Anúncio
Funcion cuadratica  gonzalo revelo pabon
Funcion cuadratica  gonzalo revelo pabon
Funcion cuadratica  gonzalo revelo pabon
Funcion cuadratica  gonzalo revelo pabon
Anúncio
Funcion cuadratica  gonzalo revelo pabon
Funcion cuadratica  gonzalo revelo pabon
Funcion cuadratica  gonzalo revelo pabon
Funcion cuadratica  gonzalo revelo pabon
Próximos SlideShares
Función cuadráticaFunción cuadrática
Carregando em ... 3
1 de 8
Anúncio

Mais conteúdo relacionado

Apresentações para você(20)

Anúncio

Mais de GONZALO REVELO PABON . GORETTI(20)

Anúncio

Funcion cuadratica gonzalo revelo pabon

  1. Luis Gonzalo Revelo Pabón 25 Dpto. de Matemáticas - Goretti FUNCION CUADRATICA. 2 Se llama función cuadrática a la función: Y = AX + BX + C, donde A, B y C son números reales y el coe- ficiente A 0. Dónde: Y: Variable Dependiente X: Variable independiente. 2 AX : Coeficiente cuadrático. BX: Coeficiente lineal. C: Termino independiente. La función cuadrática representa en el plano cartesiano, una gráfica llamada Parábola. 2 CARACTERISTICAS DEL GRAFICO DE LA FUNCION CUADRATICA: Y = AX + BX + C. Paso 1.- ORIENTACIÓN O CONCAVIDAD Una primera característica de la parábola es la orientación o concavidad - Si el coeficiente A es positivo (A>0), entonces las ramas o brazos de la parábola se dirigen hacia arriba (Parábola Cóncava). - Si el coeficiente A es negativo (A<0), entonces las ramas o brazos de la parábola se dirigen hacia abajo (Parábola Convexa). Paso 2.- INTERSECCESION CON EL EJE Y Para encontrar el punto de corte de la Parábola con el eje Y, hacemos X= 0, en la ecuación cuadrática: 2 Y = AX + BX + C. Para obtener Y=C Por lo tanto el punto de corte de la parábola con el eje Y es el coeficiente C. Paso 3.- INTERSECCESION CON EL EJE X Para encontrar el punto de corte de la Parábola con el eje X, hacemos Y= 0, en la ecuación cuadrática: 2 Y = AX + BX + C. Para obtener 2 AX + BX + C = 0 Resolvemos la ecuación cuadrática, mediante la expresión algebraica: √ 2 B -4AC: Discriminante  SI > 0, (Es positivo) entonces la Parábola corta al eje X, en dos puntos X1, X2.
  2. Luis Gonzalo Revelo Pabón 26 Dpto. de Matemáticas - Goretti  SI = 0, entonces la Parábola corta al eje X, en UN SOLO punto X1 = X2.  SI < 0, (Es negativo) entonces la Parábola NO corta al eje X. Paso 4.- EJE DE SIMETRIA Los puntos de la Parábola son simétricos con relación a la línea recta X= (Se lo obtiene cuando el discriminante vale cero). Paso 5.- VERTICE (V) El vértice V(x, y) es el punto más alto o más bajo de la Parábola y está definido por la siguiente expresión algebraica: V(x, y) = ( ( ))  Si el coeficiente A es positivo (A>0), entonces el vértice de la parábola es mínimo.  Si el coeficiente A es negativo (A<0), entonces el vértice de la parábola es máximo.
  3. Luis Gonzalo Revelo Pabón 27 Dpto. de Matemáticas - Goretti RESUMIENDO: Para dibujar la gráfica de una función cuadrática, debemos tener en cuenta los siguientes datos: La orientación, la intersección con el eje y, la intersección con el eje x, el eje de simetría, y el vértice. Así: Paso 1 1.) Si A>0, entonces las ramas o brazos de la parábola están dirigidos Orientación o Concavidad hacia arriba 2.) Si A<0, entonces las ramas o brazos de la parábola están dirigidos hacia abajo. Paso 2 La parábola corta al eje Y en Y = C Intersección con el eje Y Paso 3 √ Intersección con el eje X 2 B -4AC: discriminante.  Si el discriminante es un número positivo, entonces la parábola corta al eje X, en dos puntos X1 y X2.  Si el discriminante es un número cero, entonces la parábola corta al eje X, en Un punto X1 = X2.  Si el discriminante es un número negativo, entonces la parábola NO corta al eje X. Paso 4 Eje de Simetría Paso 5 Vértice V(x,y)= ( ( )) EJERCICIOS RESUELTOS. Graficar en el plano cartesiano, las siguientes ecuaciones cuadráticas. 2 A. Y = -X +2X + 15 2 B. Y = X - 4X +4 2 C. Y = X -4X + 6 Solución: 2 2 A. Y = -X + 2X + 15 al comparar con la función Y=AX + BX + C se deduce que: { Paso 1.- ORIENTACIÓN O CONCAVIDAD - Como el coeficiente A es un numero negativo (A = -1), entonces las ramas o brazos de la parábola se dirigen hacia abajo (Parábola Convexa). Paso 2.- INTERSECCESION CON EL EJE Y Para encontrar el punto de corte de la Parábola con el eje Y, hacemos X= 0, en la ecuación cuadrática: 2 Y = -X + 2X + 15. Para obtener Y = 15. Paso 3.- INTERSECCESION CON EL EJE X Para encontrar el punto de corte de la Parábola con el eje X, hacemos Y= 0, en la ecuación cuadrática: 2 Y = -X + 2X + 15. Para obtener 2 2 -X + 2X + 15 = 0 al comparar con AX + BX + C = 0 se deduce que: { Resolvemos la ecuación cuadrática, mediante la expresión algebraica: √
