms of drug transport across the gastrointestinal epithelium: Paracellular: i.e. between the cells. Transcellular: i.e. across the cells The transcellular pathway is further divided into simple passive diffusion, carrier-mediated transport (active transport and facilitated diffusion) and endocytosis.
  • 45. 45 Most (many) drugs cross biological membranes by passive diffusion. • Diffusion occurs when the drug concentration on one side of the membrane is higher than that on the other side (according to concentration gradient). • Drug diffuses across the membrane in an attempt to equalize the drug concentration on both sides of the membrane. 1. Passive Transport
  • 46. 46 • The rate of transport of drug across the membrane can be described by Fick's first law of diffusion:- D: diffusion coefficient This parameter is related to: • the size of the drug • lipid solubility of the drug • viscosity of the diffusion medium, the membrane. As lipid solubility increases or molecular size decreases then D increases and thus diffusion rate also increases.
  • 47. 47 A: surface area As the surface area increases the rate of diffusion also increase. The surface of the intestinal lining (with villae and microvillae) is much larger than the stomach. Therefore absorption is generally faster from intestine compared to stomach. x: membrane thickness The smaller the membrane thickness the quicker the diffusion process. e.g. the membrane in the lung is quite thin thus inhalation absorption can be quite rapid.
  • 48. 48 (Ch -Cl): concentration difference. Since V, the apparent volume of distribution, is at least four liters and often much higher the drug concentration in blood or plasma will be quite low compared with the concentration in the GI tract. It is this concentration gradient which allows the rapid complete absorption of many drug substances. Normally Cl << Ch then:- Thus the absorption of many drugs from the G-I tract can often appear to be first-order.
  • 49. 49 • Is also the movement of molecules from a high concentration to a low concentration. • Lipid insoluble substances such as glucose and amino acids are taken across by "carrier proteins". • No chemical energy is required in this process, WHY? • eg. amino acids, glucose and other breakdown products of food are absorbed by the small intestine facilitated diffusion 2. Facilitated Transport
  • 50. 50 Active Transport It is the movement of molecules across a living membrane  from an area of low concentration to an area of high concentration  with the aid of a carrier protein and  using energy or ATP . The rate of drug absorption increases with drug concentration until the carrier molecules are completely saturated, the rate then remains constant 3. Active Transport
  • 51. 51
  • 52. 52 Mechanism of Drug Transport ?
  • 53. 53 Surrounding a substance with the cell membrane and the subsequent formation of a vesicle to bring these substances into the cell. This process is energy dependent. 4. Endocytosis
  • 54. 54 There are two main kinds of Endocytosis: a. Phagocytosis (cell eating) - involves the ingestion of particles larger than 500 nm. This process is important in the absorption of polio and other vaccines from the GIT. b. Pinocytosis (cell drinking) - involves the ingestion of fluids or dissolved particles. Fat soluble vitamins A, D, E and K are absorbed via pinocytosis
  • 55. 55 • Very small molecules (hydrophilic, water soluble such as water, urea and sugar) are able to rapidly cross cell membrane as if the membrane contained pores or channels. • This model of transportation is used to explain renal excretion of drugs and uptake of drugs into the liver. 5. Pore Transport • A certain type of protein may form an open channel across the lipid membrane of cell.
  • 56. 56 Strong electrolyte drugs are highly ionized and maintain their charge at physiological pH. • These drugs penetrate membranes poorly, WHY? • When linked up with an oppositely charged ion, an ion pair is formed in which the overall charge of the pair is neutral. • The neutral complex diffuses more easily across the membrane, WHY? • An example of this in case of propranolol, a basic drugs that forms an ion pair with oleic acid. Ion pair formation
  • 57. 57  Two pathways exist for the passage of water and electrolytes across the intestinal mucosa, transcellular and paracellular.  The transcellular pathway allows the passage of hyrophilic molecules of low molecular weight and with small molecular size through the water filled pores in the cell membranes. Paracellular Transport
  • 58. 58  The paracellular pathway allows access of larger molecules through the junction between the cells.  Although the intercellular spaces occupy less than 1% of the surface area of the epithelium it is by this way the hydrophilic drug molecules are absorbed e.g. ranitidine , acyclovir.
