Aula Resumo - Bio Estatistica Descritiva

13.844 visualizações

Publicada em

Data de Publication - Ago 2009

0 comentários
24 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
13.844
No SlideShare
0
A partir de incorporações
0
Número de incorporações
46
Ações
Compartilhamentos
0
Downloads
4
Comentários
0
Gostaram
24
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Aula Resumo - Bio Estatistica Descritiva

  1. 1. Estatística Vital - 2007 Informação - SUS Dados Diagrama Np – ESF6 SIS 12 10 8 f(x) = 59x+35 6 4 2 0 010101 1 2 3 4 5 6 000010 000111 010101 010001 p = n.Z/∑d 010110 MÓDULO I ESTATÍSTICA VITAL Projeto de Epidemiologia Eletrônica Aplicada à Gestão Municipal do SUS. Igor Lemos Alves ∑-pidemiologist ® Contato: Gestor.SUS@gmail.com . Gestor.SUS@gmail.com Igor Alves
  2. 2. Estatística Vital - 2007 ESTATÍSTICA VITAL Faculdade São Camilo - 2007 Gestor.SUS@gmail.com Igor Alves
  3. 3. Estatística Vital - 2007 TÓPICOS DE ESTUDO No módulo de Estatística Vital abordaremos os seguintes assuntos:  Estatística Básica  Tratamento Descritivo dos dados.  Boxplot Gestor.SUS@gmail.com Igor Alves
  4. 4. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Gestor.SUS@gmail.com Igor Alves
  5. 5. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 marcas de exames de glicemia foram pré- selecionadas. Para definir qual a marca a ser comprada o que fazer? Gestor.SUS@gmail.com Igor Alves
  6. 6. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 marcas de exames de glicemia foram pré- selecionadas. Para definir qual a marca a ser comprada o que fazer? ? Alguma Idéia? Gestor.SUS@gmail.com Pensando ... Igor Alves
  7. 7. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 marcas de exames de glicemia foram pré- selecionadas. Para definir qual a marca a ser comprada você resolve submeter os 3 kits a um exame estatístico. Gestor.SUS@gmail.com Igor Alves
  8. 8. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 marcas de exames de glicemia foram pré- selecionadas. Para definir qual a marca a ser comprada você resolve submeter os 3 kits a um exame estatístico. Experimento: Qual seria? ? Alguma Idéia? Gestor.SUS@gmail.com Pensando ... Igor Alves
  9. 9. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 Nível de Glicose de 1 Paciente Segundo 3 de saúde do município de Tipos de Laboratório em 20 Dias Montreal e durante um Consecutivos de Coleta processo de licitação 3 marcas de exames de Dias Lab 1 Lab 2 Lab 3 glicemia foram pré- 1 77,3 80,2 76,6 selecionadas. Para definir 2 82,6 60,7 77,2 qual a marca a ser comprada 3 78,9 77,6 76,7 você resolve submeter os 3 4 82,4 50 78,1 kits a um exame estatístico. 5 81,6 82,3 77,3 6 87,3 80,2 76,9 Experimento: Durante um 7 81,6 82,9 77,2 intervalo de 20 dias 8 82,3 80 80,1 consecutivos o nível 9 82,3 82,4 77,4 glicêmico do Secretário de 10 83 130 85,3 saúde foi medido no mesmo 11 82,7 82,6 77,9 momento pelos 3 métodos 12 82 81 77,5 obtendo uma tabela de 13 82,1 82,6 77,2 níveis de glicose. Segundo os 14 82,4 81 86,6 dados, julgue o melhor 15 82,3 83,8 76,9 método a ser comprado pelo 16 78,3 90,7 78,2 município. Justifique sua 17 82,9 100 77,1 resposta. 18 83,1 82 78 19 82 79,4 77,1 20 84,2 78,5 77 Fonte: SMS, Montreal Gestor.SUS@gmail.com Igor Alves
