Anúncio
uyj.pdf
uyj.pdf
uyj.pdf
uyj.pdf
Anúncio
uyj.pdf
uyj.pdf
uyj.pdf
uyj.pdf
uyj.pdf
Anúncio
uyj.pdf
uyj.pdf
uyj.pdf
uyj.pdf
uyj.pdf
Anúncio
uyj.pdf
uyj.pdf
uyj.pdf
uyj.pdf
uyj.pdf
Anúncio
uyj.pdf
uyj.pdf
uyj.pdf
uyj.pdf
uyj.pdf
Anúncio
uyj.pdf
uyj.pdf
uyj.pdf
Próximos SlideShares
FLCD.pdfFLCD.pdf
Carregando em ... 3
1 de 27
Anúncio

Mais conteúdo relacionado

Anúncio

uyj.pdf

  1. Question bank on function limit continuity & derivability There are 105 questions in this question bank. Select the correct alternative : (Only one is correct) Q.13 If both f(x) & g(x) are differentiable functions at x = x0, then the function defined as, h(x)=Maximum{f(x),g(x)}: (A) is always differentiable at x = x0 (B) is never differentiable at x = x0 (C*) is differentiable at x = x0 provided f(x0)  g(x0) (D) cannot be differentiable at x = x0 if f(x0) = g(x0) . [Hint: Consider the graph of h(x) = max(x, x2) at x = 0 and x = 1] Q.25 If 0 x Lim  (x3 sin 3x + ax2 + b) exists and is equal to zero then : (A*) a =  3 & b = 9/2 (B) a = 3 & b = 9/2 (C) a =  3 & b = 9/2 (D) a = 3 & b = 9/2 [Sol. b x a x x 3 sin Lim 2 3 0 x    = 0 x Lim  3 3 x bx ax x 3 sin   = 0 x Lim  2 2 x bx a x 3 x 3 sin 3   for existence of limit 3 + a = 0  a = – 3  l = 0 x Lim  3 3 x bx x 3 x 3 sin   = b t t t sin . 27 3   = 0 (3x = t) = b 6 27   = 0  b = 2 9 ] [ OR use L' Hospital's rule ] Q.36 A function f(x) is defined as f(x) = x x m N if x m x sin , 1 0 0 0       . Theleast value of m forwhich f(x)is continuous at x =0 is (A) 1 (B) 2 (C*) 3 (D) none [Sol. f ' (0+) = h x 1 sin h Lim m 0 h must exist  m > 1 for m > 1 h ' (x) =    0 x if 0 0 x x 1 cos x x 1 sin x m 2 m 1 m      now h 1 cos h h 1 sin h m Lim ) x ( h Lim 2 m 1 m 0 h 0 h       limit existif m>2  m  N  m = 3]
  2. Q.410 For x > 0, let h(x) =        integers prime relatively are 0 q & p where irrational is x if 0 x if q p q 1 then which onedoes not hold good? (A*) h(x)isdiscontinuous for all xin (0,) (B)h(x)iscontinuous for eachirrationalin (0, ) (C)h(x)isdiscontinuous for each rationalin (0, ) (D) h(x) is not derivable for all x in (0, ). [Sol. Let x = 2 3 which is rational  3 1 3 2 h        Lim h t t  F H G I K J  0 2 3 0 discontinuous at x Q Let x = 2   Q h 2 d i = 0 consider 2 = 1.41401235839 h 2 d i = h 1414023583 1010 . F H G I K J= 1 1010  0 Hencehiscontinuous forallirrational  A A ] Q.512 The value of n e 1 x e 1 x x x 3 2 Limit x n x n                (where N n ) is (A) ln       3 2 (B*) 0 (C) n ln       3 2 (D)not defined [Hint: l = n e x e x x x 3 2 Limit x n x n    but 0 e x Limit x n x     l = 0 ] Q.613 For a certain value of c,   x Lim [(x5 + 7x4 + 2)C - x] is finite & non zero. The value of c and the value ofthelimitis (A*) 1/5, 7/5 (B) 0, 1 (C) 1, 7/5 (D) none [Sol.    x Lim                  x x 2 x 7 1 x c 5 c 5 =    x Lim                   1 x 2 x 7 1 x x c 5 1 c 5 This will beof theform  ×0onlyif 5c – 1 = 0  c = 1/ 5 substituting c = 1/5 , l becomes Hence l =    x Lim     1 X 1 x 5 / 1   where 5 x 2 x 7 X   =    x Lim          1 ..... 5 X 1 x =    x Lim 5 1 . x 2 x 7 x 5        = 5 7 Hence c = 5 1 and l = 5 7 ]
  3. Q.714 Considerthepiecewisedefinedfunction f (x) =      4 x if 4 x 4 x 0 if 0 0 x if x       choose theanswerwhichbest describes thecontinuityofthis function (A)The functionis unbounded and thereforecannot be continuous. (B)The functionis right continuous atx =0 (C) Thefunction has a removablediscontinuityat 0 and4, but is continuous on the rest ofthe real line. (D*)Thefunctionis continuous ontheentirereal line [Hint: Refer tothe graph ] Q.817 If ,  arethe roots of thequadraticequation ax2 +bx+ c= 0 then   x Lim   1 2 2     cos ( ) ax bx c x  equals (A) 0 (B) 1 2 ()2 (C*) a2 2 ()2 (D)  a2 2 ()2 [Sol. Lim ax bx c ax bx c ax bx c x x     F H G I K J    0 2 2 2 2 2 2 2 2 2 2 4 sin ( ) c h c h c h  ; Lim a x b a x c a x b a x c a x x x   F H G I K J   F H G I K J      2 4 2 2 2 ( ) ( ) Lim a x x x x        2 2 2 2 2 ( ) ( ) ( ) ; Lim a C x      2 2 2 ( ) ] Q.918 Which one ofthe followingbest representsthe graph ofthefunctionf(x)=   nx tan 2 Lim 1 n     (A*) (B) (C) (D) Q.1019 1 x Lim    4 1 3 1 3 1 2 1 2 3 1 4 3 1 x x x x x x x x                          . = (A) 1 3 (B*) 3 (C) 1 2 (D) none
