Area Under Curve-02-Solved example

STUDY  INNOVATIONS
STUDY INNOVATIONSEducator em Study Innovations

SOLVED SUBJECTIVE EXAMPLES Example 1 : Find the area bounded by y = x |sinx| and x-axis between x = 0, x = 2. Solution : y   x sin x, if sin x  0, i.e., 0  x   x sin x, if sin x  0, i.e.,   x  2  2  Required area =  x sin x dx   (x sin x) dx  x ( cos x)    ( cos x) dx 0  0 y 2 y= x  (x(cos x)) 2   (cos x) dx    sin x   (2  ) sin x 2  4 sq. units 0  Example 2 : O  2 x If the line y = mx divides the area enclosed by the lines x = 0, y = 0, x = 3/2 and the curve y = 1 + 4x – x2 into two equal parts, then find the value of m. Solution : The given curve is y – 5 = – (x – 2)2 Thus given curve is a parabola with vertex at (2, 5) and axis x = 2 Given that area CBFC = Area CDEBC So area CDEBFC = 2 Area CBFC Area CDEBFC  3/ 2  0 (1 4x  x2 )dx 3/ 2 3  9  9 39  x  2x2    2     sq. units Area CBFC  3/ 2  0 2 0 mxdx  9m 4  4  8 8 So we must have 39  18m 8 8 or m  13 6 Example 3 : Find out the area enclosed by the polynomial function of least degree satisfying  f (x) 1/ x lim 1 x0  Solution : x3  = e and the circle x2 + y2 = 2 above the axis  f (x) 1/ x Since lim 1 x0  x3  exists and f(x) is of least degree, so f(x) must be of the form f(x) = ax4, solving the limit we get a = 1, so f(x) = x4 . Hence we have two curves y = x4 ... (i) y Solving we get,  x 4  x8  x 2  2  0 ... (ii)  (x2 – 1) (x6 + x4 + x2 + 2) = 0  x2 – 1 = 0  x =  1 Required area  2 1  0  x4 dx x x5  1  1  1   3    2 sin1    2        sq. units.  2 2 5  0  2 4 5   5 2  Example 4 :  Find out the area enclosed by y = x2 + cosx and its normal at x = 2 Solution : f(x) = x2 + cos x  f (x) = 2x – sinx in the first quadrant.    f ( )   1 2  Equation of normal at x = 2 is  2  1     y  4   1   x  2      at x axis, y = 0  ( 1)2  x   4 2 Required area = area OAPQO + area of triangle PQR / 2 2 1  ( 1) 2   2   (x  cos x) dx  2  4     4 0   x3  / 2  sin x  0  ( 1)2 8 2 2   3   1 2 3 4 =  1      1  1 8 4 24 32 5  4  3  32 32 24 Example 5 : Find out the ratio of areas in which the function f(x) =  x3 x  100 35  divides the circle   x2 + y2 – 4x + 2y + 1 = 0 ([.] denotes the greatest integer function). Solution : Circle is x2 + y2 – 4x + 2y + 1 = 0 Y (x –2)2+ (y + 1) 2= 4 (2 - 3, 0) (2 + X 3, 0) f(x) = 0 for 0 < x < 4 or, (x – 2)2 + (y + 1)2 = 4 = 22 ... (i) Now for 0  x  4 x3 x  x3 x  0    1      0 100 35 100 35  So, the circle have to find out the ratio in which x axis divides the circle (i). Now, at x-axis, y = 0. So, (x–2)2 = 3 So, the circle cuts the x axis at the points (2 – , 0) and (2 + , 0) 2 3 Let

SOLVED SUBJECTIVE EXAMPLES
Example 1 :
Find the area bounded by y = x |sinx| and x-axis between x = 0, x = 2.
Solution:
xsin x, if sin x 0, i.e., 0 x
y
xsin x,if sin x 0, i.e., x 2
  

 
     

Required area =
2
0
xsin x dx ( xsin x)dx
 

 
  0
0
x ( cos x) ( cos x)dx


   

2
2
(x( cos x)) ( cos x)dx




   

y
y= x
O x
2

2
0
sin x (2 ) sin x 4



       sq. units
Example 2 :
If the line y = mx divides the area enclosed by the lines x = 0, y = 0, x = 3/2 and the curve
y= 1 + 4x – x2
into two equalparts, then find the value ofm.
Solution:
The given curve is y – 5 = – (x – 2)2
Thus givencurve is a parabola with vertex at (2, 5) and axis x = 2
Given that area CBFC =Area CDEBC
So area CDEBFC = 2 Area CBFC
Area CDEBFC
3/2
2
0
(1 4x x )dx
  

