O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

HiPIMS: technology, physics and thin film applications.

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio

Confira estes a seguir

1 de 41 Anúncio

HiPIMS: technology, physics and thin film applications.

Baixar para ler offline

Invited lecture of the Simposium N "Surface Engineering - functional coatings and modified surfaces" at the XIII SBPMat (Brazilian MRS) meeting, in João Pessoa (Brazil). The lecture took place on September 29th, 2014.
The speaker was Tiberiu Minea, Professor at Université Paris-Sud (France), President of the French Federation of Scientific Societies and President of the Scientific and Technical Committee at the French Vacuum Society.

Invited lecture of the Simposium N "Surface Engineering - functional coatings and modified surfaces" at the XIII SBPMat (Brazilian MRS) meeting, in João Pessoa (Brazil). The lecture took place on September 29th, 2014.
The speaker was Tiberiu Minea, Professor at Université Paris-Sud (France), President of the French Federation of Scientific Societies and President of the Scientific and Technical Committee at the French Vacuum Society.

Anúncio
Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Quem viu também gostou (20)

Anúncio

Semelhante a HiPIMS: technology, physics and thin film applications. (20)

Mais de Instituto Nacional de Engenharia de Superfícies (20)

Anúncio

Mais recentes (20)

HiPIMS: technology, physics and thin film applications.