  10. 10. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 Nível de Glicose de 1 Paciente Segundo 3 de saúde do município de Tipos de Laboratório em 20 Dias Montreal e durante um Consecutivos de Coleta processo de licitação 3 marcas de exames de Dias Lab 1 Lab 2 Lab 3 glicemia foram pré- 1 77,3 80,2 76,6 selecionadas. Para definir 2 82,6 60,7 77,2 qual a marca a ser comprada 3 78,9 77,6 76,7 você resolve submeter os 3 4 82,4 50 78,1 kits a um exame estatístico. 5 81,6 82,3 77,3 6 87,3 80,2 76,9 Experimento: Durante um 7 81,6 82,9 77,2 intervalo de 20 dias 8 82,3 80 80,1 consecutivos o nível 9 82,3 82,4 77,4 glicêmico do Secretário de 10 83 130 85,3 saúde foi medido no mesmo 11 82,7 82,6 77,9 momento pelos 3 métodos 12 82 81 77,5 obtendo uma tabela de 13 82,1 82,6 77,2 níveis de glicose. Segundo os 14 82,4 81 86,6 dados, julgue o melhor 15 82,3 83,8 76,9 método a ser comprado pelo 16 78,3 90,7 78,2 município. Justifique sua 17 82,9 100 77,1 resposta. 18 83,1 82 78 19 82 79,4 77,1 20 84,2 78,5 77 Fonte: SMS, Montreal O que fazer com esses dados? Gestor.SUS@gmail.com Pensando ... Igor Alves
  11. 11. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Submeter a análises estatísticas? Quais? Gestor.SUS@gmail.com Pensando ... Igor Alves
  12. 12. Estatística Vital - 2007 ESTATÍSTICA BÁSICA  Estatística Descritiva  Descrever características de um conjunto de dados.  Geralmente uma População Caracteriza, descreve  Estatística Inferencial  Inferir sobre uma população a partir de uma amostra.  Geralmente uma Amostra Infere, conclui Gestor.SUS@gmail.com Igor Alves
  13. 13. Estatística Vital - 2007 ESTATÍSTICA BÁSICA  Estatística Descritiva  Descrever características de um conjunto de dados.  Geralmente uma População  Muito usada para avaliar conjuntos de dados do nosso dia a dia:  Média de assaltos no mês  O aumento médio do preço da gasolina nos últimos meses  A média da inflação entre os Estados  Pesquisa eleitoral – com mais ou menos x% de diferença (Desvio)  A moda do verão no Rio de janeiro  Estatística Inferencial  Inferir sobre uma população a partir de uma amostra.  Geralmente uma amostra probabilística Gestor.SUS@gmail.com Igor Alves
  14. 14. Estatística Vital - 2007 ESTATÍSTICA BÁSICA  Estatística Descritiva  Descrever características de um conjunto de dados.  Geralmente uma População  Muito usada para avaliar conjuntos de dados do nosso dia a dia:  Média de assaltos no mês  O aumento médio do preço da gasolina nos últimos meses  A média da inflação entre os Estados  Pesquisa eleitoral – com mais ou menos x% de diferença (Desvio)  A moda do verão no Rio de janeiro  Estatística Inferencial  Inferir sobre uma população a partir de uma amostra.  Geralmente uma amostra probabilística Não é o nosso objetivo no momento Gestor.SUS@gmail.com Igor Alves
  15. 15. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Então o nosso objeto de estudo será a Estatística Descritiva Gestor.SUS@gmail.com Igor Alves
  16. 16. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Quando possuímos em nossas mãos uma planilha de dados, esses dados possuem certos números que lhes são característicos e os ajudam a ser identificados. Podemos comparar com números de identificação de uma pessoa, tais como: Número de Identidade, CPF, Título de Eleitor Número da Carteira de Habilitação PIS/PASEP, Etc. ESSES NÚMEROS PODEM AJUDAR A IDENTIFICAR UMA PESSOA EM PARTICULAR Gestor.SUS@gmail.com Igor Alves