  4. Q.1124 ABCis anisoscelestriangleinscribedinacircleofradiusr.IfAB=AC &histhealtitudefromAtoBC and Pbe the perimeter ofABC then 0 h Lim  3 P  equals (where  is the area of the triangle) (A) r 32 1 (B) r 64 1 (C*) r 128 1 (D) none [Sol. AB = 2 2 h rh 2 h     = rh 2 P = rh 2 2 + 2 h rh 2 2  P =         2 h rh 2 rh 2 2  = 2 h . h rh 2 2 2    = 2 h rh 2 h  3 0 h p Limit    = 3 2 2 0 h h rh 2 rh 2 8 h rh 2 h Limit           =  3 2 / 3 2 / 3 0 h h r 2 r 2 h 8 h r 2 h Limit     = r 128 1 ) r 2 ( ) r 2 ( 8 . 8 r 2 2 / 1   (C) ] Alternative: Note that as h  0 , b = 2 a or 2b = a Hence 3 p  = 3 ) b 2 a ( . R 4 ) b ( ab  (using R =  4 abc ) = 3 3 b 64 R 4 b 2 = R 128 1  (C) ] Q.1232 Let the function f, g and h be defined as follows : f (x) =    0 x for 0 0 x and 1 x 1 for x 1 sin x            g (x) =    0 x for 0 0 x and 1 x 1 for x 1 sin x2            h (x) = | x |3 for – 1  x  1 Which ofthesefunctions aredifferentiableatx =0? (A) f and g only (B) f and h only (C*) g and h only (D) none Q.1333 If [x] denotes the greatest integer  x, then Limit n   1 4 n         1 2 3 3 3 x x n x    ...... equals (A) x/2 (B) x/3 (C) x/6 (D*) x/4
  5. Q.1436 Let f (x) = ) x ( ) x ( h g , where g and h are cotinuous functions on the open interval (a, b). Which of the followingstatements is true for a < x < b? (A) f is continuous at all x for which x is not zero. (B) f is continuous at all x for which g (x) = 0 (C) f is continuous at all x for which g (x) is not equal to zero. (D*) f is continuous at all x for which h (x) is not equal to zero. [Hint: Bytheorem,ifgandharecontinuous functions ontheopen interval (a,b),then g/h is alsocontinuous at all x in the open interval (a, b) where h(x) is not equal to zero. ] Q.1539 The period of thefunction f (x) = | x cos x sin | | x cos | | x sin |   is (A) /2 (B) /4 (C*)  (D) 2 Q.1645 If f(x) = 2 x x x 2 cos e x   , x  0 is continuous at x = 0, then (A) f (0) = 2 5 (B) [f(0)] = – 2 (C) {f(0)} = –0.5 (D*) [f(0)] . {f(0)} = –1.5 where [x] and{x} denotes greatest integerand fractional part function [Hint: 2 x 0 x x ) x 2 cos 1 ( 1 e x Lim      = – 2 1 – 2 = – 2 5 ; hence for continuity f (0) = – 2 5  [f (x)] = – 3 ; {f (0)} =        2 5 = 2 1 ; hence [f (0)] {f (0)} = – 2 3 = – 1.5 ] Q.1746 The valueof thelimit           2 n 2 n 1 1 is (A) 1 (B) 4 1 (C) 3 1 (D*) 2 1 [Hint:             2 n 2 2 n 1 n =                     2 n 2 n n 1 n n 1 n = n · ) 1 n ......( 4 · 3 · 2 ) 1 n ........( 3 · 2 · 1   = 2 1 n · n 1  = 2 n 1 1 Lim n    = 2 1 ] Q.1847 The function g (x) =    0 x , x cos 0 x , b x    can be made differentiable at x = 0. (A) if b is equal to zero (B) if b is not equal to zero (C) if b takes anyreal value (D*) for no value of b
  6. [Hint: g' (0+) = h 1 cosh Lim 0 h   = 0 g ' (0–) = h 1 b h Lim 0 h      for existence of line b = 1 thus g ' (0–) = 1 Hence gcan not be madedifferentiable for anyvalueof b.] Q.1949 Let f be differentiable at x = 0 and f ' (0) = 1. Then h ) h 2 ( ) h ( Lim 0 h    f f = (A*) 3 (B) 2 (C) 1 (D) – 1 [Hint: reduces to 3 f ' (0) ] Q.2050 If f (x) = sin–1(sinx) ; R x then f is (A)continuousanddifferentiableforallx (B*) continuous for all x but not differentiable for all x = (2k + 1) 2  , I k (C) neither continuous nor differentiable for x = (2k – 1) 2  ; I k (D)neithercontinuousnordifferentiablefor ] 1 , 1 [ R x    [Hint:     2 3 k 2 x 2 k 2 for x ) 1 k 2 ( 2 k 2 x 2 k 2 for k 2 x                      ] Q.2153           ) x 3 sin x sin 3 ( 4 1 cos x sin Limit 1 2 x where [ ] denotes greatest integer function , is (A*)  2 (B) 1 (C)  4 (D) doesnot exist [Hint: ] x [sin cos x sin Limit 3 1 2 x    ax x  /2 , [sin3x]  0 and sinx  1  l =  2  (A) ] Q.2260 If 0 x Lim  x ) x 3 ( n ) x 3 ( n    l l = k , the value of k is (A*) 3 2 (B) – 3 1 (C) – 3 2 (D) 0
  7. [Sol. 0 x Limit  x ) x 3 ( n ) x 3 ( n    l l = 0 x Limit  x 3 x 1 n 3 n 3 x 1 n 3 n                  l l l l = 0 x Limit  x / 1 x / 1 3 x 1 n 3 x 1 n                l l =         3 x x 1 3 x . x 1 = 3 2 3 1 3 1    (A) ] Q.2364 The function f (x) = 1 x 1 x Lim n 2 n 2 n     isidentical withthefunction (A) g (x) = sgn(x – 1) (B) h (x) = sgn (tan–1x) (C*) u (x) = sgn( | x | – 1) (D) v (x) = sgn (cot–1x) [Hint: f (x) =      1 | x | if 1 1 or 1 x if 0 1 x 1 if 1        and g (x) = sgn(|x| – 1) is same ] Q.2469 The functions defined by f(x) = max {x2, (x  1)2, 2x (1  x)}, 0  x  1 (A) isdifferentiableforallx (B) is differentiableforall x excetp at one point (C*) is differentiable for all x except at two points (D) is not differentiable at morethan two points. Q.2573 f (x) = nx x l and g (x) = x nx l . Then identifythe CORRECT statement (A*) ) x ( g 1 andf (x) areidentical functions (B) ) x ( f 1 and g(x)are identical functions (C) f (x) . g (x) = 1 0 x   (D) 1 ) x ( g . ) x ( f 1  0 x   [Hint: (A) nx x ) x ( f ; x / nx 1 ) x ( g 1 l l   x > 0 , x  1 for both (B) x nx ) x ( g ; nx / x 1 ) x ( f 1 l l    ) x ( f 1 is not defined at x =1 but g (1) = 0 (C) f (x) . g (x) = x nx . nx x l l = 1 if x > 0 , x  1  N. I. (D) 1 x nx . nx x 1 ) x ( g . ) x ( f 1   l l only for x > 0 and x  1 ] Q.2674 If f(3) = 6 & f(3) = 2, then Limit x  3 x f f x x ( ) ( ) 3 3 3   is given by : (A) 6 (B) 4 (C*) 0 (D) none of these