3/2
3
2
0
x 3 9 9 39
x 2x 2
3 2 4 8 8
 
      
 
 
sq. units
Area CBFC
3/ 2
0
9m
mxdx
4
 

y = mx
y
x
F
x = 3/2
y = 1 + 4x – x
2
B
E
D
C
So we must have
39 18m
8 8
 or
13
m
6

Example 3 :
Find out the area enclosed bythe polynomialfunctionofleast degree satisfying
1/ x
3
x 0
f(x)
lim 1
x

 

 
 
= e and the circle x2
+ y2
= 2 above the axis
Solution:
Since
1/ x
3
x 0
f(x)
lim 1
x

 

 
 
exists and f(x) is of least degree, so f(x) must be of the formf(x) = ax4
,
solving the limit we get a = 1, so f(x) = x4
. Hence we have two curves
y = x4
... (i)
2
y 2 x
  ... (ii)
Solving we get, 2 4 8 2
2 x x x x 2 0
     
 (x2
– 1) (x6
+ x4
+ x2
+ 2) = 0
y = x4
x
–1 1
2
y 2 x
= -
 x2
– 1 = 0  x =  1
Required area
 
1
2 4
0
2 2 x x dx
  

1
5
2 1
0
x 2 x x
2 2 x sin
2 2 5
2

 
   
 
 
 
1 1 3
2
2 4 5 5 2
 
   
    
 
 
   
sq. units.
Example 4 :
Find out the area enclosed byy = x2
+ cosx and its normal at x=
2

in the first quadrant.
Solution:
f(x) = x2
+ cos x  f (x)
 = 2x – sinx
 f ( ) 1
2

  
Equation ofnormalat x =
2

is
2
1
y x
4 1 2
 
 
 
  
   
     
 
x
(0, 1)A
P
Q R
O
at x axis, y = 0 
2
( 1)
x
4 2
   
 
Required area = area OAPQO + area of triangle PQR
/2 2 2
2
0
1 ( 1)
(x cos x)dx
2 4 2 2 4
  
     
     
 
 
 

/2
3 2
0
x ( 1)
sin x
3 8

    
  
 
 
 
=
 
 
3 2 3 4
1
1 1 1
24 8 4 24 32

    
   
       
 
 
 
=
5 4 3
1
32 32 24
  
   .
Example 5 :
Find out the ratio of areas in which the function f(x) =
3
x x
100 35
 

 
 
 
divides the circle
x2
+ y2
– 4x + 2y + 1 = 0 ([.] denotes the greatest integer function).
Solution:
Circle is x2
+ y2
– 4x + 2y + 1 = 0
X
Y
(x –2) + (y + 1) = 4
2 2
f(x) = 0 for 0 < x < 4
(2 3,0)
-
(2 3,
+ 0)
or, (x – 2)2
+ (y + 1)2
= 4 = 22
... (i)
Now for 0 x 4
 
3 3
x x x x
0 1 0
100 35 100 35
 
     
 
 
 
So, the circle have to find out the ratio inwhichx axis divides the circle (i). Now, at x-axis, y= 0.
So, (x–2)2
= 3
So, the circle cuts the x axis at the points (2 – 3 , 0) and (2 + 3 , 0)
Let  
2 3
2
2 3
4 3 3
A 4 (x 2) 1 dx
3


 
    

The required ratio is
A 4 3 3
4 A 8 3 3
 

   
Example 6 :
Find the area of the figure enclosed by the curve 5x2
+ 6xy + 2y2
+ 7x + 6y + 6 = 0
Solution:
Equationofcurve canbe re-written as
2y2
+ 6(1 + x) y + 5x2
+ 7x + 6 = 0
1
3(1 x) (3 x)(x 1)
y
2
    
 , 2
3(1 x) (3 x)(x 1)
y
2
    

Therefore the curves (y1
and y2
) are defined for values of xfor which (3 – x) (x – 1)  0
i.e., 1 x 3
 
(Actuallythe given equationdenotes an ellipse, because 0
  and h2
< ab).
Required area willbe given by
3 3
1 2
1 1
A (y y )dx A (3 x)(x 1) dx
     
 
y
x
O
y1
y2
1 2 3
–3
–6
Put x = 3 cos2
 + sin2
 i.e., dx = – 2sin2 d
/ 2
2
0
A 2 sin 2 d sq. units
2


  