  17. 17. Estatística Vital - 2007 ESTATÍSTICA BÁSICA No mundo da estatística também ocorre o mesmo. Uma distribuição de dados precisa de uma identidade para poder ser caracterizada. Para isso lhes daremos alguns valores que em conjunto chamaremos de Valores Descritivos. Quais são os dois grandes grupos de valores descritivos que vc conhece? Gestor.SUS@gmail.com Pensando ... Igor Alves
  18. 18. Estatística Vital - 2007 ESTATÍSTICA BÁSICA  Dois Grandes Grupos de Valores Descritivos:  Medidas de Posição ou Tendência Central  Como o nome sugere, são valores que localizam o centro de uma distribuição de dados. São valores que visam localizar o centro de um conjunto de dados, ou seja um valor representativo em torno do qual os dados tendem a se agrupar com alguma frequência.  Medidas de Dispersão ou de Variabilidade  Como o nome sugere, são valores que mostram como os dados se espalham em torno das medidas centrais. São valores que mostram o quanto os dados estão distribuídos ou afastados em torno das medidas centrais de um agrupamento. Gestor.SUS@gmail.com Igor Alves
  19. 19. Estatística Vital - 2007 ESTATÍSTICA BÁSICA  Estatística Descritiva  Medidas de Posição ou de Tendência Central:  Moda  Mediana  Média  Quartis, Quintis, Decis, Percentis  Medidas de Dispersão ou de Variabilidade:  Amplitude  Variância  Desvio Padrão  Distância Interquartílica  Coeficiente de Variação Gestor.SUS@gmail.com Igor Alves
  20. 20. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Anotem as fórmulas que irão Q3 aparecer. Utilizaremos somente elas Q2 para fazer a maioria dos exercícios Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  21. 21. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  22. 22. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  23. 23. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  24. 24. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  25. 25. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  26. 26. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  27. 27. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  28. 28. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  29. 29. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  30. 30. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  31. 31. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  32. 32. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Explicação Seus problemas acabaram !!!! Preencha a coluna de cada grupo de dados submetido a análise e resolva cerca de 99% dos casos de estatística descritiva. Dados 1 Dados 2 Dados n ∑x² (∑x)²/n n-1 s2 s CV(%) Q3 Q2 Q1 Di Ls Li Oes Oei Gestor.SUS@gmail.com Igor Alves
  33. 33. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Medidas de Tendência Central Gestor.SUS@gmail.com Igor Alves