  1. 1. HiPIMS: technology, physics and thin film applications Tiberiu MINEA Laboratoire de Physique des Gaz et Plasmas – LPGP UMR 8578 CNRS, Université Paris-Sud, 91405 Orsay Cedex, France tiberiu.minea@u-psud.fr
  2. 2. PARIS SACLAY PALAISEAU Triangle of Physics ORSAY Université Paris-Sud T. Minea 2 PSE 2012 // September 12, 2012 Université Paris-Saclay ORSAY
  3. 3. Diffusion and residence time: example The residence time were determined by placing individual monomers on different sites (islands/terrace). By repeating the experiments 600 times it was found that τs is much larger at step edges (stronger bonding) R. Ganapathy et al., Science 327, 445 (2010) T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014 3
  4. 4. Kinetic roughening The ideal step flow (layer-by-layer) growth is seldom found in experiments, instead we often encounter islands leading to surface roughening. H. Huang et al., J. Appl. Phys. 84, 3636 (1998) Simulation of Al deposited on a flat foreign substrate for two different microstructures: (top) {111}, (bottom) {100}. An area of 20x20 nm is shown (dep. rate 10 μm/min) Kinetic roughening in an MBE experiment Pt/Pt(111). Very slow dep. rate 2.7 Å/min at 167°C. An area of 390x390 nm is shown. J. Krug et al., Phys. Rev B 61, 14037 (2000) XIII Brazilian T. Minea MRS - Symposium N / 29 September 2014 4
  5. 5. Microstructure: structure zone models In order to be able to say if we have good film quality or not we need to look at the microstructure and use our understanding of film formation. A schematic representation of the microstructure can be found using structure zone models (SZM), where the use of reduced temp. scale makes the model generally applicable for different materials. Zone I: Columnar and porous structure with a rough surface, due to low adatom mobility Zone T: Columnar, quite dense structure with a smoother surface, increased adatom mobility: competitive grain growth (but little grain boundary mobility) Zone II: Columnar, dense structure with a rather smooth surface; both adatom and grain boundary mobility (recrystallization) Ts =300 K Ts =100 K F.H. Baumann et al., MRS Bulletin 26, 182 (2001) I. Petrov et al., J. Vac. Sci. Technol. A 21, S117 (2003) XIII Brazilian T. Minea MRS - Symposium N / 29 September 2014 5
  6. 6. Low surface mobility Ts = 500 °C P = 38 mTorr Ji/JTi = 0.5 Ei = 100 eV Ts = 300 °C P = 5 mTorr Ji/JTi = ~1 Ei = 20 eV 6 Zone 1: Zone T: XIII Brazilian T. Minea MRS - Symposium N / 29 September 2014
  7. 7. Results of ion bombardment Let us start with the end results first in order to see the bigger picture. Stepwise we will break down the physics and learn how to tailor and optimize the ion bombardment. Ts = 350 °C P = 20 mTorr Ji/JTa = 1.3 Ei = 20 eV Ts = 350 °C P = 20 mTorr Ji/JTa = 10.7 Ei = 20 eV Ex) TaN grown by DCMS in a UHV system. The ratio of incoming ions (no distinction between gas and metal ions!) to incoming metal neutrals was changed while maintaining the energy of the incoming ions. In these bright-field plan-view TEM images of 500 nm thick coatings we observe dramatic changes in microstructure. XIII Brazilian T. Minea MRS - Symposium N / 29 September 2014 7
  8. 8. Precursor ionization, is it possible? XIII Brazilian MRS - Symposium N / 29 September 2014 8 1.Electrostatic confinement; e.g. hallow cathode 2.Magnetic confinement; e.g. magnetic bottle 3.Magnetron plasma T. Minea YES, if precursors are ionized BEFORE deposition! How? Increasing plasma density! Inspired by A. Anders, 2013
  9. 9. Outline XIII Brazilian MRS - Symposium N / 29 September 2014 9 1.HiPIMS technology 2.HiPIMS magnetron plasma modelling (OHIPIC, I-OMEGA) 3.Thin Films by HiPIMS 4.Conclusions T. Minea
  10. 10. XIII Brazilian MRS - Symposium N / 29 September 2014 From Conventional Magnetron to HiPIMS Film growth Particle transport D.J. Christie, J V S T A 23, 330 (2005) D Lundin et al., P S S T 18, 045008 (2009) Ionization of sputtered spieces Gas dynamics 10 T. Minea Sputtering +