  • 59. 59 I- Characteristics of GI physiology and Drug Absorption The gastrointestinal tract is a muscular tube approximately 6 m in length with varying diameters. It stretches from the mouth to the anus and consists of four main anatomical areas: - oesophagus - stomach - small intestine - large intestine or colon. The luminal surface of the tube is not smooth but very rough, thereby increasing the surface area for absorption. C. Gastrointestinal (GI) Physiology
  • 60. 60
  • 61. 61 By- pass liver Transit Time Surface Area Blood Supply Membrane pH Organs yes Short unless controlled small Good, fast absorption with low dose thin approx 6 Buccal - short, a few seconds, small - Very thick no absorption 6-7 Esophagus no 30 min delayed stomach emptying  intestinal absorption small good normal 1.7-4.5 Stomach no very short (6" long), very large good normal 5 - 7 Duodenu m no about 3 hours very large good normal 6 -7 Small Intestine lower colon, rectum yes long, up to 24 hr not very large good - 6.8 - 7 Large Intestine
  • 62. 62 II. Gastric emptying and motility Generally drugs are better absorbed in the small intestine, WHY? (because of the larger surface area) than in the stomach, therefore quicker stomach emptying will increase drug absorption. e.g. a good correlation has been found between stomach emptying time and peak plasma concentration for acetaminophen. The quicker the stomach emptying the higher the plasma concentration.
  • 63. 63 Also slower stomach emptying can cause increased degradation of drugs in the stomach's lower pH; e.g. L-dopa.
  • 64. 64 Bulky material tends to empty more slowly than liquids Volume of Ingested Material Decrease Fatty food Type of Meal Decrease Carbohydrate Increase in temperature, increase in emptying rate Temperature of Food Lying on the left side decreases emptying rate. Standing versus lying (delayed) Body Position Decrease Anticholinergics (e.g. atropine), Narcotic (e.g. morphine, alfentanil), Analgesic (e.g. aspirin) Drugs Increase Metoclopramide, Domperidone, Erythromycin, Bethanchol Factors Affecting Gastric Emptying
  • 65. 65 III. Effect of Food The presence of food in the gastrointestinal tract can influence the rate and extent of absorption Complexation of drugs with components in the diet e.g. Tetracycline forms non-absorbable complexes with calcium and iron (don’t take milk or iron preparations at the same time of day as the tetracycline WHY?).
  • 66. 66 Alteration of pH In general, food tends to increase stomach pH by acting as a buffer. This is liable to decrease the rate of dissolution and subsequent absorption of a weakly basic drug and increase that of a weakly acidic one. Alteration of gastric emptying Particularly fatty foods, and some drugs, tend to reduce gastric emptying and thus delay the onset of action of certain drugs.
  • 67. 67 Stimulation of gastrointestinal secretions e.g. pepsin produced in response to food may result in the degradation of drugs that are susceptible to enzymatic metabolism, and hence in a reduction in their bioavailability. Food, particularly fats, stimulates the secretion of bile. Bile salts are surface active agents and can increase the dissolution of poorly soluble drugs, thereby enhancing their absorption. e.g. Griseofulvin (antifungal)
  • 68. 68 Competition between food components and drugs for specialized absorption mechanisms In the case of those drugs that have a chemical structure similar to nutrients required by the body for which specialized absorption mechanisms exist, there is a possibility of competitive inhibition of drug absorption.
  • 69. 69 Increased viscosity of gastrointestinal contents The presence of food in the gastrointestinal tract provides a viscous environment which may result in a reduction in the rate of drug dissolution and the rate of diffusion of a drug in solution from the lumen to the absorbing membrane.
  • 70. 70 Food-induced changes in presystemic metabolism Certain foods may increase the bioavailability of drugs that are susceptible to presystemic intestinal metabolism by interacting with the metabolic process. e.g. Grapefruit juice is capable of inhibiting the intestinal cytochrome P450 and thus, taken with drugs that are susceptible to cytochrome P450 metabolism, is likely to result in their increased bioavailability.
  • 71. 71 IV. Enterohepatic circulation (Biliary recycling) •Some drugs when absorbed from intestine they are carried via the portal vein into the liver. •In the liver they are metabolized and secreted into the bile
  • 72. 72 •As a conjugated drug they are transported again via bile duct into intestine (In the conjugated form they are not absorbed again from intestine). •After meals the secretion of bile is stimulated. The bile release the drug from its conjugate, thus it will be reabsorbed again as if a new dose was given. •Biliary recycling of a drug results in prolonging drug action.
