O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

LimitesContinuidad.pdf

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Asintotas - FIEE UNI 2014 II
Asintotas - FIEE UNI 2014 II
Carregando em…3
×

Confira estes a seguir

1 de 42 Anúncio
Anúncio

Mais Conteúdo rRelacionado

Semelhante a LimitesContinuidad.pdf (20)

Mais recentes (20)

Anúncio

LimitesContinuidad.pdf

  1. 1. ASÍNTOTAS
  2. 2. Definición de una asíntota  Cuando la gráfica de una función se acerca a una recta cuando x o y tienden a infinito, dicha recta se llama ASÍNTOTA de la función.  No todas las funciones tienen asíntotas. Las asíntotas de una función pueden ser: Verticales Horizontales Oblicuas
  3. 3. Tipos de asíntotas x = c y x Asíntotas Verticales x = c y x
  4. 4. Tipos de asíntotas y = L y = f(x) y x y = L y = f(x) y x Asíntotas Horizontales
  5. 5. Tipos de asíntotas Asíntotas Oblicuas y x y = ax + b
  6. 6. Asíntotas verticales f (x)=+∞ f (x)=−∞ f (x)=+∞ La recta x = c es una asíntota vertical de una función f(x) si se cumple alguna de las siguientes condiciones: f (x)=+∞ Ejemplo: 1 x−2 =−∞ 1 x−2 =+ ∞ f (x)= 1 x−2 La recta x = 2 es una asíntota vertical
  7. 7. Asíntotas horizontales f ( x)=L f ( x)=L La recta x = L es una asíntota horizontal de una función f(x) si se cumple alguna de las siguientes condiciones: Ejemplo: f (x)= 2 x x−1 2 x x −1 =2 2 x x −1 =2 La recta y = 2 es una asíntota horizontal
  8. 8. Asíntotas oblicuas f ( x ) x =a f ( x ) x =a (f (x)−ax)=b La recta y = ax + b es una asíntota oblicua de una función f(x) si se cumple alguna de las siguientes condiciones: a) b) (f (x)−ax)=b Ejemplo: f (x)= 2 x 2 x−1 2 x 2 x 2 − x = 2 ( 2 x 2 x −1 −2 x )=2 La recta y = 2x+2 es una asíntota oblicua
  9. 9. Asíntotas de funciones racionales Una función racional tiene una asíntota vertical cuando el denominador de la función simplificada es igual a 0. Recuerda que se simplifica cancelando los factores comunes del numerador y denominador. Asíntotas Verticales
  10. 10. Ejemplo 1: Calcular las asíntotas verticales f (x)= 2−5 x 2+2 x Dada la función Calculamos los valores de x que hacen 0 el denominador: 2 + 2x = 0  x = -1 La recta x = -1 es la única asíntota vertical de la función. Asíntota vertical x = -1
  11. 11. Primero simplicamos la función. f (x)= 2x 2 +10 x+12 x2 −9 2 x2 +10 x+12 x3 −9 = (x+3)(2 x+4) (x+3)(x−3) 2 x+4 x−3 La(s) asíntota(s) aparecen cuando el denominator (después de simplificar) es igual a 0. x – 3 = 0  x = 3 La recta vertical x = 3 es la única asíntota vertical de esta función. Ejemplo 2: Calcular las asíntotas verticales
  12. 12. g(x)= x−5 x2 −x−6 x−5 x2 −x−6 = x−5 (x+2)(x−3) El denominador es igual a 0 cuando x + 2 = 0  x = -2 o x - 3 = 0  x = 3 Esta función tiene dos asíntotas verticales, una x = -2 y la otra x = 3 Ejemplo 3: Calcular las asíntotas verticales
  13. 13. Asíntotas horizontales Las asíntotas horizontales aparecen cuando ocurre una de las siguientes condiciones (ambas condiciones no pueden ocurrir en la misma función):  El grado del numerador es menor que el grado del denominador. En este caso, la asíntota es la recta horizontal y = 0.  El grado del numerador es igual al grado del denominador. En este caso, la asíntota es la recta horizontal y = a/b, donde a es el coeficiente de mayor grado del numerador y b es el del denominador. Cuando el grado del numerador es mayor que el grado del denominador la función no tiene asíntota horizontal.