  34. 34. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 marcas de exames de Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório em 20 Dias Consecutivos de Coleta glicemia foram pré- selecionadas. Para definir Dias Lab 1 Lab 2 Lab 3 qual a marca a ser comprada 1 77,3 80,2 76,6 você resolve submeter os 3 2 82,6 60,7 77,2 3 78,9 77,6 76,7 kits a um exame estatístico. 4 82,4 50 78,1 5 81,6 82,3 77,3 Experimento: Durante um 6 87,3 80,2 76,9 intervalo de 20 dias 7 81,6 82,9 77,2 8 82,3 80 80,1 consecutivos o nível 9 82,3 82,4 77,4 glicêmico do Secretário de 10 83 130 85,3 saúde foi medido no mesmo 11 82,7 82,6 77,9 momento pelos 3 métodos 12 82 81 77,5 13 82,1 82,6 77,2 obtendo uma tabela de 14 82,4 81 86,6 níveis de glicose. Segundo os 15 82,3 83,8 76,9 dados, julgue o melhor 16 78,3 90,7 78,2 método a ser comprado pelo 17 82,9 100 77,1 18 83,1 82 78 município. Justifique sua 19 82 79,4 77,1 resposta. 20 84,2 78,5 77 Fonte: SMS, Montreal Vamos Determinar a Moda? Gestor.SUS@gmail.com Pensando ... Igor Alves
  35. 35. Estatística Vital - 2007 ESTATÍSTICA BÁSICA – MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL  Moda  Moda de uma variável é o valor que apresenta a maior frequência.  Uma dada distribuição pode ser:  Amodal  Unimodal  Bimodal  Trimodal  Etc Gestor.SUS@gmail.com Igor Alves
  36. 36. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório marcas de exames de em 20 Dias Consecutivos de Coleta glicemia foram pré- Dias Lab 1 Lab 2 Lab 3 selecionadas. Para definir 1 77,3 50 76,6 qual a marca a ser comprada 2 78,3 60,7 76,7 você resolve submeter os 3 3 78,9 77,6 76,9 4 81,6 78,5 76,9 kits a um exame estatístico. 5 81,6 79,4 77 1º Passo: Ordene os valores 6 82 80 77,1 dos dados de cada Experimento: Durante um 7 82 80,2 77,1 População de maneira intervalo de 20 dias 8 82,1 80,2 77,2 crescente . 9 82,3 81 77,2 consecutivos o nível 10 82,3 81 77,2 glicêmico do Secretário de 11 82,3 82 77,3 2º Passo: Verifique quais os saúde foi medido no mesmo 12 82,4 82,3 77,4 valores que possuem maior momento pelos 3 métodos 13 82,4 82,4 77,5 frequência e classifique a 14 82,6 82,6 77,9 obtendo uma tabela de 15 82,7 82,6 78 distribuição. Se todos os níveis de glicose. Segundo os 16 82,9 82,9 78,1 valores possuem a mesma dados, julgue o melhor 17 83 83,8 78,2 frequência a distribuição é método a ser comprado pelo 18 83,1 90,7 80,1 AMODAL. município. Justifique sua 19 84,2 100 85,3 20 87,3 130 86,6 resposta. Fonte: SMS, Montreal Vamos Determinar a Moda? Gestor.SUS@gmail.com Igor Alves
  37. 37. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório marcas de exames de em 20 Dias Consecutivos de Coleta glicemia foram pré- Dias Lab 1 Lab 2 Lab 3 selecionadas. Para definir 1 77,3 50 76,6 qual a marca a ser comprada 2 78,3 60,7 76,7 você resolve submeter os 3 3 78,9 77,6 76,9 4 81,6 78,5 76,9 kits a um exame estatístico. 5 81,6 79,4 77 1º Passo: Ordene os valores 6 82 80 77,1 dos dados de cada Experimento: Durante um 7 82 80,2 77,1 População de maneira intervalo de 20 dias 8 82,1 80,2 77,2 crescente . 9 82,3 81 77,2 consecutivos o nível 10 82,3 81 77,2 glicêmico do Secretário de 11 82,3 82 77,3 2º Passo: Verifique quais os saúde foi medido no mesmo 12 82,4 82,3 77,4 valores que possuem maior momento pelos 3 métodos 13 82,4 82,4 77,5 frequência e classifique a 14 82,6 82,6 77,9 obtendo uma tabela de 15 82,7 82,6 78 distribuição. Se todos os níveis de glicose. Segundo os 16 82,9 82,9 78,1 valores possuem a mesma dados, julgue o melhor 17 83 83,8 78,2 frequência a distribuição é método a ser comprado pelo 18 83,1 90,7 80,1 AMODAL. município. Justifique sua 19 84,2 100 85,3 20 87,3 130 86,6 resposta. Fonte: SMS, Montreal Vamos Determinar a Moda? Gestor.SUS@gmail.com Igor Alves
