MAGNETICS Stationary charge carries only electric field where moving charge carries electric field as well as magnetic field. BIOT SAVART’S LAW : The magnetic field due to a current element at a point is given by the expression where current element, its direction same as that of the current position vector of point P w.r.t. current element angle between current element and position vector where Permeability of free space. and 2. Magnetic field due to current carrying wire S.I. unit of is Tesla 3. Vector form of magnetic field due to a current carrying wire is 4. Direction of magnetic field can be found by the rules of vector product. APPLICATION OF BIOT SAVART’S LAW : 1. Magnetic field at a point on the line of current : If a point lies in the line of current carrying element then magnetic field at this point is always zero. 2. Magnetic field due to a straight current carrying wire (i) Of finite length : Suppose A straight current carrying wire AB, carrying current I, lies in the plane of the paper. As shown in the figure, P is a point at a perpendicular distance R from conductor, where magnetic field is to be determined According to Biot – Savart’s Law, the field at P due to a current element is Now from the figure and Hence magnetic field due to the whole conductor (ii) For the conductor of infinite length (iii) On perpendicular bisector of finite length : length of the wire perpendicular distance of the field point then Magnetic field (iv) At point exactly in front of one end of semi-infinite wire : Here and (v) At a point not exactly in front of the end of a semi infinite wire : Here and Application : Find magnetic field at point P shown in figure, the point P is on the bisector of angle between the wire. Solution : Assume so Magnetic field B at P due to either segment of wire is, B Net magnetic field at P is 3. Magnetic field due to circular arc at the center (Subtending an angle at the center) : Consider a current element that subtends an angle as shown in the figure. Magnetic field due to this element. Thus, (ii) Magnetic field at the centre of a loop: Here the loop makes an angle at the center for turns, Application : Find magnetic field at O, by the system of current carrying wire. Solution: As in figure 4. Magnetic field at any point on the axis of a circular current carrying coil : Consider a circular conducting coil of radius R carrying current I. The loop lies on yz plane and its axis lies on x axis. Let us derive field at point P at a distance x from the center. Consider a small element at making an angle d at the center Here As the loop lies perpendicular to the plane of paper and vector in the plane of the paper hence angle between and is 90º Magnetic field can be resolved into two comp