  8. [Sol. f (3) = 6 ; f  (3)= 2 Limit x  3 x f f x x ( ) ( ) 3 3 3   , put x = 3 + h = h ) h 3 ( f 3 ) 3 ( f · ) h 3 ( Limit 0 h     = ) 3 ( f h ] ) 3 ( f ) h 3 ( f [ 3 Limit 0 h      = – 3f  (3) + f (3) = – 6 + 6 = 0 Ans ] Q.2776 Which oneof the followingfunctionsis continuous everywhere inits domain but has atleast onepoint whereitisnotdifferentiable? (A*) f (x) = x1/3 (B) f (x) = x | x | (C) f (x) = e–x (D) f (x) = tan x [Hint: x1/3 is not differentiable at x = 0] Q.2886 The limitingvalue of thefunction f(x) = x 2 sin 1 ) x sin x (cos 2 2 3    when x  4  is (A) 2 (B) 1 2 (C) 3 2 (D*) 3 2 [Hint: put x = 4  + h or use L'Hospital's rule ] Q.2989 Let f (x) =                  2 x if 2 x 3 x 4 x 2 x if 2 2 6 2 2 2 x 1 x x 3 x then (A) f (2) = 8  f is continuous at x = 2 (B) f (2) = 16 f is continuous at x = 2 (C*) f (2–)  f (2+)  f is discontinuous (D) f has a removable discontinuityat x = 2 [Hint: f (2+) = 8 ; f (2–) = 16 ] Q.3090 On the interval I = [2, 2], the function f(x) =   ( ) ( ) ( ) | | x e x x x x           1 0 0 0 1 1 then which oneof the followingdoesnot holdgood? (A*) is continuous for all values of x I (B) is continuous for x  I  (0) (C) assumes all intermediate values from f(2) & f(2) (D) has amaximum value equal to 3/e. [Sol. f (x) =           0 x if 0 0 x if 1 x 0 x if e ) 1 x ( x / 2 the graph off (x) is hence f can assume all values for f (– 2) to f (2) ]
  9. Q.3193 Whichofthefollowingfunctionissurjectivebutnotinjective (A) f : R  R f (x) = x4 + 2x3 – x2 + 1 (B) f : R  R f (x) = x3 + x + 1 (C) f : R  R+ f (x) = 2 x 1 (D*) f : R  R f (x) = x3 + 2x2 – x + 1 [Sol. (A) f (x) = x4 + 2x3 – x2 + 1 Apolynomial of degree even will always be into say f (x) = a0x2n + a1 x2n–1 + a2 x2n – 2 + .... + a2n    x Limit f (x) =    x Limit [x2n             n 2 n 2 2 2 1 0 x a .... x a x a a =         0 a if 0 a if 0 0 Hence it will never approach  / –  (B) f (x) = x3 + x + 1  f (x) = 3x2 + 1 – injective as well as surjective (C) f (x) = 2 x 1 – neitherinjectivenor surjective f (x) = x3 + 2x2 – x + 1  f (x) =3x2 + 4x – 1  D > 0 Hencef(x) is surjectivebutnot injective.] Q.3294 Consider the function f (x) =       3 x 2 if x 6 2 x if 1 2 x 1 if ] x [ x       where [x] denotes step up functionthen at x =2 function (A)has missingpointremovablediscontinuity (B*)hasisolatedpointremovablediscontinuity (C)has nonremovablediscontinuityfinitetype (D)iscontinuous [Hint: fromthefigurethefunctionhasanobvious removableisolatedpointdiscontinuous. Q.3395 Suppose that f is continuous on [a, b] and that f (x) is an integer for each x in [a, b]. Then in [a, b] (A) f is injective (B) Range of f mayhavemanyelements (C) {x} is zero for all x  [a, b] where { } denotes fractional part function (D*) f(x) is constant [Hint: Explanation : Let f (x1) = n and f (x2) = m, x1, x2  (a, b) with n > m (say). According to the intermediate value theorem, between x1 and x2 there must be some value x for which f (x) = m + 2 1 which is impossiblesince m + 2 1 is not aninteger.] Q.34101 Thegraphof function f contains the point P (1, 2) andQ(s, r). Theequation ofthe secant line through P and Q is y =            1 s 3 s 2 s2 x – 1 – s. The value of f ' (1), is (A) 2 (B) 3 (C*) 4 (D)non existent
  10. [Sol. I Bydefinition f '(1) is the limit of the slope of the secant line when s  1. Thus f '(1) = 1 s 3 s 2 s Lim 2 1 s     = 1 s ) 3 s )( 1 s ( Lim 1 s     = ) 3 s ( Lim 1 s   = 4  (D) II Bysubstitutingx = s intothe equation of thesecant line, and cancellingbys – 1 again, we get y = s2 + 2s – 1. This is f (s), and its derivative is f '(s) = 2s + 2, so f ' (1) = 4.] Q.35108 The range of the function f(x) = 12 x 11 x 2 ) 10 x 7 x ( 5 x n e 2 2 ) 2 x ( x 2      l is (A*) ) , (   (B) ) , 0 [  (C)        , 2 3 (D)       4 , 2 3 [Sol. f (x) = ) 4 x ( ) 3 x 2 ( ) 5 x ( ) 2 x ( . 5 nx e ) 2 x ( x 2      l Note that at x = 3/2 & x = 4function is not defined andin open interval (3/2,4)function is continuous.            ) ve ( ) ve ( ) ve ( ) ve ( ) ve ( Lim 2 3 x           ) ve ( ) ve ( ) ve ( ) ve ( ) ve ( Lim 4 x In the openinterval (3/2,4) the function iscontinuous & takes up all real values from (– ,) Hence range of the function is (– , ) or R] Q.36113 Consider f(x) =     2 2 3 3 3 3 sin sin sin sin sin sin sin sin x x x x x x x x               , x   2 for x  (0, ) f(/2) = 3 where [ ] denotes the greatest integer function then, (A*) f is continuous &differentiable at x = /2 (B) f is continuous but not differentiable at x = /2 (C) f is neither continuous nor differentiable at x = /2 (D) none of these [Sol. In the immediate neighborhood of x = /2 , sinx > sin3x  |sinx – sin3x|= sinx – sin3x Hence for x  /2 , f (x) =             x sin x sin ) x sin x (sin 2 x sin x sin ) x sin x (sin 2 3 3 3 3 = 3 x sin x sin x sin 3 x sin 3 3 3    Hence f is continuous and diff. at x = /2 ] Q.37114 The number of points at which the function, f(x) = x – 0.5 + x – 1 + tan x does not have a derivativeintheinterval (0,2) is : (A) 1 (B) 2 (C*) 3 (D) 4
  11. Q.38117 Let [x] denote the integral part of x  R. g(x) = x  [x]. Let f(x) be any continuous function with f(0) =f(1) then the function h(x) =f(g(x)) : (A) hasfinitelymanydiscontinuities (B) is discontinuous at some x = c (C*) is continuous on R (D) is a constant function . [Sol. g(x) = x – [x] = {x} fis continuouswithf(0)=f(1) h(x) = f (g(x)) = f ({x}) Let the graphof f is as shownin the figure satisfying f(0) = f(1) now h(0) = f ({0}) = f(0) = f(1) h(0.2) = f ({0.2}) = f(0.2) h(1.5) = f ({1.5}) = f(0.5) etc. Hence the graphof h(x) will be periodicgraph as shown  h is continuous in R  C ] Q.39118 Given the function f(x) = 2x x3 1  + 5 x 1 4  x + 7x2 x  1 + 3x + 2 then : (A) thefunction is continuous but not differentiable at x = 1 (B*) thefunction is discontinuous at x = 1 (C) the function is both cont. & differentiable at x = 1 (D) the range of f(x) is R+. Q.40119 If f (x + y) = f (x) + f (y) + | x | y + xy2,  x, y  R and f ' (0) = 0, then (A) f need not be differentiable at everynon zero x (B*) f is differentiablefor all x R (C) f is twice differentiable at x = 0 (D) none [Hint: f '(x) = h xh h | x | ) h ( Lim h ) x ( ) h x ( Lim 2 0 h 0 h        f f f  f (0) = 0  f ' (x) =           xh | x | h ) 0 ( ) h ( Lim 0 h f f f ' (x) = f ' (0) + | x | = | x | ] Q.41131 For } x 10 { } 10 x sin{ Lim 8 x    (where { } denotes fractional part function) (A)LHLexist but RHLdoes not exist (B*) RHLexist but LHLdoes not exist. (C) neitherLHLnor RHLdoes not exist (D) both RHLand LHLexist and equals to 1
  12. [Hint: } x { } x sin{ Lim 8 x    = 0 as {I + x } = {x} ; as 0 } x { Lim I x    and 1 } x { Lim I x     } x { } x sin{ Lim 8 x      as sin{x}  sin(1) and {–x}  0 ] Q.42134   n Lim 3 3 3 3 2 2 2 2 n ...... 3 2 1 1 . n ..... ) 2 n ( 3 ) 1 n ( 2 n 1           is equal to : (A*) 1 3 (B) 2 3 (C) 1 2 (D) 1 6 [Sol. Lim n n n n n n n n          1 2 1 3 2 1 2 2 2 2 3 ( ) ( ) ............ ( ( )) Nr. = n n n n ( ....... ) ( . . . .......... ( ) ) 1 2 12 2 3 34 1 2 2 2 2 2 2 2          = n n r r r n 2 2 2 1      ( ). = n n r r r n 2 3 2 1      ( ) = n n n n 2 3 2      = ( ) n n n     1 2 3          Lim n n n n n ( ) 1 2 3 3 Lim n n n n n n n n n       ( ) ( )( ) ( ) ( ) 1 1 2 1 6 1 1 1 4 3 1 1 3    A Alternatively:l =              1 n ...... 3 2 1 1 · n ...... ) 1 n ( 2 n 1 3 2 3 3 2 2 2         – 1 =        3 2 2 2 n ) 1 n ( n ...... ) 1 n ( 2 ) 1 n ( 1 – 1 l =    3 2 n n ) 1 n ( – 1 ] Q.43135 The domain of definition of the function f (x) = | 6 x x | log 2 x 1 x          + 16–xC2x–1 + 20–3xP2x–5 is (A*) {2} (B) } 3 , 2 { , 4 3         (C) {2, 3} (D)         , 4 1 Where [x] denotesgreatest integerfunction. Q.44136 If f (x) = 10 x 7 x 25 bx x 2 2     for x  5 and f is continuous at x = 5, then f (5) has the value equal to (A*) 0 (B) 5 (C) 10 (D) 25
  13. [Hint: f (x) = ) 5 x )( 2 x ( 25 bx x2     . for existence of limit 25 – 5b + 25 = 0  b = 10 now f (x) = ) 5 x )( 2 x ( ) 5 x )( 5 x (     and ) x ( f Lim 5 x = 0  (A) ] Q.45139 Let f beadifferentiablefunctionontheopen interval(a,b). Whichof thefollowing statementsmustbe true? I. f is continuous on the closedinterval [a, b] II. f is bounded on the open interval (a, b) III. If a<a1<b1<b, and f (a1)<0< f (b1), then there is a number c such that a1<c< b1 and f (c)=0 (A) I and II only (B) I and III only (C) II and III only (D*) onlyIII [Sol. I and IIare false. The function f (x) = 1/x, 0 < x <1, is a counter example. Statement IIIis true.Applythe intermediate valuetheorem to f on the closed interval [a1, b1] ] Q.46145 The value of     a log a sec x log x cot x x 1 a a 1 x Limit      (a > 1) is equal to (A*) 1 (B) 0 (C) /2 (D) does not exist [Hint:                   x log a sec x x log cot Limit a x 1 a a 1 x ; 0 x x log as a a x          and           x log a a x (using L’opital rule)  l = 2 / 2 /   = 1 ] Q.47148 Let f : (1, 2 )  R satisfies the inequality 2 x | 8 x 4 | x ) x ( f 2 33 ) 4 x 2 cos( 2       , ) 2 , 1 ( x   . Then ) x ( f Lim 2 x   is equal to (A) 16 (B*) –16 (C)cannotbedeterminedfromthegiven information (D) doesnot exists [Hint: ) x ( f Lim 2 x   16 2 33 ) 4 x 2 cos(     ; ) x ( f Lim 2 x   16 ) 4 ( 4 2 x | 2 x | 4 . x2       Bysandwich theorem ) x ( f Lim 2 x   = –16 ]
