SlideShare uma empresa Scribd logo
1 de 26
Baixar para ler offline
Hightemperatureheatpumps integrationin
industrial separationanddryingprocesses
Daniel Flórez-Orrego, Eduardo Antonio Pina, Meire Ribeiro Domingos, Shivom
Sharma, François Maréchal
daniel.florezorrego@epfl.ch
35th International Conference on Efficiency, Cost, Optimization, Simulation
and Environmental Impact of Energy Systems ECOS 2022
3rd – 7th July, Copenhagen, Denmark
École Polytechnique Fédérale de Lausanne
 Ammonia
2.0% energy consumption
1.3% of CO2 emissions
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
2
Introduction
 Pulp
5.6% energy consumption
2.3% of CO2 emissions
 Large heating demand  Waste heat is an important byproduct.
 More stringent carbon regulations, need for decarbonization.
 Deployment of HTHPs may reduce CO2 emissions by 30 - 40%.
 NetZero 2050 roadmap IEA: 15-30% heating demand of light industries.
Florez-Orrego,
Daniel,
et
al.
High
temperature
heat
pumps
integration
1. Typical ammonia plant without heat pump integration
2. Alternative ammonia plant with heat pump integration
3. Typical pulp plant with multiple effect evaporation
4. Alternative pulp plant with mechanical vapor recompression
Processscenarios
3
Ammonia Plant
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
4
1000 t/day
Processesdescription
Feedstock
consumption (NG)
21.69GJ/tproduct
Chemical process power
demand 1.56 GJ/tproduct
Refrigeration power
demand 0.35 GJ/tproduct
Min. cooling req. 7.44 GJ/tproduct
Min. heating req. 4.33 GJ/tproduct
CO2 avoided 1.42 tCO2/tproduct
Processesdescription
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
5
Pulp Plant 880 tAD/day
Multiple effect evaporator
Feedstock consumption (Wood)
41.15 GJ/tproduct
Chemical process power demand
2.84 GJ/tproduct
Refrigeration power demand 0.00
GJ/tproduct
Min. cooling req. 2.24 GJ/tproduct
Min. heating req. 12.23 GJ/tproduct
Fossil CO2 avoided 0.00 tCO2/tproduct
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
6
Mechanical vapor
recompression
Processesdescription Pulp Plant 877.8,5 tAD/day
Feedstock consumption (Wood)
41.15 GJ/tproduct
Chemical process power demand
2.84 GJ/tproduct
Refrigeration power demand 0.00
GJ/tproduct
Min. cooling req. 15.16 GJ/tproduct
Min. heating req. 25.37 GJ/tproduct
Fossil CO2 avoided 0.00 tCO2/tproduct
Process Modeling and Simulation: Aspen Plus v.11
Methods
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
7
Energy integration framework: OSMOSE Lua
Minimum
Energy
Requirement
Equation
Oriented
Modeling and
Simulation
Sequential
Modular
Simulation
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
8
Methods
Energy integration
Exergy method
Optimization problem: maximum revenue (incl. HP or MVR investment):
Methods
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
9
         
   
,
,
_
8760
HPor MVR
r
Power
Chips Natural
Wood Power
Chips Wood Natural Oil Oil
Biomass Grid
Gas
Biomass Biomass Grid
Gas
Biomass
f y
R W Pulp Ammo
Ammonia
Pulp
Product Product
Product
Z Ann factor
f B c f B c f B c f B c f W c
f B c f B c
 


       
    
Min
  2
2
CO
nia CO
Product Marketed
Marketed
f m c
 
 
 
 
 
 
 
 
 
 
Subject to:
, , 1
1 1
0 1..
N N
r r
i r r
i
f q Q R R r N

 


 
     
  exp
1
0
N
net imp
chemical
units
f W W W W

 

   
 
max,
min, y y 1..
f f f N
    
 
    1 1
0, 0, R 0
r
N
R R 
  
exp
0, 0
imp
W W
 
w = {utility units, resources}, yw existence (binary) and fw load factor variables
cNG=0.032 EUR/kWh; cEE=0.07 EUR/kWh; cOil= 0.018 EUR/kWh; cChips= 0.016 EUR/kWh; cWood=0.013 EUR/kWh; cNH3=0.098
EUR/kWh; cPulp=0.144; EUR/kWh; cCO2market=0.0084 EUR/kg;
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
10
Methods
Performance indicators:
 Exergy efficiency
 CO2 emissions (direct + indirect):
 Revenues:
Methods
Florez-Orrego,
Daniel,
et
al.
11
,
,
or
ex
ammonia pulp
consumed ideal
Power
consumed actual natural gas oil wood chips
Grid
B B
B
B B B B B W
  
   
2
2 2
2
,
,
2, ,
,
Product Product,
,
1
3600
1000 1000
CH
Power CO Power
CO CO i i
Grid Grid i
Spec i CO i
CH
Wood Chips i
i
Natural gas Oil
f W r
t r b
B
f I
t m
b
CO
 
 
 

   
   
 
   
 
   
 
 
 
   
   
2
2
,
Exp/Imp
, ,
,
Ammonia, Natural gas, Oil,
Pulp Chips,Wood,
Product
,
Exp/Imp
Revenue
Power
Grid
i
Product i Product i
Product i
Product
HPor MVR
Power
CO
CO Grid
Marketed
Marketed
f B c f B c
EUR
t Z Ann
f m c f W c
 
 
 
   
 
 

 

 
  

 
 