  38. 38. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório marcas de exames de em 20 Dias Consecutivos de Coleta glicemia foram pré- Lab 1: Tetramodal (81,6; 82; 82,3; selecionadas. Para definir Dias Lab 1 Lab 2 Lab 3 1 77,3 50 76,6 82,4). qual a marca a ser comprada 2 78,3 60,7 76,7 você resolve submeter os 3 3 78,9 77,6 76,9 4 81,6 78,5 76,9 Lab 2: Trimodal (80,2; 81; 82,6). kits a um exame estatístico. 5 81,6 79,4 77 6 82 80 77,1 Experimento: Durante um 7 82 80,2 77,1 Lab 3: Trimodal (76,9; 77,1; 77,2). intervalo de 20 dias 8 82,1 80,2 77,2 9 82,3 81 77,2 consecutivos o nível 10 82,3 81 77,2 glicêmico do Secretário de 11 82,3 82 77,3 saúde foi medido no mesmo 12 82,4 82,3 77,4 momento pelos 3 métodos 13 82,4 82,4 77,5 14 82,6 82,6 77,9 obtendo uma tabela de 15 82,7 82,6 78 níveis de glicose. Segundo os 16 82,9 82,9 78,1 dados, julgue o melhor 17 83 83,8 78,2 método a ser comprado pelo 18 83,1 90,7 80,1 19 84,2 100 85,3 município. Justifique sua 20 87,3 130 86,6 resposta. Fonte: SMS, Montreal Vamos Determinar a Moda? Gestor.SUS@gmail.com Igor Alves
  39. 39. Estatística Vital - 2007 ESTATÍSTICA BÁSICA – MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL  Moda - Conclusão  Qual a importância de se conhecer a Moda de uma distribuição de dados?  Dica – São Paulo possui muitas etnias, portanto é bastante heterogênea. Seria de se esperar muitas modas dentro de certo aspecto de análise de um grupo populacional paulista. Ex: tipo de roupa de dormir. Obs: A existência de mais de uma moda SUGERE tratar-se de MAIS de uma POPULAÇÃO. Gestor.SUS@gmail.com Igor Alves
  40. 40. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 marcas de exames de Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório em 20 Dias Consecutivos de Coleta glicemia foram pré- selecionadas. Para definir Dias Lab 1 Lab 2 Lab 3 qual a marca a ser comprada 1 77,3 80,2 76,6 você resolve submeter os 3 2 82,6 60,7 77,2 3 78,9 77,6 76,7 kits a um exame estatístico. 4 82,4 50 78,1 5 81,6 82,3 77,3 Experimento: Durante um 6 87,3 80,2 76,9 intervalo de 20 dias 7 81,6 82,9 77,2 8 82,3 80 80,1 consecutivos o nível 9 82,3 82,4 77,4 glicêmico do Secretário de 10 83 130 85,3 saúde foi medido no mesmo 11 82,7 82,6 77,9 momento pelos 3 métodos 12 82 81 77,5 13 82,1 82,6 77,2 obtendo uma tabela de 14 82,4 81 86,6 níveis de glicose. Segundo os 15 82,3 83,8 76,9 dados, julgue o melhor 16 78,3 90,7 78,2 método a ser comprado pelo 17 82,9 100 77,1 18 83,1 82 78 município. Justifique sua 19 82 79,4 77,1 resposta. 20 84,2 78,5 77 Fonte: SMS, Montreal Vamos Determinar a Mediana? Gestor.SUS@gmail.com Pensando ... Igor Alves
  41. 41. Estatística Vital - 2007 ESTATÍSTICA BÁSICA – MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL  Mediana  Mediana de uma variável é a medida de centro de um conjunto de dados ordenados, que o divide em duas partes iguais, de maneira que 50% das observações possuam valores abaixo da mediana e os outros 50% acima.  Para se calcular uma mediana devemos observar dois valores:  L – Posição  V – Valor Gestor.SUS@gmail.com Igor Alves