  14. Q.48163 Let a = min [x2 + 2x + 3, x  R] and b = x x 0 x e e x cos x sin Lim    . Then the value of    n 0 r r n r b a is (A) n 1 n 2 · 3 1 2   (B) n 1 n 2 · 3 1 2   (C) n n 2 · 3 1 2  (D*) n 1 n 2 · 3 1 4   [Sol. a = (x + 1)2 + 2  a = 2 b = x 2 x 2 ). 1 e ( 2 x 2 sin Lim x 2 0 x   = 2 1 now    n 0 r r n r b a =         r n r 2 1 2 =   n 0 4 r 2 n 2 2 1 = n 2 1 [1 + 22 + 24 + ... + 22n ] = n 2 1          1 2 1 ) 2 ( 2 1 n 2 = n 2 1         3 1 4 1 n = n 1 n 2 . 3 1 4   ] Q.49165 Period of f(x) = nx + n  [nx + n], (n  N where [ ] denotes the greatest integer function is : (A) 1 (B*) 1/n (C) n (D) none of these Q.50171 Let f beareal valued functiondefined by f(x)=sin1 1 3        x +cos1 x        3 5 .Then domain of f(x) isgivenby: (A*) [ 4, 4] (B) [0, 4] (C) [ 3, 3] (D) [ 5, 5] Q.51172 For the functionf (x) = ) x ( sin n 1 1 Lim 2 n     , which of thefollowing holds? (A) The range of f is a singleton set (B)f iscontinuous on R (C*) f is discontinuous for all x I (D) f is discontinuous for some x R [Hint: f (x) =    I x if 0 I x if 1    fis discontinuous for all x I ] Q.52174 Domain of the function f(x) = x cot n 1 1  l is (A) (cot1 ,  ) (B) R – {cot1} (C) (– ,0) (0,cot1) (D*) (– , cot1) [Sol. ln (cot–1x) > 0 cot–1x > 1 x < cot 1  domain (– , cot1) Ans. ]
  15. Q.53175 The function          Q x , 5 x 2 x Q x , 1 x 2 ) x ( f 2 is (A)continuousnowhere (B)differentiablenowhere (C)continuousbut not differentiableexactlyatonepoint (D*)differentiableandcontinuous onlyatonepointand discontinuouselsewhere [Hint: Diff. & cont. onlyat x = 2 which is the point of intersection of y= 2x + 1 and y= x2–2x +5 ] [Sol. y = (x – 1)2 + 4 = x2 – 2x + 5 = 2x + 1 = x2 – 4x + 4 = 0 = (x – 2)2 = 0  x = 2  line is tangent at x = 2 ] Q.54180 For the function f (x) = ) 2 x ( 1 2 x 1   , x  2 which of the following holds? (A) f (2) = 1/2 and f is continuous at x =2 (B) f (2)  0, 1/2 and f is continuous at x = 2 (C*) f can not be continuous at x = 2 (D) f (2) = 0 and f is continuous at x = 2. Q.55184 ) x tan(sin 1 ) x cos(sin x Lim 1 1 2 1 x      is (A) 2 1 (B*) – 2 1 (C) 2 (D) – 2 [Hint: put sin–1x =          tan 1 cos sin Lim 4 =      cos Lim 4 = – 2 1 ] Q.56186 Which oneof the followingis not bounded on theintervals as indicated (A) f(x) = 1 x 1 2  on (0, 1) (B*) g(x) = x cos 1 x on (–) (C) h(x) = xe–x on (0, ) (D) l (x) = arc tan2x on (–, ) [Sol. (A)  0 x Limit f (x) = 2 1 2 Limit 1 h 1 0 h    ;  1 x Limit f (x) = 0 2 Limit h 1 0 h            2 1 , 0 ) x ( f  bounded (C) 0 h Limit  x e–x = 0 h Limit  h e –h = 0 ;   x Limit x e–x =   x Limit 0 e x x   Also x e x y  y = x 2 x x e xe e  e x (1 – x)         e 1 , 0 ) x ( h ]
  16. Q.57190 The domainof thefunction f(x)=   arc x x x cot 2 2  , where [x] denotesthe greatest integernotgreater than x,is: (A) R (B) R  {0} (C*) R        n n I : { } 0 (D) R  {n : n  I} Hint: x2 – [x2] = {x2} > 0; but 0  {y} < 1  {x2}  0  x  ± n ] Q.58192 If f(x) = cos x, x =n  , n = 0, 1, 2, 3, ..... = 3, otherwise and (x) = x when x x when x when x 2 1 3 0 3 0 5 3           , then Limit x  0 f((x)) = (A) 1 (B*) 3 (C) 5 (D) none Q.59195 Let 0 x Lim  sec–1 x x sin       = l and 0 x Lim  sec–1 x x tan       = m, then (A*) l exists but m does not (B) m exists but l does not (C) l and m both exist (D) neitherl norm exists Q.60200 Range of the function f (x) = 2 2 x 1 1 ) e x ( n 1          l is , where [*] denotes the greatest integer function and e =      / 1 0 ) 1 ( Limit (A)        e 1 e , 0 {2} (B) (0, 1) (C) (0, 1]  {2} (D*) (0, 1)  {2} [Sol.        ) e x ( n 1 2 l –      0 x 1 0 x 0         0 x x 1 1 0 x 2 ) x ( f 2 Hence range of f (x) is (0, 1)  {2}] Q.61201 ] x [tan sin Lim 1 0 x    = l then { l } is equal to (A) 0 (B) 2 1   (C) 1 2   (D*) 2 2   where [ ] and { } denotes greatest integer andfractional part function. [Hint: 2 ] x [tan sin Lim 1 0 x       ; hence         2 =          2 2 2 = 2 – 2  Ans.]