  11. 11. V. Kouznetsov , U. S. Patent No. 6,296, 742 B 1 (2001)  Pulsed power supply: 0.1 – 1 kHz, 200 A, 1 kV  Pulse width: ~100 s  Pulse power: 50 kW  Typical mean power: 500 W HiPIMS power supply HiPIMS First Pulsed generator concept DC - CMS 11 XIII Brazilian MRS - Symposium N / 29 September 2014 SINEX 3 power supply by PlasmAdvance T. Minea HiPIMS = High Voltage & High Current! High Power Impulse Magnetron Sputtering
  12. 12. HiPIMS pulses in reactive gas mixture XIII Brazilian MRS - Symposium N / 29 September 2014 12 Current waveforms for long pulses Ar/O2 mixture, 0.5 Pa Pulse width 200 μs (a) 50 Hz (b) 5 sccm M. Hála et al., J. Phys. D: Appl. Phys (2012) (b) T. Minea
  13. 13. Self-sputtering  high current, but… limited deposition rate! Very long pulses (> 300 μs) T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014 13 A. Anders et al., J. Appl. Phys. 103 (2008) Argon
  14. 14. T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014 14 Back-attraction & self-sputtering Strong Ez → Steep potential hill for M+ A. Mishra et al., Plasma Sources Sci. Technol. 19, 045014 (2010) M + Ez
  15. 15. How couple the HiPIMS power? XIII Brazilian MRS - Symposium N / 29 September 2014 15 T. Minea DC – overshot of the voltage at the beginning, called breakdown voltage (Vbk > Vdisch) RF – impedance matching system HiPIMS: Pulsed, keeping high voltage and high current Pre-ionization before pulse Why pre-ionization? Plasma gas conductivity is already established, i.e. no impedance jump Fast current rise  possibility to operate with narrow pulses
  16. 16. Pulse time [μs] Ganciu et al, US Patent No. 7, 927, 466 B2 (19 April 2011) Fast HiPIMS with pre-ionization  Average Power 80 W  Pulse width ~10 μs  Frequency < 1kHz  Umax ~ 1kV  Imax ~ 100 A 16 SHORT & FAST Pulsed generator concept [2]; developed 2004 XIII Brazilian MRS - Symposium N / 29 September 2014 T. Minea
  17. 17. Effect of reactive gases XIII Brazilian MRS - Symposium N / 29 September 2014 17 Current waveforms for short pulses D. Benzeggouta et al., P S S T (2009) T. Minea 5 Pa 0.5Pa Ar/O2 mixture; HiPIMS with pre-ionization; 10 μs, 50 Hz
  18. 18. HiPIMS advantages and drawbacks advantages drawbacks •Back-attraction to the target of ionized sputtered species •Lower deposition rate with respect to DC, at equivalent average power •Start and operation at very low pressure are difficult issues (p < 0.2 Pa) High plasma density => high ionization degree of the sputtered material Fast rise-up of both high voltage and high current 10 Aμs-1 Operation at low pressure (p > 0.4 Pa) High sputtering yield, despite the low duty-cycle, « time on » / « time off » 18 T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014
  19. 19. 19 Other types of pulses Modulated Pulse Power (MPP) P.M. Barker et al., JVST A31 (2013) t J. Lin et al., Surf. Coat. Technol. 203,(2009) O. Antonin et al., J Phys. D: Appl. Phys (submitted) chopped HiPIMS (c-HiPIMS) multi HiPIMS (m-HiPIMS) T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014
  20. 20. 20 c-HiPIMS versus m-HiPIMS choped-HiPIMS P.M. Barker et al., JVST A31 (2013) Single pulse 1x50 μs Single pulse 1x250 μs Multi-pulse 5x50 μs O. Antonin et al., J Phys. D: Appl. Phys (submitted) multi-HiPIMS T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014 푰풑풖풍풔풆(ퟓퟎμ풔) ퟓ 풊=ퟏ >푰풔풊풏품풍풆 (ퟓ×ퟓퟎμ풔)
  21. 21. m-HiPIMS specificities COST Action MP-0804, HIPP Processes, O.Antonin, V.Tiron, C.Costin, G.Popa, T.Minea, 2013 21 T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014 t -1kV -200V TOFF Afterglow ion diffusion Pulse ON Dense Plasma Periodic Sequence characterized by the triplet (tμon , tμoff , n) pulse width, time off number of pulses between pulses in the sequence P.M. Barker et al., JVST A31 (2013) O. Antonin et al., J Phys. D: Appl. Phys (submitted)