  4. Luis Gonzalo Revelo Pabón 28 Dpto. de Matemáticas - Goretti Remplazamos: √ √ √ Como el Discriminante 64, es positivo, entonces la Parábola corta al eje X, en dos puntos X1, X2. A saber: Paso 4.- EJE DE SIMETRIA Los puntos de la Parábola son simétricos con relación a la línea recta X= remplazamos: X= Paso 5.- VERTICE (V) El vértice V(x, y) es el punto más alto o más bajo de la Parábola y está definido por la siguiente expresión algebraica: V(x, y) = ( ( )) Remplazamos V(x,y) = ( ( )) = V(1, = V(1,16) Como el coeficiente A es negativo (A=-1), entonces el vértice de la parábola es máximo. Gráfico:
  5. Luis Gonzalo Revelo Pabón 29 Dpto. de Matemáticas - Goretti 2 B . Y = X - 4X +4 2 2 Y = X - 4X +4 al comparar con la función Y=AX + BX + C se deduce que: { Paso 1.- ORIENTACIÓN O CONCAVIDAD - Como el coeficiente A es un numero positivo (A = 1), entonces las ramas o brazos de la parábola se dirigen hacia arriba (Parábola Cóncava). Paso 2.- INTERSECCESION CON EL EJE Y Para encontrar el punto de corte de la Parábola con el eje Y, hacemos X= 0, en la ecuación cuadrática: 2 Y = X - 4X +4. Para obtener Y = 4. Paso 3.- INTERSECCESION CON EL EJE X Para encontrar el punto de corte de la Parábola con el eje X, hacemos Y= 0, en la ecuación cuadrática: 2 Y = X - 4X +4 Para obtener 2 2 X - 4X +4 = 0 al comparar con AX + BX + C = 0 se deduce que: { Resolvemos la ecuación cuadrática, mediante la expresión algebraica: √ Remplazamos: √ √ √ Como el Discriminante 0, entonces la Parábola corta al eje X, en un solo punto X1 =X2. A sa- ber: Paso 4.- EJE DE SIMETRIA Los puntos de la Parábola son simétricos con relación a la línea recta X= remplazamos: X= Paso 5.- VERTICE (V) El vértice V(x, y) es el punto más alto o más bajo de la Parábola y está definido por la siguiente expresión algebraica: V(x, y) = ( ( )) Remplazamos
  6. Luis Gonzalo Revelo Pabón 30 Dpto. de Matemáticas - Goretti V(x,y) = ( ( )) = V(2, = V(2,0) Como el coeficiente A es positivo (A= 1), entonces el vértice de la parábola es mínimo. Gráfico: 2 B. Y = X -4X + 6 2 2 Y = x - 4x + 6 al comparar con la función Y=AX + BX + C se deduce que: { Paso 1.- ORIENTACIÓN O CONCAVIDAD - Como el coeficiente A es un numero positivo (A = 1), entonces las ramas o brazos de la parábola se dirigen hacia arriba (Parábola Cóncava). Paso 2.- INTERSECCESION CON EL EJE Y Para encontrar el punto de corte de la Parábola con el eje Y, hacemos X= 0, en la ecuación cuadrática: 2 Y = X - 4X +6. Para obtener Y = 6. Paso 3.- INTERSECCESION CON EL EJE X Para encontrar el punto de corte de la Parábola con el eje X, hacemos Y= 0, en la ecuación cuadrática: 2 Y = X - 4X +6 Para obtener 2 2 X - 4X +6 = 0 al comparar con AX + BX + C = 0 se deduce que: { Resolvemos la ecuación cuadrática, mediante la expresión algebraica: √
  7. Luis Gonzalo Revelo Pabón 31 Dpto. de Matemáticas - Goretti Remplazamos: √ √ √ Como el Discriminante = -8, es negativo, entonces la Parábola corta al eje X, NO corta al eje X. Paso 4.- EJE DE SIMETRIA Los puntos de la Parábola son simétricos con relación a la línea recta X= remplazamos: X= Paso 5.- VERTICE (V) El vértice V(x, y) es el punto más alto o más bajo de la Parábola y está definido por la siguiente expresión algebraica: V(x, y) = ( ( )) Remplazamos V(x, y) = ( ( )) = V (2, = V (2,2) Como el coeficiente A es positivo (A= 1), entonces el vértice de la parábola es mínimo. Gráfico:
  8. Luis Gonzalo Revelo Pabón 32 Dpto. de Matemáticas - Goretti EJERCICIO Graficar las siguientes funciones: 1.) Y = X2 - 4X - 5 5.) Y = 4X2 – 12X + 9 2.) Y = -3X2 -11X + 4 6.) Y = -X2 + 4 3.) Y = -X2 +X + 2 7) Y= -X2 +4X 4.) Y = -X2 -10X - 25 8.) Y = -2X2
Anúncio