  17. Q.62206 Number of points where the function f (x) = (x2 – 1) | x2 – x – 2 | + sin( | x | ) is not differentiable, is (A) 0 (B) 1 (C*) 2 (D) 3 [Hint: not derivable at x = 0 and 2 ] Q.63219                           x 1 1 x 1 x 1 x 2 sec x 1 x cot Limit is equal to (A*) 1 (B) 0 (C) /2 (D)nonexistent [Hint: x 1 x Limit x     = 0  cot–1(0) = /2             x x 1 x 1 x 2 Limit  sec–1 () = /2  l = 1 Ans ] Q.64223 If f (x) =       0 0 2 x x if b ax x x if x derivable R x  then the values of a and b are respectively (A*) 2x0 , – 2 0 x (B) – x0 , 2 2 0 x (C) – 2x0 , – 2 0 x (D) 2 2 0 x , – x0 Q.65231 Let f(x) = 1 2 1 1 2 1 2 2 1 4 2 1 2 1 2                  cos sin , , ,   x x x p x x x x . If f(x) is discontinuous at x = 1 2 , then (A*) p  R  {4} (B) p  R  1 4       (C) p  R0 (D) p  R [Hint: f 1 2          = 4 = f 1 2          ] Q.66235 Let f(x) beadifferentiable functionwhichsatisfies theequation f(xy) = f(x) + f(y) for all x > 0, y> 0 then f (x) is equal to (A*) f x '( ) 1 (B) 1 x (C) f (1) (D)f (1).(lnx) [Sol. f (x) = Limit h f x h f x h    0 ( ) ( ) = Limit h f x h x f x h                0 1 . ( ) =   Limit h f x f h x f x h           0 1 ( ) = Limit h f h x x h x         0 1 =   1 0 1 1 x Limit t f t f t    ( ) (note that f(1) = 0) = f x '( ) 1 Ans. ]
  18. Q.67240 Given f(x) = b ([x]2 + [x]) + 1 for x  1 = Sin ((x+a) ) for x < 1 where [x] denotes the integral part of x, then for what values of a, b the function is continuous at x = 1? (A*) a = 2n + (3/2) ; b  R ; n  I (B) a = 4n + 2 ; b  R ; n  I (C) a = 4n + (3/2) ; b  R+ ; n  I (D) a = 4n + 1 ; b  R+ ; n  I [Hint: f (–1) = b (1 – 1) + 1 = 1 ) h 1 ( Lim 0 h    = 1   a ) h 1 ( Lim ) h 1 ( Lim 0 h 0 h           forcontinuous sin a = – 1 = sin          2 3 n 2  a = 2 3 n 2     a = 2 3 n 2  hence a = 2 3 n 2  , n  I and b  R] Q.68247 Let f(x) = ) e x ( n ) e x ( n x 2 4 x 2   l l . If Limit x   f(x) = l and Limit x    f(x) = m then : (A*) l = m (B) l = 2m (C) 2 l = m (D) l + m = 0 [Sol.   x Lim       n x e n x e x x 2 4 2   =   x Lim                   x 2 4 x 2 x 2 x e x 1 e n e x 1 e n l l =   x Lim                     x 2 4 x 2 e x 1 n x 2 e x 1 n x l l = x / 1 x 2 4 x / 1 x 2 e x 1 n 2 e x 1 n 1                     l l note that   x as 0 e x x 2  and   x as 0 e x x 2 2  =   x Lim                       1 e x 1 x 1 2 1 e x 1 x 1 1 x 2 4 x 2 =   x Lim x 2 3 x e x 2 e x 1   |||ly 2 1 Limit x     ] Q.69248   n Lim cos         n n2 when n is an integer : (A) is equal to 1 (B) is equal to  1 (C*) is equal to zero (D) does not exist [Hint:  n 1 1 1 2        n / = n  1 1 2 1 2 1 2 1 1 2 1 2                 n n ! ...... =  n n                 1 2 1 2 1 2 1 1 2 1 ! ...... as n  ;  2 . 2 1 1 2 1 1 2 1 n n                 ! ....... = (2n + 1)  2
  19. Alternatively (1): Take A = (2n +1) 2  and B = 2                .... n 1 ! 2 1 1 2 1 now cos (A + B) = cosA cosB – sinA sinB = 0 – (1)   n Limit sin                  ... n 1 ! 2 1 1 2 1 2 = 0 ] Alternatively (2) Best l =              n n n cos Limit 2 n                    n n n cos Limit 2 n                 n n n ) n ( cos Limit 2 n =                  n 1 1 n n n cos Limit n =                  n 1 1 1 cos Limit n = cos 2   0 ] Q.70250 0 x Limit  x sin 3 ) x (sin ) x .(tan 7 x ) x 2 cos 1 ( ) x tan x (sin 5 6 1 7 1 5 4 2         is equal to (A) 0 (B) 7 1 (C*) 3 1 (D) 1 [Hint: DivideNr. andDr. byx5 andevaluate limit] Q.71264 Range of the function , f (x) = cot1   log / ( ) 4 5 2 5 8 4 x x   is : (A) (0 , ) (B*)   4 ,       (C) 0 4 ,        (D) 0 2 ,        Q.72266 Let Limit x  0 [ ] x x 2 2 = l & Limit x  0 [ ] x x 2 2 = m , where [ ] denotes greatest integer , then: (A) l exists but m does not (B*) m exists but l does not (C) l & m both exist (D) neither l nor m exists . [Hint: [ ] x x 2 2 = 0 0 1 1 1 0 2 if x x if x           l does not exist . [ ] x x 2 2 = 0 0 1 0 1 0 if x if x          m exists and is equal to zero. ] Q.73268 The value of Limit x  0       tan { } sin { } { } { } x x x x   1 1 where {x} denotes the fractional part function: (A) is 1 (B) is tan 1 (C) is sin 1 (D*) is non existent [Sol. Limit x  0       tan { } sin { } { } { } x x x x   1 1 =  0 x Limit f (x) = ) 1 h ( h sinh . ) 1 h tan( Limit 0 h     = 1 tan 1 ) 1 tan(    1 1 sin ) 1 h 1 ( ) h 1 ( ) h 1 sin( ) 1 ) h 1 tan(( Limit 0 x          = sin 1 Hence limit x  0 f (x) does not exist ]
  20. Q.74270 If f(x) = n x e x x2 2        tan is continuous at x = 0 , then f (0) must be equal to : (A) 0 (B) 1 (C) e2 (D*) 2 [Hint: f (0) = Limit x  0 n x e x x2 2        = Limit x  0 l n e x x x 2 1 2        = Limit x  0 1 x e x x2 2 1         = Limit x  0 ex x 2 1 2           = 2 ] Q.75272   x Lim x sin e ) x 2 sin x 2 ( x 2 sin x 2 2    is : (A) equal to zero (B) equal to 1 (C) equal to 1 (D*)non existent [Sol. Limit x   x sin e x x 2 sin 2 x x 2 sin 2 x 2          as x  l = Limit x   x sin e . 2 2 = oscillatory between e 1 to 1 e 1   non existent ] Q.76275 The value of   x ec bx ax 0 2 lim cos cos is (A) e b a          8 2 2 (B) e a b          8 2 2 (C*) e a b          2 2 2 (D) e b a          2 2 2 [Sol. l = ) 1 ax (cos bx 2 ec cos 0 x Limit e   now – bx sin ax cos 1 Limit 2 0 x   = – ax cos 1 1 . bx sin ax sin Limit 2 2 0 x   = – 2 2 b 2 a l = 2 b 2 2 a e  ] Select the correct alternative : (More than one are correct) Q.77503 c x Lim  f(x) does not exist when : (A) f(x) = [[x]]  [2x 1], c = 3 (B*) f(x) = [x]  x, c = 1 (C*) f(x) = {x}2  {x}2, c = 0 (D) f(x) = tan (sgn ) sgn x x , c = 0 . where[x] denotes step up function& {x} fractional part function.