  22. 22. Dual magnetron HiPIMS/RF Challenges •Clean room operation •Very low pressure operation (< 0.1 Pa, UHV) •No perturbation of the RF system •Homogeneous thin film •Uniform on 4” Si substrate 22 T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014 N. Holtzer et al., Surf. Coat. & Technol. 250 (2014) 32
  23. 23. Dual HiPIMS/RF advantage T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014 23 N. Holtzer et al., Surf. Coat. & Technol. 250 (2014) 32 Pressure effect, without RF RF effect at 0.1 Pa HiPIMS is always taking advantage of gas (pre-)ionization, here induced by the RF Dual HiPIMS/RF deposition process can operate at lower pressures than HiPIMS alone (e.g. 0.05 Pa) HiPIMS/RF successful operation in reactive atmosphere (Ar/N2) RF assisted HiPIMS requires lower or even no pre-ionization
  24. 24. Outline XIII Brazilian MRS - Symposium N / 29 September 2014 24 1.HiPIMS technology 2.HiPIMS magnetron plasma modelling (OHIPIC, I-OMEGA) 3.Thin Films by HiPIMS 4.Conclusions T. Minea
  25. 25. Magnetron target - 2D configuration Tiberiu MINEA, Adrien REVEL, Claudiu COSTIN Geometry (x, z) Simulation volume: 2 x 2.5 cm2 Grids: 201 x 512 ÷ 401 x 2048 Cell dimensions: Dx, Dz = 10 m !!! 8 million simulation particles Control parameters Time step: Dt = 5 x 10-12 s ÷ 5 x 10-13 s Simulated real time: 15 μs !!! 25 XIII Brazilian MRS - Symposium N / 29 September 2014 Debye length ne > 1013 cm-3 > 1019 m-3 le  10 μm (Te = 4eV) T. Minea
  26. 26. HiPIMS current XIII Brazilian MRS - Symposium N / 29 September 2014 26 0 2 4 6 8 10 Pulse time [μs] OHIPIC: Orsay HIgh density plasma Particle-In-Cell model Experiment using fast pre-ionization HiPIMS OHIPIC model simulated discharge current 0 1 2 3 4 5 6 Pulse time [μs] 0 -300 - 600 Voltage (V) Current T. Minea et al, Surf. Coat. Tech. 255, (2014) 52 T. Minea
  27. 27. T. Minea et al, Surf. Coat. Tech. (2014), Available online 5 December 2013 2D maps of charged particles by OHIPIC XIII Brazilian MRS - Symposium N / 29 September 2014 27 20 15 10 5 0 5 10 15 20 0 5 10 15 20 25 e- density (cm-3 ) 1.0E6 1.7E10 3.4E10 5.1E10 6.8E10 8.5E10 x (mm) z (mm) Ar+ density (cm-3 ) 20 15 10 5 0 5 10 15 20 0 5 10 15 20 25 Ar+ density (cm-3 ) e- density (cm-3 ) 1.0E6 1.6E11 3.3E11 4.9E11 6.6E11 8.2E11 x (mm) z (mm) 20 15 10 5 0 5 10 15 20 0 5 10 15 20 25 Ar+ density (cm-3 ) 1.0E6 9.4E11 1.9E12 2.8E12 3.8E12 4.7E12 e- density (cm-3 ) x (mm) z (mm) A (75 ns); ne = 8 x 1016 m-3 B (2 μs); ne = 8 x 1017 m-3 C (3 μs); ne = 5 x 1018 m-3  Electron density increases x 100 in 3 μs !!!  Much localized high density  Larger dense plasma=> larger race-track T. Minea
  28. 28. a posteriori Monte Carlo - code OMEGA 1.Define a domain (sputter chamber) 2.Generate sputtered particles one by one randomly from a probability distribution (SED + SAD) 3.DCMS: Particle collision with process gas 4.Analyze the particle’s velocity, direction, … OMEGA summary  3D treatment of elastic collisions  Ti/Ar DCMS discharge  No Ti-Ti collisions  No gas rarefaction 3D Metal modelling OMEGA: Orsay MEtal transport in GAses model XIII Brazilian MRS - Symposium N / 29 September 2014 28 T. Minea
  29. 29. T. Minea et al, Surf. Coat. Tech. 255, (2014) 52 0 1 2 3 4 5 6 -600 -400 -200 0 C (3.0 s) B (2.0 s) Cathode voltage (V) t (s) A (75 ns) Short pulse Pre-ionization A (75 ns) B (2 μs) C (3 μs) Degree of Metal Ionization in HiPIMS XIII Brazilian MRS - Symposium N / 29 September 2014 29  HiPIMS self-consistent simulated by OHIPIC code  Density maps for the three representative instants of the pulse  a posteriori MC very useful and powerful  Fast estimation of the ionization fraction of sputtered vapour and metal ion back-attraction I-OMEGA for HiPIMS T. Minea
  30. 30. Outline XIII Brazilian MRS - Symposium N / 29 September 2014 30 1.HiPIMS technology 2.HiPIMS magnetron plasma modelling (OHIPIC, I-OMEGA) 3.Thin Films by HiPIMS 4.Conclusions T. Minea