_
8760
factor
Typical ammonia plant without heat pump integration
Resultsanddiscussion
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
12
Overall exergy consumption 28.73
GJ/tproduct
ηex=64,75%
Grid power import 0.65 GJ/tproduct
No grid power exported
Fuel import (NG) 6.39 GJ/tproduct
Heat pump power demand 0.00
GJ/tproduct
Spec. CAPEX Heat Pump 0
EUR/tproduct
Total revenues 256.09 EUR/tproduct
Net fossil CO2 emitted 0.52
tCO2/tproduct
Alternative ammonia plant with heat pump integration
Resultsanddiscussion
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
13
Overall exergy cons. 26.51 GJ/tproduct ↓ 8%
ηex=70.15% ↑ 8%
Grid power import 1.75 GJ/tproduct
No grid power exported
Fuel import (NG) 3.07 GJ/tproduct
Heat pump power demand 0.39 GJ/tproduct
Spec. CAPEX Heat Pump 2.55 EUR/tproduct
Total revenues 261.57 EUR/tproduct ↑ 2%
Net CO2 emitted 0.33 tCO2/tproduct ↓ 36.5%
NAME
EVENT
/
NAME
PRESENTATION
Speaker
14
 Overall exergy consumption 28.73 GJ/tproduct
 ηex 64.75%
 Grid power import 0.65 GJ/tproduct
 No grid power exported
 Fuel import (NG) 6.39 GJ/tproduct
 Heat pump power demand 0.00 GJ/tproduct
 Rankine power generation (BP) 1.47 GJ/tproduct
 Cooling tower power demand 0.17 GJ/tproduct
 Operating incomes 518.26 EUR/tproduct
 Operating costs 262.17 EUR/tproduct
 Spec. CAPEX Heat Pump 0 EUR/tproduct
 Total revenues 256.09 EUR/tproduct
 Fossil CO2 dir. emitted 0.37 tCO2/tproduct
 Fossil CO2 indir. emitted 0.15 tCO2/tproduct
 Net fossil CO2 emitted 0.52 tCO2/tproduct
 Overall exergy consumption 26.51 GJ/tproduct
 ηex 70.15%
 Grid power import 1.75 GJ/tproduct
 No grid power exported
 Fuel import (NG) 3.07 GJ/tproduct
 Heat pump power demand 0.39 GJ/tproduct
 Rankine power generation (BP) 0.70 GJ/tproduct
 Cooling tower power demand 0.13 GJ/tproduct
 Operating incomes 518.26 EUR/tproduct
 Operating costs 254.15 EUR/tproduct
 Spec. CAPEX Heat Pump 2.55 EUR/tproduct
 Total revenues 261.57 EUR/tproduct
 Fossil CO2 dir. emitted 0.18 tCO2/tproduct
 Fossil CO2 indir. emitted 0.15 tCO2/tproduct
 Net fossil CO2 emitted 0.33 tCO2/tproduct
Typical ammonia plant without heat
pump integration
Typical ammonia plant with heat
pump integration
Typical pulp plant with multiple effect evaporation
Resultsanddiscussion
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
15
 Overall exergy consumption 42.13
GJ/tproduct
 ηex=45.91%
 No grid power import
 Grid power export 1.51 GJ/tproduct
 Fuel import (Chips) 0.00 GJ/tproduct
 Fuel import (Oil) 0.98 GJ/tproduct
 Heat pump power demand 0.00
GJ/tproduct
 Spec. CAPEX Heat Pump 0
EUR/tproduct
 Total revenues 583.19 EUR/tproduct
 Net fossil CO2 emitted 0.25 tCO2/tproduct
Alternative pulp plant with mechanical vapor recompression
Resultsanddiscussion
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
16
 Overall exergy cons. 43.94 GJ/tproduct ↓ 4%
 ηex=43.94% ↓ 4%
 No grid power import
 Grid power export 1.48 GJ/tproduct
 Fuel import (Chips) 1.81 GJ/tproduct
 Fuel import (Oil) 0.98 GJ/tproduct
 Heat pump power demand 0.99 GJ/tproduct
 Spec. CAPEX Heat Pump 5.95 EUR/tproduct
 Total revenues 568.65 EUR/tproduct ↓ 3%
 Net fossil CO2 emitted 0.26 tCO2/tproduct ↑ 1%
Exergy of steam
vs. Electricity
Qdrying x Ө x Neffects < WMVR
NAME
EVENT
/
NAME
PRESENTATION
Speaker
17
 Overall exergy consumption 43.94 GJ/tproduct
 ηex 43.94%
 No grid power import
 Grid power export 1.48 GJ/tproduct
 Fuel import (Chips) 1.81 GJ/tproduct
 Fuel import (Oil) 0.98 GJ/tproduct
 Heat pump power demand 0.99 GJ/tproduct
 Rankine power generation (BP) 5.48 GJ/tproduct
 Cooling tower power demand 0.11 GJ/tproduct
 Operating incomes 736.14 EUR/tproduct
 Operating costs 161.53 EUR/tproduct
 Spec. CAPEX Heat Pump 5.95 EUR/tproduct
 Total revenues 568.65 EUR/tproduct
 Fossil CO2 dir. emitted 0.07 tCO2/tproduct
 Fossil CO2 indir. emitted 0.19 tCO2/tproduct
 Net fossil CO2 emitted 0.26 tCO2/tproduct
 Overall exergy consumption 42.13 GJ/tproduct
 ηex 45.91%
 No grid power import
 Grid power export 1.51 GJ/tproduct
 Fuel import (Chips) 0.00 GJ/tproduct
 Fuel import (Oil) 0.98 GJ/tproduct
 Heat pump power demand 0.00 GJ/tproduct
 Rankine power generation (BP) 4.42 GJ/tproduct
 Cooling power demand 0.07 GJ/tproduct
 Operating incomes 736.67 EUR/tproduct
 Operating costs 153.49 EUR/tproduct
 Spec. CAPEX Heat Pump 0 EUR/tproduct
 Total revenues 583.19 EUR/tproduct
 Fossil CO2 dir. emitted 0.07 tCO2/tproduct
 Fossil CO2 indir. emitted 0.18 tCO2/tproduct
 Net fossil CO2 emitted 0.25 tCO2/tproduct
Typical pulp plant with multiple effect
evaporation
Alternative pulp plant with mechanical
vapor recompression
Sensitivitytotheenergyinputcosts
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
18
A B
C D
Sensitivitytotheenergyinputcosts
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
19
For tax 0
0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.01 A B B B B B B B B B B
0.02 A C B B B B B B B B B
0.03 A D B B B B B B B B B
0.04 A D C B B B B B B B B
0.05 A A D C B B B B B B B
0.06 A A D C B B B B B B B
0.07 A A D D C B B B B B B
0.08 A A D D C B B B B B B
0.09 A A A D D C B B B B B
0.1 A A A D D C C B B B B
0.15 A A A A D D D D C C B
cGN
cEE
For tax 120
0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.01 A D C B B B B B B B B
0.02 A A D B B B B B B B B
0.03 A A D C B B B B B B B
0.04 A A D D B B B B B B B
0.05 A A D D C B B B B B B
0.06 A A A D D C B B B B B
0.07 A A A D D C B B B B B
0.08 A A A D D D B B B B B
0.09 A A A D D D C C B B B
0.1 A A A D D D D C B B B
0.15 A A A A A D D D D C C
cGN
cEE
Category of integrated
composite curve
Introduction of a high carbon
tax triggers the transition
towards heat pump integration.
Heat pump integration:
• when tax is 0 EUR/tCO2  only for
ratios cEE/cNG < 2.33
• when tax is 120 EUR/tCO2  as high
as cEE/cNG < 5
Sensitivitytotheenergyinputcosts
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
20
For tax 0
0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.01 1 0 0 0 0 0 0 0 0 0 0
0.02 1 0 0 0 0 0 0 0 0 0 0
0.03 1 1 0 0 0 0 0 0 0 0 0
0.04 1 1 0 0 0 0 0 0 0 0 0
0.05 1 1 1 0 0 0 0 0 0 0 0
0.06 1 1 1 0 0 0 0 0 0 0 0
0.07 1 1 1 1 0 0 0 0 0 0 0
0.08 1 1 1 1 0 0 0 0 0 0 0
0.09 1 1 1 1 1 0 0 0 0 0 0
0.1 1 1 1 1 1 0 0 0 0 0 0
0.15 1 1 1 1 1 1 1 1 0 0 0
cGN
cEE
For tax 120
0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.01 1 1 0 0 0 0 0 0 0 0 0
0.02 1 1 1 0 0 0 0 0 0 0 0