  42. 42. Estatística Vital - 2007 ESTATÍSTICA BÁSICA – MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL  Mediana  Mediana de uma variável é a medida de centro de um conjunto de dados ordenados, que o divide em duas partes iguais, de maneira que 50% das observações possuam valores abaixo da mediana e os outros 50% acima.  Para se calcular uma mediana devemos observar dois valores:  L – Posição  V – Valor Gestor.SUS@gmail.com Igor Alves
  43. 43. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório marcas de exames de em 20 Dias Consecutivos de Coleta glicemia foram pré- Dias Lab 1 Lab 2 Lab 3 selecionadas. Para definir 1 77,3 50 76,6 qual a marca a ser comprada 2 78,3 60,7 76,7 você resolve submeter os 3 3 78,9 77,6 76,9 4 81,6 78,5 76,9 kits a um exame estatístico. 5 81,6 79,4 77 1º Passo: Ordene os valores 6 82 80 77,1 dos dados de cada Experimento: Durante um 7 82 80,2 77,1 população de maneira intervalo de 20 dias 8 82,1 80,2 77,2 crescente . 9 82,3 81 77,2 consecutivos o nível 10 82,3 81 77,2 glicêmico do Secretário de 11 82,3 82 77,3 2º Passo: Calcular o valor de saúde foi medido no mesmo 12 82,4 82,3 77,4 L e V para o conjunto de momento pelos 3 métodos 13 82,4 82,4 77,5 dados de cada laboratório. 14 82,6 82,6 77,9 obtendo uma tabela de 15 82,7 82,6 78 níveis de glicose. Segundo os 16 82,9 82,9 78,1 dados, julgue o melhor 17 83 83,8 78,2 método a ser comprado pelo 18 83,1 90,7 80,1 19 84,2 100 85,3 município. Justifique sua 20 87,3 130 86,6 resposta. Fonte: SMS, Montreal Vamos Determinar a Mediana? Gestor.SUS@gmail.com Igor Alves
  44. 44. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório Lab 1: marcas de exames de em 20 Dias Consecutivos de Coleta glicemia foram pré- Dias Lab 1 Lab 2 Lab 3 selecionadas. Para definir 1 77,3 50 76,6 qual a marca a ser comprada 2 78,3 60,7 76,7 você resolve submeter os 3 3 78,9 77,6 76,9 4 81,6 78,5 76,9 kits a um exame estatístico. 5 81,6 79,4 77 6 82 80 77,1 Experimento: Durante um 7 82 80,2 77,1 Lab 2: intervalo de 20 dias 8 82,1 80,2 77,2 9 82,3 81 77,2 consecutivos o nível 10 82,3 81 77,2 glicêmico do Secretário de 11 82,3 82 77,3 saúde foi medido no mesmo 12 82,4 82,3 77,4 momento pelos 3 métodos 13 82,4 82,4 77,5 14 82,6 82,6 77,9 obtendo uma tabela de 15 82,7 82,6 78 níveis de glicose. Segundo os 16 82,9 82,9 78,1 dados, julgue o melhor 17 83 83,8 78,2 Lab 3: método a ser comprado pelo 18 83,1 90,7 80,1 19 84,2 100 85,3 município. Justifique sua 20 87,3 130 86,6 resposta. Fonte: SMS, Montreal Vamos Determinar a Mediana? Gestor.SUS@gmail.com Igor Alves
  45. 45. Estatística Vital - 2007 ESTATÍSTICA BÁSICA – MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL  Mediana - Conclusão  Qual a importância de se conhecer a Mediana de uma distribuição de dados?  A mediana nos informa que 50% dos dados estão abaixo do seu valor e os outros 50% estão acima.  A Mediana equivale ao segundo quartil - Q2 Obs: A Mediana é de importância fundamental para a construção de Boxplots. Gestor.SUS@gmail.com Igor Alves