  31. 31. HiPIMS thin film deposition @ LPGP 31 - Ti/TiN; Ta/TaN Ta3N5 T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014 straddles H2 and O2 evolution potential Maeda et al., J. Phys. Chem. C 111, 2007. Archer, J. Appl. Electrochem. 5, 1975.  Energy storage applications
  32. 32. Ta-N films for photoelectrolysis 32 Early saturation at Ta3N5 at low N2 partial pressure in Ar N Ta O Rutherford BackScattering (Coulombic collisions) Nuclear Reaction Analysis RBS / NRA T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014 by HiPIMS
  33. 33. HiPIMS Ta-N films for photoelectrolysis Film density Low pressure samples Transition from ρTa, ρTaN to ρTa3N5 Dense film High pressure samples constant density below ρTa3N5 Porous film 33 200 nm Porous, columnar ~ 13 nm 200 nm Dense, homogeneous M.Rudolph and al, EMRS 2014; M.Rudolph and al., IAP 2014 T. Minea XIII Brazilian MRS - Symposium N / 29 September 2014
  34. 34. Atomic shadowing Conventional magnetron experiment using Cu target, where: (left) Ar is used as sputtering gas, i.e. low ratio of metal ions compared to neutrals, resulting in atomic shadowing and bad wall coverage. (right) Cu is sputtering Cu (self- sputtering) meaning a much higher ratio of Cu ions. Here better wall coverage is achieved and one needs less material to completely cover the trench with a Cu coating. Cu neutrals Cu ions Z. J. Radzimski, J. Vac. Sci. Technol. B 16, 1102 (1998) XIII Brazilian MRS - Symposium N / 29 September 2014 34 T. Minea Microelectronics applications
  35. 35. Metal tranches filling by HiPIMS Conventional magnetron HiPIMS © LPGP XIII Brazilian MRS - Symposium N / 29 September 2014 35 HiPIMS is really efficient !!! T. Minea
  36. 36. Ultravacuum Co-sputtering reactor 36 Si/Nb Dual HiPIMS/RF XIII Brazilian MRS - Symposium N / 29 September 2014 T. Minea Bolometer matrixes •High sensitivity calorimeters •Superconducting transition edge sensors coupled to calorimeter amorphous
  37. 37. Superconducting transition of Si/Nb 37 by Dual HiPIMS/RF XIII Brazilian MRS - Symposium N / 29 September 2014 T. Minea Bolometer matrixes • NbSi thin films alloy perform excellent transition edge at 3 mK with Tc and Resistance adjustable with temperature. • Promising alternative to both e-beam evaporation and MS-PVD for large area bolometers applications in astrophysics. N. Holtzer et al., Surf. Coat. & Technol. 250 (2014) 32
  38. 38. Conclusions  HiPIMS is an emerging technology with very high applicative potential: - particle and film nano-structuring - better control of the energy deposited during the growth - better stability and stoichiometry control, etc. Diagnostic and modelling give today a better understanding of the HiPIMS physics, space and time evolution of plasmas species and energy carried to the growing film Compatible with Clean Room requirements and already successful 38 XIII Brazilian MRS - Symposium N / 29 September 2014 T. Minea
  39. 39.  Claudiu COSTIN  Catalin VITELARU  Vasile TIRON Contributors France Romania  Lise CAILLAULT  Marie-Christine HUGON  Brigitte BOUCHER  Jean BRETAGNE  Daniel LUNDIN  Adrien REVEL  Martin RUDOLF  Olivier ANTONIN  Nils BRENING  Daniel LUNDIN 39 XIII Brazilian MRS - Symposium N / 29 September 2014 Sweden Thanks you all for your attention! T. Minea
  40. 40. XIII Brazilian MRS - Symposium N / 29 September 2014 40 T. Minea December 9-11 2015 Paris, France 4th MIATEC – Magnetron, Ion processing & Arc Technologies European Conference 14th RSD - International Conference on Reactive Sputter Deposition DC - CMS Scientific joint event in Paris at the CNAM Conservatoire National des Arts et Métiers since 1794 Social event: Visit of the « Arts and Science Museum »
  41. 41. Many THANKS to XIII Brazilian MRS - Symposium N / 29 September 2014 41 Interuniversity Attraction Poles (IAP) Phase VII - P7/34 T. Minea

×