This overview discusses the predictive analytical technique known as Gradient Boosting Regression, an analytical technique that explore the relationship between two or more variables (X, and Y). Its analytical output identifies important factors ( Xi ) impacting the dependent variable (y) and the nature of the relationship between each of these factors and the dependent variable. Gradient Boosting Regression is limited to predicting numeric output so the dependent variable has to be numeric in nature. The minimum sample size is 20 cases per independent variable. The Gradient Boosting Regression technique is useful in many applications, e.g., targeted sales strategies by using appropriate predictors to ensure accuracy of marketing campaigns and clarify relationships among factors such as seasonality, product pricing and product promotions, or for an agriculture business attempting to ascertain the effects of temperature, rainfall and humidity on crop production. Gradient Boosting Regression is just one of the numerous predictive analytical techniques and algorithms included in the Assisted Predictive Modeling module of the Smarten augmented analytics solution. This solution is designed to serve business users with sophisticated tools that are easy to use and require no data science or technical skills. Smarten is a representative vendor in multiple Gartner reports including the Gartner Modern BI and Analytics Platform report and the Gartner Magic Quadrant for Business Intelligence and Analytics Platforms Report.