  21. Q.78505 Let f(x) = tan { } [ ] { } cot { } 2 2 2 1 0 0 0 x x x x x for x for x for x            where [x] is the step up function and {x} is the fractional part function of x , then : (A*) Limit x   0 f(x) = 1 (B) Limit x   0 f (x) = 1 (C*) cot -1 Limit f x x         0 2 ( ) = 1 (D) f is continuous at x = 1 . Q.79506 If f(x) =   x n x n x x x . (cos )   1 2 0 0 0         then : (A*) f is continuous at x = 0 (B)fiscontinuous atx=0 but notdifferentiableatx=0 (C*) f is differentiable at x = 0 (D) f is not continuous at x = 0. Q.80508 Whichofthefollowingfunction(s)is/areTranscidental? (A*) f (x) = 5 sin x (B*) f (x) = 2 3 2 1 2 sin x x x   (C) f (x) = x x 2 2 1   (D*) f (x) = (x2 + 3).2x [Hint: functions whicharenotalgebraicareknownastranscidental function] Q.81513 Which ofthefollowingfunction(s) is/areperiodic? (A*) f(x) = x  [x] (B) g(x) = sin (1/x) , x  0 & g(0) = 0 (C) h(x) = x cosx (D*) w(x) = sin1 (sinx) Q.82515 Which offollowingpairs offunctionsareidentical : (A) f(x) = e n x  sec1 & g(x) = sec1 x (B*) f(x) = tan(tan1 x) & g(x) = cot(cot1 x) (C*) f(x) = sgn(x)& g(x) = sgn(sgn(x)) (D*) f(x) = cot2 x.cos2 x & g(x)= cot2 x  cos2 x Q.83516 Whichofthefollowingfunctionsarehomogeneous ? (A) x siny+ ysinx (B*) x ey/x + y ex/y (C*) x2  xy (D) arc sin xy Q.84521 If  is small & positivenumber then which of the following is/are correct ? (A) sin  = 1 (B)  < sin < tan (C*) sin <  < tan (D*) tan  > sin  Q.85522 Let f(x) = x x x x . cos 2 1   & g(x) = 2x sin n x 2 2       then : (A) Limit x  0 f(x) = ln 2 (B) Limit x   g(x) = ln 4 (C*) Limit x  0 f(x) = ln 4 (D*) Limit x   g(x) = ln 2
  22. Q.86524 Let f(x) = x x x    1 2 7 5 2 . Then : (A*) Limit x  1 f(x) =  1 3 (B*) Limit x  0 f(x) =  1 5 (C*) Limit x   f(x) = 0 (D*) Limit x  5 2 / does not exist Q.87527 Whichofthefollowinglimitsvanish? (A*) Limit x   x 1 4 sin 1 x (B*) Limit x  /2 (1  sinx) . tanx (C) Limit x   2 3 5 2 2 x x x    . sgn(x) (D*) Limit x   3 [ ] x x 2 2 9 9   where [ ] denotes greatest integer function Q.88528 If x is a real number in [0, 1] then the value of Limit m   Limit n   [1 + cos2m (n!  x)] is given by (A) 1 or 2 according as x is rational or irrational (B*) 2 or 1 according as x is rational or irrational (C) 1 for all x (D*) 2 for all x . [Sol.     n m Limit Limit 1 + cos2m(n ! n) Let ] 1 , 0 [ x is a rational then n!. x if n  becomes integral  cos2 (n ! x)  = 1    m Limit ( cos2 n ! x  )m = 1  l = 1 + 1 = 2 ifxisrational if x is irrational , then n ! x is not an integer  cos2( n! x)  is less than 1 cos2 ( ( n! x)  )m  0  l = 1 + 0 = 1  the result ] Q.89529 If f(x) is a polynomialfunction satisfyingthe condition f(x) . f(1/x) = f(x) + f(1/x)and f(2) = 9 then : (A) 2 f(4) = 3 f(6) (B*) 14 f(1) = f(3) (C*) 9 f(3) = 2 f(5) (D) f(10) = f(11) [Hint: f (x) = 1 + xn or 1  xn  n = 3  f(x) = x3 + 1 ] Q.90531 Which ofthe followingfunction(s) not defined at x = 0 has/have removablediscontinuityat x =0 ? (A) f(x) = 1 1 2  cotx (B*) f(x) = cos       x | x sin | (C*) f(x) = x sin  x (D*) f(x) = 1 n x Q.91535 The function f(x) =       x x x x x          3 1 1 2 4 3 2 13 4 , , is : (A*) continuous at x = 1 (B*) diff. at x = 1 (C*) continuous at x = 3 (D) differentiableat x = 3
  23. [Sol. f (x) =                1 x if 4 13 2 x 3 4 x 3 x 1 if x 3 3 x if 3 x 2 f (1+) = h ) 1 ( f ) h 1 ( f Limit 0 h    = 1 h 2 ) h 1 ( 3 Limit 0 h       f (1–) = h 2 4 13 ) h 1 ( 2 3 4 ) h 1 ( Limit 2 0 h        = h 4 5 ) h 1 ( 6 ) h 1 ( Limit 2 0 h       = h 4 h 6 h 2 h Limit 2 0 h     = – 1  f is continuous at x =1 ] Q.92539 If f(x) = cos  x       cos    2 1 x        ; where [x] is the greatest integerr function of x, then f(x) is continuous at : (A) x = 0 (B*) x = 1 (C*) x = 2 (D) none of these [Hint: Not defined at x = 0 ; f(x) = cos 3 ; f(2) = 0 and both the limits exist  B and C ] Q.93540 Identifythepair(s) of functions which are identical . (A*) y = tan (cos 1 x) ; y = 1 2  x x (B*) y = tan (cot 1 x) ; y = 1 x (C*) y = sin (arc tan x) ; y = x x 1 2  (D*) y = cos (arc tan x) ; y = sin (arc cot x) [ Ans. : (A) T domain [ 1, 0)  (0, 1] (B) T (C) T (D) T , 1 1 2  x ] (A) y= tan(cos–1x) note that 0 < sin–1x < p but tan(/2) is not defined hence cos–1x  2   x  0 hence domain is [–1,1] – {0} and range is R. The graphis as shown.