  • 73. 73 liver gut unconjugated drug biliary tract to circulation conjugated drug portal vein Diagram of biliary recycling
  • 74. 74 IV. First pass effect Is a phenomenon of drug metabolism whereby the concentration of a drug is greatly reduced before it reaches the systemic circulation. After a drug is swallowed, it is absorbed by the digestive system and enters the hepatic portal system. It is carried through the portal vein into the liver before it reaches the rest of the body.
  • 75. 75 The liver metabolizes many drugs, sometimes to such an extent that only a small amount of active drug emerges from the liver to the rest of the circulatory system . This first pass through the liver thus greatly reduces the bioavailability of the drug.
  • 76. 76 Diagram of first pass effect
  • 77. 77 • pH-partition theory • Lipid solubility of drugs • Dissolution and pH • Salts • Crystal form • Drug stability and hydrolysis in GIT • Complexation • Adsorption 2. Physicochemical Factors Affecting Oral Absorption
  • 78. 78 The pH - partition theory explains the influence of GI pH and drug pKa on the extent of drug absorption. A. pH - Partition Theory As most drugs are weak electrolytes, the unionized form of weakly acidic or basic drugs (i.e. the lipid- soluble form) will pass across the gastrointestinal epithelia, whereas the gastrointestinal epithelia is impermeable to the ionized (i.e. poorly lipid-soluble) form of such drugs.
  • 79. 79 According to the pH-partition hypothesis, the absorption of a weak electrolyte will be determined chiefly by the extent to which the drug exists in its unionized form at the site of absorption.
  • 80. 80 The extent to which a weakly acidic or basic drug ionizes in solution in the gastrointestinal fluid is determined by: its pKa & the pH at the absorption site and may be calculated using the appropriate form of the Henderson- Hasselbach equation
  • 81. 81 What is acid? acid is a substance that liberates hydrogen ions [H+] in solution. What is a base? A base is a substance that can bind H+ and remove them from solution. pH = - log [H+] Strong acids, strong bases, as well as strong electrolytes are essentially completely ionized in aqueous solution. Weak acids and weak bases are only partially ionized in aqueous solution and yield a mixture of the undissociated compound and ions.
  • 82. 82 HA H+ + A- Ka = [H+] [A-] [HA] In solutions of weak acids equilibria exist between undissociated molecules and their ions. The ionization constant Ka of a weak acid can be obtained by applying the Law of Mass Action:
  • 83. 83 pKa = pH - log [A-] [HA] log [A-] [HA] = pH - pKa Henderson - Hasselbalch Equation pKa = the negative logarithm of Ka From the pKa, one can calculate the proportions of drug in the charged and uncharged forms at any pH: For acidic drugs, the lower the pKa the stronger the acid
  • 84. 84 Some Typical pKa Values for Weak Acids at 25 °C pKa Weak Acid 4.76 Acetic 3.49 Acetylsalicyclic 9.24 Boric 2.73 Penicillin V 8.1 Phenytoin 2.97 Salicyclic 7.12 Sulfathiazole
  • 85. 85 In solutions of weak bases equilibria exist between undissociated molecules and their ions. The ionization constant Ka of a protonated weak base can be obtained by applying the Law of Mass Action: B + H+ BH+ Ka = [H+] [B] [BH+]
  • 86. 86 pKa = the negative logarithm of Ka From the pKa, one can calculate the proportions of drug in the charged and uncharged forms at any pH: pKa = pH - log [B] [BH+] Henderson - Hasselbalch Equation log [B] [BH+] = pH - pKa For basic drugs, the higher the pKa the stronger the base
  • 87. 87 Therefore, according to these equations: a weakly acidic drug, pKa 3.0, will be: predominantly unionized in gastric fluid at pH 1.2 (98.4%) and almost totally ionized in intestinal fluid at pH 6.8 (99.98%), a weakly basic drug, pKa 5, will be: almost entirely ionized (99.98%) at gastric pH of 1.2 and predominantly unionized at intestinal pH of 6.8 (98.4%).
  • 88. 88 This means that, according to the pH-partition hypothesis, a weakly acidic drug is more likely to be absorbed from the stomach where it is unionized, and a weakly basic drug from the intestine where it is predominantly unionized. However, in practice, other factors need to be taken into consideration.