0.03 1 1 1 0 0 0 0 0 0 0 0
0.04 1 1 1 1 0 0 0 0 0 0 0
0.05 1 1 1 1 0 0 0 0 0 0 0
0.06 1 1 1 1 1 0 0 0 0 0 0
0.07 1 1 1 1 1 0 0 0 0 0 0
0.08 1 1 1 1 1 1 0 0 0 0 0
0.09 1 1 1 1 1 1 0 0 0 0 0
0.1 1 1 1 1 1 1 1 0 0 0 0
0.15 1 1 1 1 1 1 1 1 1 0 0
cEE
cGN
Heat pump integration
Sensitivitytotheenergyinputcosts
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
21
Efficiency as a function of the
natural gas and electricity
costs (and carbon taxes)
For tax 0
0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.01 70% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61%
0.02 70% 65% 61% 61% 61% 61% 61% 61% 61% 61% 61%
0.03 70% 69% 62% 61% 61% 61% 61% 61% 61% 61% 61%
0.04 70% 69% 65% 62% 61% 61% 61% 61% 61% 61% 61%
0.05 70% 70% 69% 65% 61% 61% 61% 61% 61% 61% 61%
0.06 70% 70% 69% 65% 62% 61% 61% 61% 61% 61% 61%
0.07 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 61%
0.08 70% 70% 69% 69% 65% 62% 62% 61% 61% 61% 61%
0.09 70% 70% 70% 69% 69% 65% 62% 61% 61% 61% 61%
0.1 70% 70% 70% 69% 69% 65% 65% 62% 61% 61% 61%
0.15 70% 70% 70% 70% 69% 69% 69% 69% 65% 65% 62%
cEE
cGN
For tax 120
0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.01 70% 69% 65% 61% 61% 61% 61% 61% 61% 61% 61%
0.02 70% 70% 69% 62% 61% 61% 61% 61% 61% 61% 61%
0.03 70% 70% 69% 65% 62% 61% 61% 61% 61% 61% 61%
0.04 70% 70% 69% 69% 62% 62% 61% 61% 61% 61% 61%
0.05 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 61%
0.06 70% 70% 70% 69% 69% 65% 62% 61% 61% 61% 61%
0.07 70% 70% 70% 69% 69% 65% 62% 62% 61% 61% 61%
0.08 70% 70% 70% 69% 69% 69% 65% 62% 62% 61% 61%
0.09 70% 70% 70% 69% 69% 69% 65% 65% 62% 61% 61%
0.1 70% 70% 70% 70% 69% 69% 69% 65% 62% 62% 61%
0.15 70% 70% 70% 70% 70% 69% 69% 69% 69% 65% 65%
cEE
cGN
Sensitivitytotheenergyinputcosts
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
22
Emissions as a function of
the natural gas and electricity
costs
For tax 0
0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.01 0,329 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654
0.02 0,329 0,523 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654
0.03 0,329 0,336 0,637 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654
0.04 0,329 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0,654 0,654 0,654
0.05 0,329 0,329 0,336 0,523 0,654 0,654 0,654 0,654 0,654 0,654 0,654
0.06 0,329 0,329 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0,654 0,654
0.07 0,329 0,329 0,336 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0,654
0.08 0,329 0,329 0,336 0,336 0,523 0,637 0,637 0,654 0,654 0,654 0,654
0.09 0,329 0,329 0,329 0,336 0,336 0,523 0,637 0,654 0,654 0,654 0,654
0.1 0,329 0,329 0,329 0,336 0,336 0,523 0,523 0,637 0,654 0,654 0,654
0.15 0,329 0,329 0,329 0,329 0,336 0,336 0,336 0,336 0,523 0,523 0,637
cEE
cGN
For tax 120
0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.01 0,329455 0,33628 0,522696 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826
0.02 0,329455 0,329455 0,33628 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826
0.03 0,329455 0,329455 0,33628 0,522696 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826
0.04 0,329455 0,329455 0,33628 0,33628 0,637015 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826
0.05 0,329455 0,329455 0,33628 0,33628 0,522696 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826
0.06 0,329455 0,329455 0,329455 0,33628 0,33628 0,522696 0,637015 0,653826 0,653826 0,653826 0,653826
0.07 0,329455 0,329455 0,329455 0,33628 0,33628 0,522696 0,637015 0,637015 0,653826 0,653826 0,653826
0.08 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,522696 0,637015 0,637015 0,653826 0,653826
0.09 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,522696 0,522696 0,637015 0,653826 0,653826
0.1 0,329455 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,522696 0,637015 0,637015 0,653826
0.15 0,329455 0,329455 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,33628 0,522696 0,522696
cEE
cGN
Sensitivitytotheenergyinputcosts
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
23
Revenues as a function of
the natural gas and
electricity costs
Natural gas costs > 0.07 EUR/kWhNG
make the system economically
infeasible, since natural gas is
also used as feedstock in the
ammonia plant (Pulp mills plant
have a broader operative range)
Revenues fall
by 18%
0 EUR/tCO2
70 EUR/tCO2
120 EUR/tCO2
Florez-Orrego,
Daniel,
et
al.
Conclusions
High
temperature
heat
pumps
integration
 Natural gas price > 0.07 EUR/kWh  NH3 production economically unfeasible (regardless of price of electricity and use of
steam network or heat pump  cost for the ammonia produced).
 Higher cost of natural gas  electricity to supply heating in a more efficient way (HTHPs)  Accentuated when the carbon
tax is increased.
 Electricity imported is used in the plant to balance the power generation of the steam network. When cEE/cNG ratio is large,
the system uses large amounts natural gas, hampering the cogeneration efficiency.
 In the pulp plant, the excess waste heat is such that there is no need for EE import, and rather surplus EE export is
evidenced.
 Steam consumption in a Multiple Effect Evaporator results more efficient than driving a Mechanical Vapor Recompression 
Profits self-power generation potential.
 How much exergy of steam and how much exergy of power to achieve the same task: Qdrying x Ө x Neffects < WMVR.
 Although installing a heat pump is not a warranty of higher efficiencies or revenues, it may bust efficiency in certain
applications.
24
The authors would like to thank the Swiss Federal Office of Energy (SFOE) for funding this
research through the Grant Agreement number SI/502336-01.
The first author would like to thanks the Colombian Administrative Department of Science,
Technology and Innovation (1128416066-646/2014). The second author acknowledges the
funding from the Ministry of Science, Innovation and Universities of Spain and the European
Union “Next Generation EU” through 2021-2023 Margarita Salas grant.
The third author acknowledges the Brazilian National Research Council for Scientific and
Technological Development CNPq (142148/2019-9), and the Swiss Government Excellence
Scholarship (2021.0235).
Acknowledgments
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
25
Thanksforyourattention
Takfordinopmærksomhed
High
temperature
heat
pumps
integration
Florez-Orrego,
Daniel,
et
al.
26