  24. (B) y= tan(cot–1x) note that 0 < cot–1x <   tan(/2) is not defined hence cos–1x  2   x  0 hence domain = R – {0} since cot–1x  0 ,   y  0 hence range is R – {0} The graphis as shown. (C) y=sin(tan–1x) – 2  < tan–1x < 2   y  (–1, 1) since tan–1x is defined for all x  R and sin is also defined for all x  R  domain is R y = 2 x 1 x  The graphis as shown. (D) y= cos(tan–1x) tan–1           2 , 2  y  (0, 1] DomainisR y = 2 x 1 1  Note that sin–1(cot–1x) also has the same graph The graphis as shown.] Q.94544 The function, f(x) = [x][x] where [x] denotes greatest integer function (A*)is continuousforallpositiveintegers (B*)is discontinuous forallnonpositiveintegers (C*)hasfinitenumberofelementsinits range (D*) is such that its graph does not lie above the xaxis . [Sol. [ | x | ] – | [x] | =               2 x 1 0 1 x 0 0 0 x 1 1 1 x 0  range is {0, –1} Thegraphis ] Q.95545 Let f (x + y) = f(x) + f(y) for all x , y  R. Then : (A) f(x) must be continuous  x  R (B*) f(x) may be continuous  x  R (C) f(x) must be discontinuous  x  R (D*) f(x) maybe discontinuous  x  R
  25. [Hint: Limit h0 f (x + h) = Limit h0 f(x) + f(h) = f (x) + Limit h0 f (h) Hence if h  0 f (h) = 0  'f' is continuous otherwise discontinuous ] Q.96548 The function f(x) = 1 1 2   x (A*) has its domain –1 < x < 1. (B*) has finite one sided derivates at the point x = 0. (C)iscontinuous and differentiable atx = 0. (D*)is continuous but not differentiable atx = 0. [Hint: f (0+) = 1 2 ; f (0–) = – 1 2 ] Q.97553 Let f(x) be defined in [–2, 2] by f(x) = max (4 – x2, 1 + x2), –2 < x < 0 = min (4 – x2, 1 + x2), 0 < x < 2 Thef(x) (A)iscontinuousatallpoints (B*)has apoint ofdiscontinuity (C) isnot differentiable onlyat onepoint. (D*) is not differentiableat morethan onepoint [Hint: f(x) max. (4–x2, 1+x2), –2 < x < 0 min. (4 - x2, 1+x2), 0 < x < 2] Q.98555 Thefunctionf(x)=sgnx.sinx is (A*)discontinuousno where. (B*) an evenfunction (C*) aperiodic (D)differentiableforallx [Hint: f (x) =    sin sin x x x x    0 0 ] Q.99556 The function f(x) = x n 1 xl (A*)is aconstant function (B) has a domain (0, 1) U (e, ) (C*) is such that limit x1 f(x) exist (D)is aperiodic [Hint: y = x logx e = e (constant)  Aand C as limit x1 f(x) = e] Q.100557 Which pair(s)of function(s) is/are equal? (A*) f(x) = cos(2tan–1x) ; g(x) = 1 1 2 2   x x (B*) f(x) = 2 1 2 x x  ; g(x) = sin(2cot–1x) (C*) f(x) = e n x  (sgn cot ) 1 ; g(x) =     e n x  1 (D) f(x) = a X , a > 0; g(x) = a x 1 , a > 0 where {x}and [x] denotes thefractional part &integral part functions.
  26. Fill in the blanks: Q.101801 Afunction f is defined as follows, f(x) = sinx if x c ax b if x c       where c is a known quantity. If f is derivable at x = c, then the values of 'a' & 'b' are _____ &______ respectively . [ Ans. : cos c & sin c  c cos c ] Q.102802Aweight hangs byaspring& is caused to vibrate by a sinusoidal force. Its displacement s(t)at time t is given by an equation of the form, s(t) = A c k 2 2  (sin kt  sin ct) where A, c & k are positive constants with c  k, then the limiting value of the displacement as c  k is ______. [Ans. : At kt k cos 2 ] Q.103805 Limit x  4 (cos ) (sin ) cos    x x x    2 4 where 0 <  <  2 is ______ . [Ans. : cos4  ln cos  sin4  ln sin ] [Hint: put cos 2  = cos4   sin4  ] Q.104809 Limit x  0   cos / 2 3 2 x x has the value equal to ______ . [ Ans. : e6 ] Q.105812 If f(x) = sin x, x  n, n = 0, ±1, ±2, ±3,.... = 2, otherwise and g(x) = x² + 1, x  0, 2 = 4, x = 0 = 5, x = 2 then Limit x0 g [f(x)] is ______ [Ans. : 1 ] [ IIT’86,2 ]
Anúncio