  14. 14. Ejemplo 4: Calcular las asíntotas horizontales x 2 +3 x −5 x3 −27 =0 f (x)= x 2 +3 x−5 x3 −27 x 2 +3 x−5 x3 −27 =0 Tiene una asíntota horizontal en la recta y = 0 porque el grado del numerador (2) es menor que el grado del denominador (3). La recta horizontal y = 0 es la asíntota horizontal.
  15. 15. Ejemplo 5: Calcular las asíntotas horizontales 6 x 2 −3 x+5 5 x2 +7 x−9 = 6 5 g(x)= 6 x 2 −3 x+5 5 x2 +7 x−9 El grado del numerador (2) es igual al grado del denominador (2), luego la recta y = 6/5 es una asíntota horizontal. La recta y = 6 /5 es la asíntota horizontal.
  16. 16. Ejemplo 6: Calcular las asíntotas horizontales f (x)= −2 x 3 +5 x−9 x2 +1 No tiene asíntotas horizontales porque el grado del numerador es mayor que el grado del denominador.
  17. 17. Asíntotas oblicuas Las asíntotas oblicuas aparecen cuando el grado del numerador es exactamente una unidad mayor que el grado del denominador.
  18. 18. Ejemplo 7: Calcular las asíntotas oblicuas f (x)= x 3 +2 x 2 +5 x−9 x2 −x+1 Tiene una asíntota oblicua porque el grado del numerador (3) es uno más que el grado del denominador (2). x 3 +2 x 2 +5 x −9 x3 −x2 +x =1 3 x 2 + 4 x− 9 x2 − x+1 =3 La recta y = x + 3 es asíntota oblicua
  19. 19. Problemas Calcula las asíntotas verticales, horizontales y oblicuas de las funciones:   2 2 2 15 7 10 x x f x x x      Vertical: x = -2 Horizontal : y = 1 Oblicua: no tiene   2 2 5 7 3 x x g x x     Vertical: x = 3 Horizontal : no tiene Oblicua: y = 2x +11
  20. 20. 20 Ejemplo Determine las asíntotas verticales y horizontales de las gráficas de las funciones: 2 ( ) 2 x f x x    2 4 ( ) 2 x f x x    1. 2. 3. 2 2 4 ( ) 2 x f x x x   
  21. 21. 4. Hallar las asíntotas horizontales y las asíntotas verticales de la gráfica de la función: f ( x)= 2x 2 +3 3 x2 −2 Rpta: A.H. y =2/3 A.V . x =± √2 3
  22. 22. Determinar la asíntota oblicua de : f ( x)= x 3 x2 +1 Rpta: y = x
  23. 23. Determinar las ecuaciones de las asíntotas de las siguientes funciones: 1. 3. 2. f (x)= x 2 −1 x f (x)= 2 x+1 x+2 f (x)= 3 x−10 x−3 Rpta: 1) A.V. x = 0 A.O. y = x 2) A.H. y = 2 A.V. x =–2 3) A.H. y = 3 A.V. x = 3
  24. 24. Ejercicio: Trace la gráfica de una función f que cumpla con las siguientes condiciones: a) dom(f) = R – {-2} b) y c) , f(0) = 3 d) , y f(3) = 1 f ( x)=1 f (x)=−1 f (x)=1 f (x)=2 f (x)=1
  25. 25. Continuidad
  26. 26. Continuidad
  27. 27. Ejemplo
  28. 28. Ejemplo
  29. 29. Ejemplo
  30. 30. Ejemplo
  31. 31. Tipos de discontinuidad
  32. 32. f ( x)=√4−x2 y x -2 2 2 Analizar la continuidad de la función f en su extremo izquierdo y extremo derecho de su dominio Ejemplo 1
  33. 33. La función f es continua en el intervalo abierto ]a;b[ si es continua en todos sus puntos. y x -2 2 2 Continuidad en un intervalo abierto
  34. 34. La función f es continua en el intervalo cerrado [a;b] si es continua en el intervalo abierto ] a;b[ y es continua a la derecha de “a” y a la izquierda de “b”. y x -2 2 2 Continuidad en un intervalo cerrado
  35. 35. Ejemplo En una playa de estacionamiento, se cobran 3 dólares por la primera hora o fracción y 2 dólares por cada hora o fracción subsiguiente, hasta un máximo diario de 10 dólares. a. Grafique la función costo de estacionar un automóvil C(t) como función del tiempo que permanezca allí durante un día. b. Indique si la función C(t) es contínua o no, de no ser indique los valores en donde es discontínua.
  36. 36. Operaciones y Composición de Funciones Continuas
  37. 37. Ejemplos
  38. 38. Ejemplos
  39. 39. Ejemplos
  40. 40. Ejemplos
  41. 41. Ejemplos X
  42. 42. Algunos teoremas

×