Mais conteúdo relacionado

Semelhante a Heat Pumps

Air to Water Low Temperature Heat Pump
Air to Water Low Temperature Heat PumpAir to Water Low Temperature Heat Pump
Air to Water Low Temperature Heat PumpCCSE Host
 
RECUWATT Conference - Arthur Gignoux lecture
RECUWATT Conference - Arthur Gignoux lectureRECUWATT Conference - Arthur Gignoux lecture
RECUWATT Conference - Arthur Gignoux lectureRECUWATT Conference
 
Biofuel Project: an anlysis to substitute 10% italian petrol by mean of non-f...
Biofuel Project: an anlysis to substitute 10% italian petrol by mean of non-f...Biofuel Project: an anlysis to substitute 10% italian petrol by mean of non-f...
Biofuel Project: an anlysis to substitute 10% italian petrol by mean of non-f...Stefano Maronese
 
001 160718 energy systems for green buildings20160718-2
001 160718 energy systems for green buildings20160718-2001 160718 energy systems for green buildings20160718-2
001 160718 energy systems for green buildings20160718-2senicsummerschool
 
A locally manufactured gasification technology for the valorization of agricu...
A locally manufactured gasification technology for the valorization of agricu...A locally manufactured gasification technology for the valorization of agricu...
A locally manufactured gasification technology for the valorization of agricu...Francois Stepman
 
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1Thermatec
 
2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINALSandra Broekema
 
Energy Efficiency in Hospitals
Energy Efficiency in HospitalsEnergy Efficiency in Hospitals
Energy Efficiency in HospitalsLeonardo ENERGY
 
Hydrogen as an effective power source (2014 Nov)
Hydrogen as an effective power source (2014 Nov)Hydrogen as an effective power source (2014 Nov)
Hydrogen as an effective power source (2014 Nov)Isuru Priyaranga Silva
 
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdfQuestion Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdfPremBaboo4
 
ORC ElectraTherm Green Machine - waste heat to power, Power generation
ORC ElectraTherm Green Machine - waste heat to power, Power generationORC ElectraTherm Green Machine - waste heat to power, Power generation
ORC ElectraTherm Green Machine - waste heat to power, Power generationRado Irgl
 
Inlet Air Cooling system from Ikeuchi Improve gas Turbine efficiency
Inlet Air Cooling system from Ikeuchi Improve gas Turbine efficiencyInlet Air Cooling system from Ikeuchi Improve gas Turbine efficiency
Inlet Air Cooling system from Ikeuchi Improve gas Turbine efficiencyH.Ikeuchi & Co.,Ltd
 
ORC - Organic Rankine Cycle technology for biomass and EfW cogeneration and t...
ORC - Organic Rankine Cycle technology for biomass and EfW cogeneration and t...ORC - Organic Rankine Cycle technology for biomass and EfW cogeneration and t...
ORC - Organic Rankine Cycle technology for biomass and EfW cogeneration and t...Carlo Minini
 
Opportunities for combined heating and cooling
Opportunities for combined heating and coolingOpportunities for combined heating and cooling
Opportunities for combined heating and coolingStar Renewable Energy
 
Overview of powertrain
Overview of powertrainOverview of powertrain
Overview of powertrainbharibabu
 
Torben Funder-Kristensen - Danfoss - RISCALDAMENTO E CONDIZIONAMENTO COMBINAT...
Torben Funder-Kristensen - Danfoss - RISCALDAMENTO E CONDIZIONAMENTO COMBINAT...Torben Funder-Kristensen - Danfoss - RISCALDAMENTO E CONDIZIONAMENTO COMBINAT...
Torben Funder-Kristensen - Danfoss - RISCALDAMENTO E CONDIZIONAMENTO COMBINAT...Centro Studi Galileo
 
Various ammonia technology
Various ammonia technologyVarious ammonia technology
Various ammonia technologyPrem Baboo
 

Semelhante a Heat Pumps (20)

Air to Water Low Temperature Heat Pump
Air to Water Low Temperature Heat PumpAir to Water Low Temperature Heat Pump
Air to Water Low Temperature Heat Pump
 
linkedin
linkedinlinkedin
linkedin
 
RECUWATT Conference - Arthur Gignoux lecture
RECUWATT Conference - Arthur Gignoux lectureRECUWATT Conference - Arthur Gignoux lecture
RECUWATT Conference - Arthur Gignoux lecture
 
Biofuel Project: an anlysis to substitute 10% italian petrol by mean of non-f...
Biofuel Project: an anlysis to substitute 10% italian petrol by mean of non-f...Biofuel Project: an anlysis to substitute 10% italian petrol by mean of non-f...
Biofuel Project: an anlysis to substitute 10% italian petrol by mean of non-f...
 