  • 89. 89 Lipid solubility :weak acids and weak bases HA <==> H+ + A- B + HCl <==> BH+ + Cl- [ UI ] [ I ] [ UI ] [ I ] pKa=pH + log (HA/A-) pKa= pH + log(BH+/B) ASPIRIN pKa = 4.5 (weak acid) 100mg orally 99.9 = [ UI ] [ UI ] Stomach pH = 2 Blood pH = 7.4 0.1 = [ I ] Aspirin is reasonably absorbed Strychnine not absorbed until from stomach (fast action) enters duodenum 0.1 = [ UI ] [ UI ] Blood pH = 7.4 99.9 = [ I ] STRYCHNINE pKa = 9.5 (weak base) 100mg orally Stomach pH = 2
  • 90. 90 Limitations of the pH-partition hypothesis  Weak acids are also absorbed from the small intestine due to:  The significantly larger surface area that is available for absorption in the small intestine in contrast to stomach  The longer small intestinal residence time  The microclimate pH, that exists at the surface of the intestinal mucosa and is lower than that of the luminal pH of the small intestine
  • 91. 91  The pH -partition hypothesis cannot explain the fact that certain drugs (e.g. tetracyclines) are readily absorbed despite being ionized over the entire pH range of the gastrointestinal tract. One suggestion for this is that such drugs interact with endogenous organic ions of opposite charge to form an absorbable neutral species - an ion pair - which is capable of partitioning into the lipoidal GIT barrier and be absorbed via passive diffusion.
  • 92. 92 Barbitone and thiopentone, have similar dissociation constants - pKa 7.8 and 7.6, respectively - and therefore similar degrees of ionization at intestinal pH. However, thiopentone is absorbed much better than barbitone. WHY? the absorption of drugs is also affected by the lipid solubility of the drug. Thiopentone, being more lipid soluble than barbitone, exhibits a greater affinity for the gastrointestinal membrane and is thus far better absorbed. B. Lipid Solubility of Drugs
  • 93. 93 An indication of the lipid solubility of a drug, and (its absorption) is given by its ability to partition between a lipid-like solvent (usually octanol) and water. This is known as the drug's partition coefficient, and is a measure of its lipophilicity. How can we measure lipid solubility??
  • 94. 94 The partition coefficient P is the ratio of the drug concentration in the organic phase to its concentration in the aqueous phase Partition coefficient (p) = [ L] conc / [W] conc [ L] conc is the concentration of the drug in lipid phase, [W] conc is the concentration of the drug in aqueous phase. The higher p value, the more absorption is observed. Polar molecules, i.e. those that are poorly lipid soluble and relatively large, such as heparin are poorly absorbed after oral administration and therefore have to be given by injection.
  • 95. 95 A prodrug is a chemical modification, frequently an ester of an existing drug. The ester linkage increases the lipophilicity of the compound thus enhances the absorption. A prodrug has no pharmocological activity itself but it converts back to the parent compound as a result of metabolism by the body. (e.g. Rivampicillin a prodrug for ampicillin) The drug is too hydrophilic, what can be done?? Prodrug is one of the options that can be used to enhance p value and absorption as sequence.
  • 96. 96 So far we have looked at the transfer of drugs in solution in the G-I tract, through a membrane, into solution in the blood. However, many drugs are given in solid dosage forms and therefore must dissolve before absorption can take place. C. Drug Dissolution
  • 97. 97 The rate of solution may be explained using Fick’s First Low of Diffusion: It is the rate at which a dissolved solute particle diffuses through the stagnant layer to the bulk solution If absorption is slow relative to dissolution then all we are concerned with is absorption. However, if dissolution is the slow, rate determining step (the step controlling the overall rate) then factors affecting dissolution will control the overall process.
  • 98. 98 Fick's first law By Fick's first law of diffusion: D diffusion coefficient, A surface area, Cs solubility of the drug, Cb concentration of drug in the bulk solution, h thickness of the stagnant layer. As Cb is much smaller than Cs the equation reduces to : Solid Stagnant Layer Cs Cb h Bulk Solution
  • 99. 99 There are a number of factors which affect drug dissolution: Surface area, A The surface area per gram (or per dose) of a solid drug can be changed by altering the particle size. e.g. a cube 3 cm on each side has a surface area of 54 cm2. If this cube is broken into cubes with sides of 1 cm, the total surface area is 162 cm2.
