Contenido: Plano Numérico:
1. Distancia.
2. Punto Medio.
3. Ecuaciones y Trazado de Circunferencias.
4. Parábolas.
5. Elipses.
6. Hipérbola.
7. Representar gráficamente las Ecuaciones de las
Cónicas.
ACTIVIDAD A REALIZAR
PLANO NUMERICO O CARTESIANO:
Es un sistema de referencias que se encuentra
conformado por dos rectas numéricas, una horizontal y
otra vertical, que se cortan en un determinado punto. A la
horizontal se la llama eje de las abscisas o de las x y al
vertical eje de las coordenadas o de las yes, en tanto, el
punto en el cual se cortarán se denomina origen. La
principal función o finalidad de este plano será el de
describir la posición de puntos, los cuales se encontrarán
representados por sus coordenadas o pares ordenados. Las
coordenadas se formarán asociando un valor del eje x y
otro del eje y.
La finalidad del plano cartesiano es describir la
posición o ubicación de un punto en el plano, la cual está
representada por el sistema de coordenadas.
El plano cartesiano también sirve para analizar
matemáticamente figuras geométricas como la parábola, la
hipérbole, la línea, la circunferencia y la elipse, las cuales
forman parte de la geometría analítica.
DISTANCIAY PUNTO MEDIO:
El punto medio, es el punto que se encuentra a la misma
distancia de otros dos puntos cualquiera o extremos de un
segmento. Si es un segmento, el punto medio es el que lo
divide en dos partes iguales. Ejemplo; Dados dos puntos A y B
del plano, llamamos distancia de A a B al módulo del vector.
La distancia de A a B la expresaremos por d (A, B). La
distancia entre dos puntos es siempre un número positivo o
cero, porqué también lo es el módulo de cualquier vector.
ECUACIONES Y TRAZADO DE CIRCUNFERENCIAS
La circunferencia se define como el lugar geométrico de los puntos del plano que equidistan de un
punto fijo que llamamos centro.
Una circunferencia queda determinada cuando conocemos:
a) Tres puntos de la misma, equidistantes del centro.
b) El centro y el radio.
c) El centro y un punto en ella.
d) El centro y una recta tangente a la circunferencia.
También podemos decir que la circunferencia es la línea formada por todos los puntos que están
a la misma distancia de otro punto, llamado centro.
Esta propiedad es la clave para hallar la expresión analítica de una circunferencia (la ecuación de la
circunferencia).
Entonces, entrando en el terreno de la Geometría Analítica, (dentro del Plano Cartesiano) diremos
que —para cualquier punto, P (x, y), de una circunferencia cuyo centro es el punto C (a, b) y con
radio r ─, la ecuación ordinaria es:
(x ─ a) 2 + (y ─ b) 2 = r 2
Si el ángulo que forma el plano con la base es menor que el ángulo que forma el plano con la generatriz, tenemos que la sección será
una elipse. Si el plano es paralelo a la generatriz tenemos la parábola. Si el ángulo que forma el plano con la base es mayor del que
forma con la generatriz, tenemos la hipérbola.
Cónicas. La circunferencia, la elipse, la parábola o la hipérbola son curvas planas de todos conocidas. Estas curvas aparecían ya en la
geometría griega y fueron denominadas secciones cónicas, ya que los griegos de la época de Platón consideraban que tales curvas
procedían de la intersección de un cono con un plano.
Como saber si es una parábola o elipse?
Si B 2 – 4 AC es menor que cero, si una cónica existe, está puede ser un círculo o una elipse. Si B 2 – 4 AC es igual a cero, si una
cónica existe, será una parábola.
Es importante señalar en cuanto a la elipse y la hipérbola que la diferencia entre estas dos cónicas es que la elipse es la suma de la
distancia del conjunto de los puntos (x,y) y la hipérbola es la distancia del conjunto de los puntos (x,y). Es una cueva cerrada, la
intersección de un cono circular recto, y un plano no paralelo a su base, el eje o algún elemento del cono.
Se llama cónica a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el
vértice, se obtienen las cónicas propiamente dichas. Se clasifican en cuatro tipos:
1. Elipse
2. Parábola
3. Hipérbola
4. Circunferencia
PARABOLA Y ELIPSE
REPRESENTACIONES GRAFICA DE LAS ECUACIONES
DE LAS CONICAS
Una superficie cónica esta engendrada por el giro de una recta g,
que llamamos generatriz, alrededor de otra recta e; eje, con el cual
se corta en un punto V, vértice.
g = generatriz
e= el Eje
V= el vértice
ELEMENTOS DE LAS CÓNICAS
Superficie: una superficie cónica de revolución esta engendrada por la
rotación de una recta alrededor de otra recta fija, llamada eje, a la que corta
de modo oblicuo.
Generatriz: el vértice del punto central Vértice: es un punto central donde se
corta la generatriz.
Hoja: las hojas son las dos parte en las que el vértice divide a la superficie
canónica de revolución.
Sección: se denomina sección cónica a la curva intersección de un cono con
un plano que no pasa por su vértice. En función de la relación existente
entre el ángulo de conicidad y (a)la inclinación del plano respecto al eje del
cono (B) pueden tener diferentes secciones cónicas.
ELIPSE
La elipse es la sección producida en una superficie cónica de
revolución por un plano oblicuo al eje, que no sea paralelo a la generatriz
y que forme con el mismo un ángulo mayor que el que forman eje y
generatriz.
La elipse es una curva cerrada.
PARÁBOLA
La parábola es la sección producida en una superficie cónica
de revolución por un plano oblicuo al eje, siendo paralelo a la
generatriz.
a = B
La parábola es una curva abierta que se prolonga hasta el
infinito
HIPÉRBOLA
La hipérbola es la sección producida en una superficie cónica de
revolución por un plano oblicuo al eje, formando con él un ángulo
menor al que forman eje y generatriz, por lo que incide en las dos
hojas de la superficie cónica
La hipérbola es una curva abierta que se prolonga indefinidamente y
consta de dos ramas separadas