001 160718 energy systems for green buildings20160718-2
001 160718 energy systems for green buildings20160718-2001 160718 energy systems for green buildings20160718-2
001 160718 energy systems for green buildings20160718-2
 
A locally manufactured gasification technology for the valorization of agricu...
A locally manufactured gasification technology for the valorization of agricu...A locally manufactured gasification technology for the valorization of agricu...
A locally manufactured gasification technology for the valorization of agricu...
 
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
Misubishi eti and etw heat pump presentation may 4th, 2011 rev.1
 
Presentation Cooling Eng
Presentation Cooling EngPresentation Cooling Eng
Presentation Cooling Eng
 
2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL2016.12.14 DryFining Coal Gen presentation FINAL
2016.12.14 DryFining Coal Gen presentation FINAL
 
Energy Efficiency in Hospitals
Energy Efficiency in HospitalsEnergy Efficiency in Hospitals
Energy Efficiency in Hospitals
 
Hydrogen as an effective power source (2014 Nov)
Hydrogen as an effective power source (2014 Nov)Hydrogen as an effective power source (2014 Nov)
Hydrogen as an effective power source (2014 Nov)
 
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdfQuestion Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
Question Answer on Energy Conservation Vol 1 By Prem Baboo.pdf
 
ORC ElectraTherm Green Machine - waste heat to power, Power generation
ORC ElectraTherm Green Machine - waste heat to power, Power generationORC ElectraTherm Green Machine - waste heat to power, Power generation
ORC ElectraTherm Green Machine - waste heat to power, Power generation
 
Inlet Air Cooling system from Ikeuchi Improve gas Turbine efficiency
Inlet Air Cooling system from Ikeuchi Improve gas Turbine efficiencyInlet Air Cooling system from Ikeuchi Improve gas Turbine efficiency
Inlet Air Cooling system from Ikeuchi Improve gas Turbine efficiency
 
ORC - Organic Rankine Cycle technology for biomass and EfW cogeneration and t...
ORC - Organic Rankine Cycle technology for biomass and EfW cogeneration and t...ORC - Organic Rankine Cycle technology for biomass and EfW cogeneration and t...
ORC - Organic Rankine Cycle technology for biomass and EfW cogeneration and t...
 
Opportunities for combined heating and cooling
Opportunities for combined heating and coolingOpportunities for combined heating and cooling
Opportunities for combined heating and cooling
 
Overview of powertrain
Overview of powertrainOverview of powertrain
Overview of powertrain
 
Torben Funder-Kristensen - Danfoss - RISCALDAMENTO E CONDIZIONAMENTO COMBINAT...
Torben Funder-Kristensen - Danfoss - RISCALDAMENTO E CONDIZIONAMENTO COMBINAT...Torben Funder-Kristensen - Danfoss - RISCALDAMENTO E CONDIZIONAMENTO COMBINAT...
Torben Funder-Kristensen - Danfoss - RISCALDAMENTO E CONDIZIONAMENTO COMBINAT...
 
Ethp Explaination Summary
Ethp Explaination SummaryEthp Explaination Summary
Ethp Explaination Summary
 
Various ammonia technology
Various ammonia technologyVarious ammonia technology
Various ammonia technology
 

Último

A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProRay Yuan Liu
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...shreenathji26
 
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...arifengg7
 
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...Amil baba
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSneha Padhiar
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier Fernández Muñoz
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical trainingGladiatorsKasper
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfManish Kumar
 
ADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studyADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studydhruvamdhruvil123
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
10 AsymmetricKey Cryptography students.pptx
10 AsymmetricKey Cryptography students.pptx10 AsymmetricKey Cryptography students.pptx
10 AsymmetricKey Cryptography students.pptxAdityaGoogle
 
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...IJAEMSJORNAL
 
Detection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackingDetection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackinghadarpinhas1
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...KrishnaveniKrishnara1
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 

Último (20)

A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision Pro
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
Introduction to Artificial Intelligence: Intelligent Agents, State Space Sear...
 
ASME-B31.4-2019-estandar para diseño de ductos
ASME-B31.4-2019-estandar para diseño de ductosASME-B31.4-2019-estandar para diseño de ductos
ASME-B31.4-2019-estandar para diseño de ductos
 
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
Analysis and Evaluation of Dal Lake Biomass for Conversion to Fuel/Green fert...
 
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
Uk-NO1 kala jadu karne wale ka contact number kala jadu karne wale baba kala ...
 
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATIONSOFTWARE ESTIMATION COCOMO AND FP CALCULATION
SOFTWARE ESTIMATION COCOMO AND FP CALCULATION
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptx
 
70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training70 POWER PLANT IAE V2500 technical training
70 POWER PLANT IAE V2500 technical training
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
 
ADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain studyADM100 Running Book for sap basis domain study
ADM100 Running Book for sap basis domain study
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
10 AsymmetricKey Cryptography students.pptx
10 AsymmetricKey Cryptography students.pptx10 AsymmetricKey Cryptography students.pptx
10 AsymmetricKey Cryptography students.pptx
 
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
Guardians of E-Commerce: Harnessing NLP and Machine Learning Approaches for A...
 
Detection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and trackingDetection&Tracking - Thermal imaging object detection and tracking
Detection&Tracking - Thermal imaging object detection and tracking
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
 
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
22CYT12 & Chemistry for Computer Systems_Unit-II-Corrosion & its Control Meth...
 
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptxTriangulation survey (Basic Mine Surveying)_MI10412MI.pptx
Triangulation survey (Basic Mine Surveying)_MI10412MI.pptx
 