  46. 46. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 marcas de exames de Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório em 20 Dias Consecutivos de Coleta glicemia foram pré- selecionadas. Para definir Dias Lab 1 Lab 2 Lab 3 qual a marca a ser comprada 1 77,3 80,2 76,6 você resolve submeter os 3 2 82,6 60,7 77,2 3 78,9 77,6 76,7 kits a um exame estatístico. 4 82,4 50 78,1 5 81,6 82,3 77,3 Experimento: Durante um 6 87,3 80,2 76,9 intervalo de 20 dias 7 81,6 82,9 77,2 8 82,3 80 80,1 consecutivos o nível 9 82,3 82,4 77,4 glicêmico do Secretário de 10 83 130 85,3 saúde foi medido no mesmo 11 82,7 82,6 77,9 momento pelos 3 métodos 12 82 81 77,5 13 82,1 82,6 77,2 obtendo uma tabela de 14 82,4 81 86,6 níveis de glicose. Segundo os 15 82,3 83,8 76,9 dados, julgue o melhor 16 78,3 90,7 78,2 método a ser comprado pelo 17 82,9 100 77,1 18 83,1 82 78 município. Justifique sua 19 82 79,4 77,1 resposta. 20 84,2 78,5 77 Fonte: SMS, Montreal Vamos Determinar a Média? Gestor.SUS@gmail.com Pensando ... Igor Alves
  47. 47. Estatística Vital - 2007 ESTATÍSTICA BÁSICA – MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL  Média  A Média tem um significado intuitivo. Ela corresponde a um valor representativo de todas as medidas efetuadas. Seu valor é igual a soma de todos os valores de uma distribuição dividido pelo número de valores.  Diferentemente dos outros valores de tendência central a média é influenciada por valores extremos.  Tipos de Média:  Aritmética  Geométrica  Ponderada  Harmônica Gestor.SUS@gmail.com Igor Alves
  48. 48. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório marcas de exames de em 20 Dias Consecutivos de Coleta glicemia foram pré- Dias Lab 1 Lab 2 Lab 3 selecionadas. Para definir 1 77,3 50 76,6 qual a marca a ser comprada 2 78,3 60,7 76,7 você resolve submeter os 3 3 78,9 77,6 76,9 4 81,6 78,5 76,9 kits a um exame estatístico. 5 81,6 79,4 77 1º Passo: Utilize a fórmula 6 82 80 77,1 da média aritmética em Experimento: Durante um 7 82 80,2 77,1 cada conjunto de dados. intervalo de 20 dias 8 82,1 80,2 77,2 9 82,3 81 77,2 consecutivos o nível 10 82,3 81 77,2 glicêmico do Secretário de 11 82,3 82 77,3 saúde foi medido no mesmo 12 82,4 82,3 77,4 momento pelos 3 métodos 13 82,4 82,4 77,5 14 82,6 82,6 77,9 obtendo uma tabela de 15 82,7 82,6 78 níveis de glicose. Segundo os 16 82,9 82,9 78,1 dados, julgue o melhor 17 83 83,8 78,2 método a ser comprado pelo 18 83,1 90,7 80,1 19 84,2 100 85,3 município. Justifique sua 20 87,3 130 86,6 resposta. Fonte: SMS, Montreal Vamos Determinar a Média? Gestor.SUS@gmail.com Igor Alves
  49. 49. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório Lab 1: marcas de exames de em 20 Dias Consecutivos de Coleta glicemia foram pré- Dias Lab 1 Lab 2 Lab 3 selecionadas. Para definir 1 77,3 50 76,6 qual a marca a ser comprada 2 78,3 60,7 76,7 você resolve submeter os 3 3 78,9 77,6 76,9 4 81,6 78,5 76,9 kits a um exame estatístico. 5 81,6 79,4 77 6 82 80 77,1 Experimento: Durante um 7 82 80,2 77,1 Lab 2: intervalo de 20 dias 8 82,1 80,2 77,2 9 82,3 81 77,2 consecutivos o nível 10 82,3 81 77,2 glicêmico do Secretário de 11 82,3 82 77,3 saúde foi medido no mesmo 12 82,4 82,3 77,4 momento pelos 3 métodos 13 82,4 82,4 77,5 14 82,6 82,6 77,9 obtendo uma tabela de 15 82,7 82,6 78 níveis de glicose. Segundo os 16 82,9 82,9 78,1 dados, julgue o melhor 17 83 83,8 78,2 Lab 3: método a ser comprado pelo 18 83,1 90,7 80,1 19 84,2 100 85,3 município. Justifique sua 20 87,3 130 86,6 resposta. Fonte: SMS, Montreal Vamos Determinar a Média? Gestor.SUS@gmail.com Igor Alves