  • 100. 100 Generally as A increases the dissolution rate will also increase. Improved bioavailability has been observed with griseofulvin, digoxin, etc. Methods of particle size reduction include mortar and pestle, mechanical grinders, fluid energy mills, solid dispersions in readily soluble materials (PEG's).
  • 101. 101 Diffusion layer thickness, h This thickness is affected by the agitation in the bulk solution. In vivo we usually have very little control over this parameter. It is important though when we perform in vitro dissolution studies because we have to control the agitation rate so that we get similar results in vitro as we would in vivo.
  • 102. 102 Diffusion coefficient, D The value of D depends on the size of the molecule and the viscosity of the dissolution medium. Increasing the viscosity will decrease the diffusion coefficient and thus the dissolution rate. This could be used to produce a sustained release effect by including a larger proportion of something like sucrose or acacia in a tablet formulation.
  • 103. 103 Drug solubility, Cs Solubility is another determinant of dissolution rate. As Cs increases so does the dissolution rate. We can look at ways of changing the solubility of a drug:
  • 104. 104 base, therefore if the drug can be given as a salt the solubility can be increased and we should have improved dissolution. One example is Penicillin V. D. (1) Salt Form If we look at the dissolution profile of various salts. Salts of weak acids and weak bases generally have much higher aqueous solubility than the free acid or
  • 105. 105 Some drugs exist in a number of crystal forms or polymorphs. These different forms may well have different solubility properties and thus different dissolution characteristics. Chloramphenicol palmitate is one example which exists in at least two polymorphs. E. (2) Crystal Form
  • 106. 106 Plot of Cp versus Time for Three Formulations of Chloramphenicol Palmitate The B form is apparently more bioavailable. This is attributed to the more rapid in vivo rate of dissolution. The recommendation might be that manufacturers should use polymorph B for maximum solubility and absorption.
  • 107. 107 In addition to different polymorphic crystalline forms, a drug may exist in an amorphous form. Because the amorphous form usually dissolves more rapidly than the corresponding crystalline forms there will be significant differences in the bioavailabilities. e.g. antibiotic novobiocin. The more soluble and rapidly dissolving amorphous form of novobiocin was readily absorbed. However, the less soluble and slower-dissolving crystalline form of novobiocin was not absorbed to any significant extent thus therapeutically ineffective.
  • 108. 108 Acid and enzymatic hydrolysis of drugs in GIT is one of the reasons for poor bioavailability. Penicillin G (half life of degradation = 1 min at pH= 1) Rapid dissolution leads to poor bioavailability WHY? (due to release large portion of the drug in the stomach, pH = 1.2) How to protect the drug from the gastric juice? 1. Enteric coating the tablet containing the drug. 2. Prodrug that exhibits limited solubility in gastric fluid but liberates the parent drug in intestine to be absorbed. F. Drug Stability and Hydrolysis in GIT
  • 109. 109 G. Adsorption Certain insoluble substances may adsorb co-administrated drugs leading to poor absorption. Charcoal (antidote in drug intoxication).
  • 110. 110 Complexation of a drug in the GIT fluids may alter rate and extent of drug absorption. 1. GIT component- drug interaction: Intestinal mucosa + Streptomycin = poorly absorbed complex 2. Food-drug interaction: Calcium + Tetracycline = poorly absorbed complex 3. Tablet additive – drug interaction: Carboxyl methylcellulose (CMC) + Amphetamine = poorly absorbed complex H. Complexation
  • 111. 111 4. Complexing agent + polar drugs: Dialkylamides + prednisone = well-absorbed lipid soluble complex 5. Lipid soluble drug + water soluble complexing agent Miconazole + cyclodextrine = water soluble complex
  • 112. 112 Role of dosage forms  Solutions  Suspensions  Capsules  Tablets - uncoated - coated 3. Formulation Factors Affecting Oral Absorption
  • 113. 113 With any drug it is possible to alter its bioavailability considerably by formulation modification. Since a drug must be in solution to be absorbed efficiently from the G-I tract, you may expect the bioavailability of a drug to decrease in the order: solution > suspension > capsule > tablet > coated tablet. This order may not always be followed but it is a useful guide. One example is the results for pentobarbital. Here the order was found to be: aq solution > aq suspension = capsule > tablet of free acid form.