Heat Pumps

  • 1. Hightemperatureheatpumps integrationin industrial separationanddryingprocesses Daniel Flórez-Orrego, Eduardo Antonio Pina, Meire Ribeiro Domingos, Shivom Sharma, François Maréchal daniel.florezorrego@epfl.ch 35th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems ECOS 2022 3rd – 7th July, Copenhagen, Denmark École Polytechnique Fédérale de Lausanne
  • 2.  Ammonia 2.0% energy consumption 1.3% of CO2 emissions High temperature heat pumps integration Florez-Orrego, Daniel, et al. 2 Introduction  Pulp 5.6% energy consumption 2.3% of CO2 emissions  Large heating demand  Waste heat is an important byproduct.  More stringent carbon regulations, need for decarbonization.  Deployment of HTHPs may reduce CO2 emissions by 30 - 40%.  NetZero 2050 roadmap IEA: 15-30% heating demand of light industries.
  • 3. Florez-Orrego, Daniel, et al. High temperature heat pumps integration 1. Typical ammonia plant without heat pump integration 2. Alternative ammonia plant with heat pump integration 3. Typical pulp plant with multiple effect evaporation 4. Alternative pulp plant with mechanical vapor recompression Processscenarios 3
  • 4. Ammonia Plant High temperature heat pumps integration Florez-Orrego, Daniel, et al. 4 1000 t/day Processesdescription Feedstock consumption (NG) 21.69GJ/tproduct Chemical process power demand 1.56 GJ/tproduct Refrigeration power demand 0.35 GJ/tproduct Min. cooling req. 7.44 GJ/tproduct Min. heating req. 4.33 GJ/tproduct CO2 avoided 1.42 tCO2/tproduct
  • 5. Processesdescription High temperature heat pumps integration Florez-Orrego, Daniel, et al. 5 Pulp Plant 880 tAD/day Multiple effect evaporator Feedstock consumption (Wood) 41.15 GJ/tproduct Chemical process power demand 2.84 GJ/tproduct Refrigeration power demand 0.00 GJ/tproduct Min. cooling req. 2.24 GJ/tproduct Min. heating req. 12.23 GJ/tproduct Fossil CO2 avoided 0.00 tCO2/tproduct
  • 6. High temperature heat pumps integration Florez-Orrego, Daniel, et al. 6 Mechanical vapor recompression Processesdescription Pulp Plant 877.8,5 tAD/day Feedstock consumption (Wood) 41.15 GJ/tproduct Chemical process power demand 2.84 GJ/tproduct Refrigeration power demand 0.00 GJ/tproduct Min. cooling req. 15.16 GJ/tproduct Min. heating req. 25.37 GJ/tproduct Fossil CO2 avoided 0.00 tCO2/tproduct
  • 7. Process Modeling and Simulation: Aspen Plus v.11 Methods High temperature heat pumps integration Florez-Orrego, Daniel, et al. 7 Energy integration framework: OSMOSE Lua Minimum Energy Requirement Equation Oriented Modeling and Simulation Sequential Modular Simulation
  • 9. Optimization problem: maximum revenue (incl. HP or MVR investment): Methods High temperature heat pumps integration Florez-Orrego, Daniel, et al. 9               , , _ 8760 HPor MVR r Power Chips Natural Wood Power Chips Wood Natural Oil Oil Biomass Grid Gas Biomass Biomass Grid Gas Biomass f y R W Pulp Ammo Ammonia Pulp Product Product Product Z Ann factor f B c f B c f B c f B c f W c f B c f B c                  Min   2 2 CO nia CO Product Marketed Marketed f m c                     Subject to: , , 1 1 1 0 1.. N N r r i r r i f q Q R R r N                exp 1 0 N net imp chemical units f W W W W           max, min, y y 1.. f f f N            1 1 0, 0, R 0 r N R R     exp 0, 0 imp W W   w = {utility units, resources}, yw existence (binary) and fw load factor variables cNG=0.032 EUR/kWh; cEE=0.07 EUR/kWh; cOil= 0.018 EUR/kWh; cChips= 0.016 EUR/kWh; cWood=0.013 EUR/kWh; cNH3=0.098 EUR/kWh; cPulp=0.144; EUR/kWh; cCO2market=0.0084 EUR/kg;
  • 11. Performance indicators:  Exergy efficiency  CO2 emissions (direct + indirect):  Revenues: Methods Florez-Orrego, Daniel, et al. 11 , , or ex ammonia pulp consumed ideal Power consumed actual natural gas oil wood chips Grid B B B B B B B B W        2 2 2 2 , , 2, , , Product Product, , 1 3600 1000 1000 CH Power CO Power CO CO i i Grid Grid i Spec i CO i CH Wood Chips i i Natural gas Oil f W r t r b B f I t m b CO                                          2 2 , Exp/Imp , , , Ammonia, Natural gas, Oil, Pulp Chips,Wood, Product , Exp/Imp Revenue Power Grid i Product i Product i Product i Product HPor MVR Power CO CO Grid Marketed Marketed f B c f B c EUR t Z Ann f m c f W c                             _ 8760 factor
  • 12. Typical ammonia plant without heat pump integration Resultsanddiscussion High temperature heat pumps integration Florez-Orrego, Daniel, et al. 12 Overall exergy consumption 28.73 GJ/tproduct ηex=64,75% Grid power import 0.65 GJ/tproduct No grid power exported Fuel import (NG) 6.39 GJ/tproduct Heat pump power demand 0.00 GJ/tproduct Spec. CAPEX Heat Pump 0 EUR/tproduct Total revenues 256.09 EUR/tproduct Net fossil CO2 emitted 0.52 tCO2/tproduct
  • 13. Alternative ammonia plant with heat pump integration Resultsanddiscussion High temperature heat pumps integration Florez-Orrego, Daniel, et al. 13 Overall exergy cons. 26.51 GJ/tproduct ↓ 8% ηex=70.15% ↑ 8% Grid power import 1.75 GJ/tproduct No grid power exported Fuel import (NG) 3.07 GJ/tproduct Heat pump power demand 0.39 GJ/tproduct Spec. CAPEX Heat Pump 2.55 EUR/tproduct Total revenues 261.57 EUR/tproduct ↑ 2% Net CO2 emitted 0.33 tCO2/tproduct ↓ 36.5%