  50. 50. Estatística Vital - 2007 ESTATÍSTICA BÁSICA – MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL  Média - Conclusão  Qual a importância de se conhecer a Média de uma distribuição de dados?  A média nos informa um valor mais representativo do conjunto da distribuição pois, para o seu cálculo, leva em consideração a somatória de todos os valores. Obs: A Média é de fundamental importância para a determinação dos valores de dispersão e variabilidade. Gestor.SUS@gmail.com Igor Alves
  51. 51. Estatística Vital - 2007 ESTATÍSTICA BÁSICA Medidas de Posição Gestor.SUS@gmail.com Igor Alves
  52. 52. Estatística Vital - 2007 Situação: Você é o Secretário EXERCÍCIO DE SALA - 01 de saúde do município de Montreal e durante um processo de licitação 3 marcas de exames de Nível de Glicose de 1 Paciente Segundo 3 Tipos de Laboratório em 20 Dias Consecutivos de Coleta glicemia foram pré- selecionadas. Para definir Dias Lab 1 Lab 2 Lab 3 qual a marca a ser comprada 1 77,3 80,2 76,6 você resolve submeter os 3 2 82,6 60,7 77,2 3 78,9 77,6 76,7 kits a um exame estatístico. 4 82,4 50 78,1 5 81,6 82,3 77,3 Experimento: Durante um 6 87,3 80,2 76,9 intervalo de 20 dias 7 81,6 82,9 77,2 8 82,3 80 80,1 consecutivos o nível 9 82,3 82,4 77,4 glicêmico do Secretário de 10 83 130 85,3 saúde foi medido no mesmo 11 82,7 82,6 77,9 momento pelos 3 métodos 12 82 81 77,5 13 82,1 82,6 77,2 obtendo uma tabela de 14 82,4 81 86,6 níveis de glicose. Segundo os 15 82,3 83,8 76,9 dados, julgue o melhor 16 78,3 90,7 78,2 método a ser comprado pelo 17 82,9 100 77,1 18 83,1 82 78 município. Justifique sua 19 82 79,4 77,1 resposta. 20 84,2 78,5 77 Fonte: SMS, Montreal Vamos Determinar os Quartis? Gestor.SUS@gmail.com Pensando ... Igor Alves
  53. 53. Estatística Vital - 2007 ESTATÍSTICA BÁSICA – MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL  Quartis, Quintis, Decis, Centis  Quartis – São medidas de posição que dividem o conjunto dos dados ordenados de forma crescente em quatro subgrupos de iguais tamanhos.  São os mais usados na bioestatística e epidemiologia  Forma 4 grupos em (0% - 25%); (25% - 50%); (50% - 75%); (75% - 100%)  Quintis – São medidas de posição que divide o conjunto dos dados em cinco subgrupos de iguais tamanhos.  Decis – São medidas de posição que divide o conjunto dos dados em dez subgrupos de iguais tamanhos.  Percentis – São medidas de posição que divide o conjunto dos dados em cem subgrupos de iguais tamanhos.  Muito usados em pediatria  Forma cem grupos de 1% em 1%, (0% - 100%)  Nesse momento o que nos interessa são os Quartis Gestor.SUS@gmail.com Igor Alves
  54. 54. Estatística Vital - 2007 ESTATÍSTICA BÁSICA – MEDIDAS DE POSIÇÃO OU TENDÊNCIA CENTRAL  Quartis  Os quartis são conhecidos como:  Q1 - Representando o valor de 25%, ou primeiro quartil.  Q2 - Representando o valor de 50%, ou segundo quartil.  NOTE que o segundo quartil, Q2 é a MEDIANA pois divide o conjunto de dados nos 50% abaixo do valor e 50% acima.  Q3 - Representando o valor de 75%, ou terceiro quartil.  Nos interessa saber qual o valor dos quartis pois as suas posições já são conhecidas.  Para determinar o valor dos quartis utilizaremos as fórmulas: Gestor.SUS@gmail.com Igor Alves

×