  • 114. 114 Drugs are commonly given in solution in cough/cold remedies and in medication for the young and elderly. In general, drugs must be in solution in gastrointestinal fluids before absorption can occur. For drugs that are water soluble and chemically stable in aqueous solution, formulation as a solution normally eliminates the in vivo dissolution step and presents the drug in the most readily available form for absorption I. Solution dosage form
  • 115. 115 therefore absorption from an oral solution is rapid and complete, compared with administration in any other oral dosage form. The rate limiting step is often the rate of gastric emptying since absorption will generally be more rapid in the intestine. •However, dilution of an aqueous solution of a poorly water-soluble drug whose aqueous solubility had been increased by: formulation techniques such as 1cosolvency, 2complex formation or 3solubilization can result in precipitation of the drug in the gastric fluids.
  • 116. 116 •Similarly, exposure of an aqueous solution of a 4salt of a weak acidic compound to gastric pH can also result in precipitation of the free acid form of the drug. In most cases the extremely fine nature of the resulting precipitate permits a more rapid rate of dissolution than if the drug had been administered in other types of oral dosage forms, such as aqueous suspension, hard gelatin capsule or tablet.
  • 117. 117  A well formulated suspension is second to a solution (nonprecipitating) in terms of superior bioavailability.  Absorption may well be dissolution limited, however a suspension of a finely divided powder and hence large surface area will maximize the potential for rapid dissolution.  With very fine particle sizes the dispersibility of the powder becomes important. II. Suspension dosage form
  • 118. 118  The addition of a surface active agent will improve dispersion of a suspension.  As a suspension ages there is potential for increased particle size with an accompanying decrease in dissolution rate.
  • 119. 119 Provided:  the hard gelatin shell dissolves rapidly in the GI fluids  encapsulated mass disperses rapidly and efficiently,  a relatively large effective surface area of drug will be exposed to the gastrointestinal fluids, thereby facilitating dissolution. III. Capsule dosage form
  • 120. 120 The capsule contents should not be subjected to high compression forces which would tend to reduce the effective surface area, thus tightly packed capsules may have reduced dissolution and bioavailability. The inclusion of excipients (e.g. diluents, lubricants and surfactants) in a capsule formulation can have a significant effect on the rate of dissolution of drugs, particularly those that are poorly soluble and hydrophobic.
  • 121. 121 However, the diluent should exhibit no tendency to adsorb or complex with the drug, as either can impair absorption from the gastrointestinal tract. If a drug is hydrophobic a dispersing agent should be added to the capsule formulation. A hydrophilic diluent (e.g. sorbitol, lactose) often serves to increase the rate of penetration of the aqueous gastrointestinal fluids into the contents of the capsule, and to aid the dispersion and subsequent dissolution of the drug in these fluids.
  • 122. 122
  • 123. 123 Uncoated tablets Tablets are the most widely used dosage form. When a drug is formulated as a compressed tablet there is an enormous reduction in the effective surface area of the drug, owing to the granulation and compression processes involved in tablet making. The tablets should disintegrate rapidly and completely in the GIT fluids so that a fine, well dispersed suspension of drug particles in the GIT fluids is generated following the administration of a tablet. IV. Tablet dosage form
  • 124. 124 The overall rate of tablet disintegration influenced by several interdependent factors: the concentration and type of drug, diluent, binder, disintegrant, lubricant and wetting agent as well as the compaction pressure.
  • 125. 125 Film Coated Tablet Tablet coatings may be employed to: - mask an unpleasant taste or odour or - to protect an ingredient from decomposition during storage.
  • 126. 126 Enteric coating protects drugs which would otherwise be destroyed if released into gastric fluid and also protects the stomach against drugs which can produce nausea or mucosal irritation (e.g. aspirin, ibuprofen) if released at this site. Enteric Coated Tablet An enteric coat is designed to: resist the low pH of gastric fluids but to disrupt or dissolve when the tablet enters the higher pH of the duodenum.
  • 127. 127 The presence of a coating presents a physical barrier between the tablet core and the gastrointestinal fluids. Coated tablets therefore not only possess all the potential bioavailability problems associated with uncoated conventional tablets, but are subject to the additional potential problem of being surrounded by a physical barrier.