  • 14. NAME EVENT / NAME PRESENTATION Speaker 14  Overall exergy consumption 28.73 GJ/tproduct  ηex 64.75%  Grid power import 0.65 GJ/tproduct  No grid power exported  Fuel import (NG) 6.39 GJ/tproduct  Heat pump power demand 0.00 GJ/tproduct  Rankine power generation (BP) 1.47 GJ/tproduct  Cooling tower power demand 0.17 GJ/tproduct  Operating incomes 518.26 EUR/tproduct  Operating costs 262.17 EUR/tproduct  Spec. CAPEX Heat Pump 0 EUR/tproduct  Total revenues 256.09 EUR/tproduct  Fossil CO2 dir. emitted 0.37 tCO2/tproduct  Fossil CO2 indir. emitted 0.15 tCO2/tproduct  Net fossil CO2 emitted 0.52 tCO2/tproduct  Overall exergy consumption 26.51 GJ/tproduct  ηex 70.15%  Grid power import 1.75 GJ/tproduct  No grid power exported  Fuel import (NG) 3.07 GJ/tproduct  Heat pump power demand 0.39 GJ/tproduct  Rankine power generation (BP) 0.70 GJ/tproduct  Cooling tower power demand 0.13 GJ/tproduct  Operating incomes 518.26 EUR/tproduct  Operating costs 254.15 EUR/tproduct  Spec. CAPEX Heat Pump 2.55 EUR/tproduct  Total revenues 261.57 EUR/tproduct  Fossil CO2 dir. emitted 0.18 tCO2/tproduct  Fossil CO2 indir. emitted 0.15 tCO2/tproduct  Net fossil CO2 emitted 0.33 tCO2/tproduct Typical ammonia plant without heat pump integration Typical ammonia plant with heat pump integration
  • 15. Typical pulp plant with multiple effect evaporation Resultsanddiscussion High temperature heat pumps integration Florez-Orrego, Daniel, et al. 15  Overall exergy consumption 42.13 GJ/tproduct  ηex=45.91%  No grid power import  Grid power export 1.51 GJ/tproduct  Fuel import (Chips) 0.00 GJ/tproduct  Fuel import (Oil) 0.98 GJ/tproduct  Heat pump power demand 0.00 GJ/tproduct  Spec. CAPEX Heat Pump 0 EUR/tproduct  Total revenues 583.19 EUR/tproduct  Net fossil CO2 emitted 0.25 tCO2/tproduct
  • 16. Alternative pulp plant with mechanical vapor recompression Resultsanddiscussion High temperature heat pumps integration Florez-Orrego, Daniel, et al. 16  Overall exergy cons. 43.94 GJ/tproduct ↓ 4%  ηex=43.94% ↓ 4%  No grid power import  Grid power export 1.48 GJ/tproduct  Fuel import (Chips) 1.81 GJ/tproduct  Fuel import (Oil) 0.98 GJ/tproduct  Heat pump power demand 0.99 GJ/tproduct  Spec. CAPEX Heat Pump 5.95 EUR/tproduct  Total revenues 568.65 EUR/tproduct ↓ 3%  Net fossil CO2 emitted 0.26 tCO2/tproduct ↑ 1% Exergy of steam vs. Electricity Qdrying x Ө x Neffects < WMVR
  • 17. NAME EVENT / NAME PRESENTATION Speaker 17  Overall exergy consumption 43.94 GJ/tproduct  ηex 43.94%  No grid power import  Grid power export 1.48 GJ/tproduct  Fuel import (Chips) 1.81 GJ/tproduct  Fuel import (Oil) 0.98 GJ/tproduct  Heat pump power demand 0.99 GJ/tproduct  Rankine power generation (BP) 5.48 GJ/tproduct  Cooling tower power demand 0.11 GJ/tproduct  Operating incomes 736.14 EUR/tproduct  Operating costs 161.53 EUR/tproduct  Spec. CAPEX Heat Pump 5.95 EUR/tproduct  Total revenues 568.65 EUR/tproduct  Fossil CO2 dir. emitted 0.07 tCO2/tproduct  Fossil CO2 indir. emitted 0.19 tCO2/tproduct  Net fossil CO2 emitted 0.26 tCO2/tproduct  Overall exergy consumption 42.13 GJ/tproduct  ηex 45.91%  No grid power import  Grid power export 1.51 GJ/tproduct  Fuel import (Chips) 0.00 GJ/tproduct  Fuel import (Oil) 0.98 GJ/tproduct  Heat pump power demand 0.00 GJ/tproduct  Rankine power generation (BP) 4.42 GJ/tproduct  Cooling power demand 0.07 GJ/tproduct  Operating incomes 736.67 EUR/tproduct  Operating costs 153.49 EUR/tproduct  Spec. CAPEX Heat Pump 0 EUR/tproduct  Total revenues 583.19 EUR/tproduct  Fossil CO2 dir. emitted 0.07 tCO2/tproduct  Fossil CO2 indir. emitted 0.18 tCO2/tproduct  Net fossil CO2 emitted 0.25 tCO2/tproduct Typical pulp plant with multiple effect evaporation Alternative pulp plant with mechanical vapor recompression
  • 19. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 19 For tax 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 A B B B B B B B B B B 0.02 A C B B B B B B B B B 0.03 A D B B B B B B B B B 0.04 A D C B B B B B B B B 0.05 A A D C B B B B B B B 0.06 A A D C B B B B B B B 0.07 A A D D C B B B B B B 0.08 A A D D C B B B B B B 0.09 A A A D D C B B B B B 0.1 A A A D D C C B B B B 0.15 A A A A D D D D C C B cGN cEE For tax 120 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 A D C B B B B B B B B 0.02 A A D B B B B B B B B 0.03 A A D C B B B B B B B 0.04 A A D D B B B B B B B 0.05 A A D D C B B B B B B 0.06 A A A D D C B B B B B 0.07 A A A D D C B B B B B 0.08 A A A D D D B B B B B 0.09 A A A D D D C C B B B 0.1 A A A D D D D C B B B 0.15 A A A A A D D D D C C cGN cEE Category of integrated composite curve Introduction of a high carbon tax triggers the transition towards heat pump integration. Heat pump integration: • when tax is 0 EUR/tCO2  only for ratios cEE/cNG < 2.33 • when tax is 120 EUR/tCO2  as high as cEE/cNG < 5
  • 20. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 20 For tax 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 1 0 0 0 0 0 0 0 0 0 0 0.02 1 0 0 0 0 0 0 0 0 0 0 0.03 1 1 0 0 0 0 0 0 0 0 0 0.04 1 1 0 0 0 0 0 0 0 0 0 0.05 1 1 1 0 0 0 0 0 0 0 0 0.06 1 1 1 0 0 0 0 0 0 0 0 0.07 1 1 1 1 0 0 0 0 0 0 0 0.08 1 1 1 1 0 0 0 0 0 0 0 0.09 1 1 1 1 1 0 0 0 0 0 0 0.1 1 1 1 1 1 0 0 0 0 0 0 0.15 1 1 1 1 1 1 1 1 0 0 0 cGN cEE For tax 120 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 1 1 0 0 0 0 0 0 0 0 0 0.02 1 1 1 0 0 0 0 0 0 0 0 0.03 1 1 1 0 0 0 0 0 0 0 0 0.04 1 1 1 1 0 0 0 0 0 0 0 0.05 1 1 1 1 0 0 0 0 0 0 0 0.06 1 1 1 1 1 0 0 0 0 0 0 0.07 1 1 1 1 1 0 0 0 0 0 0 0.08 1 1 1 1 1 1 0 0 0 0 0 0.09 1 1 1 1 1 1 0 0 0 0 0 0.1 1 1 1 1 1 1 1 0 0 0 0 0.15 1 1 1 1 1 1 1 1 1 0 0 cEE cGN Heat pump integration
  • 21. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 21 Efficiency as a function of the natural gas and electricity costs (and carbon taxes) For tax 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 70% 61% 61% 61% 61% 61% 61% 61% 61% 61% 61% 0.02 70% 65% 61% 61% 61% 61% 61% 61% 61% 61% 61% 0.03 70% 69% 62% 61% 61% 61% 61% 61% 61% 61% 61% 0.04 70% 69% 65% 62% 61% 61% 61% 61% 61% 61% 61% 0.05 70% 70% 69% 65% 61% 61% 61% 61% 61% 61% 61% 0.06 70% 70% 69% 65% 62% 61% 61% 61% 61% 61% 61% 0.07 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 61% 0.08 70% 70% 69% 69% 65% 62% 62% 61% 61% 61% 61% 0.09 70% 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 0.1 70% 70% 70% 69% 69% 65% 65% 62% 61% 61% 61% 0.15 70% 70% 70% 70% 69% 69% 69% 69% 65% 65% 62% cEE cGN For tax 120 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 70% 69% 65% 61% 61% 61% 61% 61% 61% 61% 61% 0.02 70% 70% 69% 62% 61% 61% 61% 61% 61% 61% 61% 0.03 70% 70% 69% 65% 62% 61% 61% 61% 61% 61% 61% 0.04 70% 70% 69% 69% 62% 62% 61% 61% 61% 61% 61% 0.05 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 61% 0.06 70% 70% 70% 69% 69% 65% 62% 61% 61% 61% 61% 0.07 70% 70% 70% 69% 69% 65% 62% 62% 61% 61% 61% 0.08 70% 70% 70% 69% 69% 69% 65% 62% 62% 61% 61% 0.09 70% 70% 70% 69% 69% 69% 65% 65% 62% 61% 61% 0.1 70% 70% 70% 70% 69% 69% 69% 65% 62% 62% 61% 0.15 70% 70% 70% 70% 70% 69% 69% 69% 69% 65% 65% cEE cGN
  • 22. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 22 Emissions as a function of the natural gas and electricity costs For tax 0 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 0,329 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.02 0,329 0,523 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.03 0,329 0,336 0,637 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.04 0,329 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.05 0,329 0,329 0,336 0,523 0,654 0,654 0,654 0,654 0,654 0,654 0,654 0.06 0,329 0,329 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0,654 0,654 0.07 0,329 0,329 0,336 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0,654 0.08 0,329 0,329 0,336 0,336 0,523 0,637 0,637 0,654 0,654 0,654 0,654 0.09 0,329 0,329 0,329 0,336 0,336 0,523 0,637 0,654 0,654 0,654 0,654 0.1 0,329 0,329 0,329 0,336 0,336 0,523 0,523 0,637 0,654 0,654 0,654 0.15 0,329 0,329 0,329 0,329 0,336 0,336 0,336 0,336 0,523 0,523 0,637 cEE cGN For tax 120 0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.01 0,329455 0,33628 0,522696 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0.02 0,329455 0,329455 0,33628 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0.03 0,329455 0,329455 0,33628 0,522696 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0,653826 0.04 0,329455 0,329455 0,33628 0,33628 0,637015 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0.05 0,329455 0,329455 0,33628 0,33628 0,522696 0,637015 0,653826 0,653826 0,653826 0,653826 0,653826 0.06 0,329455 0,329455 0,329455 0,33628 0,33628 0,522696 0,637015 0,653826 0,653826 0,653826 0,653826 0.07 0,329455 0,329455 0,329455 0,33628 0,33628 0,522696 0,637015 0,637015 0,653826 0,653826 0,653826 0.08 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,522696 0,637015 0,637015 0,653826 0,653826 0.09 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,522696 0,522696 0,637015 0,653826 0,653826 0.1 0,329455 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,522696 0,637015 0,637015 0,653826 0.15 0,329455 0,329455 0,329455 0,329455 0,329455 0,33628 0,33628 0,33628 0,33628 0,522696 0,522696 cEE cGN
  • 23. Sensitivitytotheenergyinputcosts High temperature heat pumps integration Florez-Orrego, Daniel, et al. 23 Revenues as a function of the natural gas and electricity costs Natural gas costs > 0.07 EUR/kWhNG make the system economically infeasible, since natural gas is also used as feedstock in the ammonia plant (Pulp mills plant have a broader operative range) Revenues fall by 18% 0 EUR/tCO2 70 EUR/tCO2 120 EUR/tCO2
  • 24. Florez-Orrego, Daniel, et al. Conclusions High temperature heat pumps integration  Natural gas price > 0.07 EUR/kWh  NH3 production economically unfeasible (regardless of price of electricity and use of steam network or heat pump  cost for the ammonia produced).  Higher cost of natural gas  electricity to supply heating in a more efficient way (HTHPs)  Accentuated when the carbon tax is increased.  Electricity imported is used in the plant to balance the power generation of the steam network. When cEE/cNG ratio is large, the system uses large amounts natural gas, hampering the cogeneration efficiency.  In the pulp plant, the excess waste heat is such that there is no need for EE import, and rather surplus EE export is evidenced.  Steam consumption in a Multiple Effect Evaporator results more efficient than driving a Mechanical Vapor Recompression  Profits self-power generation potential.  How much exergy of steam and how much exergy of power to achieve the same task: Qdrying x Ө x Neffects < WMVR.  Although installing a heat pump is not a warranty of higher efficiencies or revenues, it may bust efficiency in certain applications. 24
  • 25. The authors would like to thank the Swiss Federal Office of Energy (SFOE) for funding this research through the Grant Agreement number SI/502336-01. The first author would like to thanks the Colombian Administrative Department of Science, Technology and Innovation (1128416066-646/2014). The second author acknowledges the funding from the Ministry of Science, Innovation and Universities of Spain and the European Union “Next Generation EU” through 2021-2023 Margarita Salas grant. The third author acknowledges the Brazilian National Research Council for Scientific and Technological Development CNPq (142148/2019-9), and the Swiss Government Excellence Scholarship (2021.0235). Acknowledgments High temperature heat pumps integration Florez-Orrego, Daniel, et al. 25