Example 7 :
Find the area enclosed between the curves
y = ln(x + e), x = ln
1
y
 
 
 
and x-axis.
Solution:
Given curves are y= ln(x + e)
and x = ln
1
y
 
 
 
or, x = –ln y
or, y = e–x
or,
x
1
y
e
 
 
 
Clearlythe two curves cut at x = 0
Graph ofcurves (i) and (ii) willbe as showninthe figure.
x
C
A O
(1 – e, 0)
x = –e
Y
y = ln(x + e)
y = e–x
Y’
B
x’
Required area = shaded area
1
1 2
0
(x x )dy
 

1
y
0
[ ln y (e e)]dy
   

1
y
0
(yln y – y) e ey
 
   
 
1
y
0
y ln y y e ey
 
    
 
y 0
(0 1 e e) (0 0 1 0) lim ylog y 0

 
        
 
 
 = 1 + 1 = 2 sq. units.
Example 8 :
Find the area enclosed by the parabola (y – 2)2
= x– 1, the tangent to the parabola at (2, 3) and
the x-axis.
Solution:
Given parabola is (y – 2)2
= x – 1 ... (i)
Its axis is y = 2 and vertex is (1, 2). Let P (2, 3)
 .
From (i), 2(y – 2)
dy
1
dx

dy 1
dx 2(y 2)
 

At
dy 1
P(2, 3),
dx 2

 Equation of tangent at P(2, 3) is
y
x
O
y = 3
y = 2
Q(–4, 0)
P (2, 3)
A (1, 2)
R (5, 0)
y – 3 =
1
(x 2)
2

or, x 2y 4 0
   ... (ii)
Line (ii) cuts the x-axis at (–4, 0) and y-axis at (0, 2).
Required area, RQPAR =
3
1 2
0
(x x )dy


3 3
2 2
0 0
[(y 2) 1 (2y 4)]dy (y 6y 9)dy
       
 
3
3
2
0
y
3y 9y
3
 
  
 
 
 
= (9 – 27 + 27) – 0 = 9 sq. units.
Example 9 :
Find the area of the region bounded by the curves y = f(x), y = |g(x)| and the lines x = 0, x = 2,
where fand g are continuous functions satisfying f(x+ y) = f(x) + f(y) – 8xyfor all x, y R

and g(x + y) = g(x) + g(y) + 3xy (x + y) for all x, y R
 . also f (0) 8 and g (0) 4
 
 
Solution:
Given, f(x + y) = f(x) + f(y) – 8xyfor all x, y
Putting x = 0 and y = 0, we get
f(0) = f(0) + f(0)  f(0) = 0
h 0
f (x h) f (x)
f (x) lim
h

 
 
h 0
f (x h) f (x 0)
lim
h

  

h 0
f (x) f(h) 8xh f(x) f(0) 8x.0
lim
h

    

h 0
f (h) f (0)
lim 8x f (0) 8x
h



   
Thus f (x) 8 8x [ f (0) 8]
 
  

Integrating bothsides, we get
f(x) = 8x – 4x2
+ c ... (2)
Putting x = 0, we get f(0) = 0 + c  c = 0 [ f (0) 0]


Hence f(x) = 8x – 4x2
... (3)
Given g(x + y) = g(x) + g(y) + 3xy(x + y) for allx and y
Putting x = y= 0, we get g(0) = 0 ... (4)
Now
h 0 h 0
g(x h) g(x) g(x h) g(x 0)
g (x) lim lim
h h
 
    
  
2
h 0
g(h) g(0)
lim 3x 3xh
h


 
  
 
 
2 2
g (0) 3x 4 3x [ g (0) 4]
 
     

Thus g (x )
 = – 4 + 3x2
... (5)
 g(x) = – 4x + x3
+ k
Putting x = 0, we get g(0) = k
 k = 0 [ g(0) 0]


 g(x) = x3
– 4x ... (6)
For points where y= f(x) and y= g(x) intersect,
8x – 4x2
= x3
– 4x
 x3
+ 4x2
– 12 x = 0
 x = 0, 2, – 6
Sign scheme for f(x) i.e., for (8x – 4x2
) is
–
–ve +ve
0 2
–ve

Y
O
X
y = f(x)
(2, 0)
y = |g(x)|
Sign scheme for g(x) i.e. for x(x2
– 4) is
–
–ve +ve +ve
–2 0 2
–ve

f(x) – |g(x)| = 8x – 4x2
– (4x – x3
) ( g(x)  0 in [0, 2])
= x3
– 4x2
+ 4x = x(x – 2)2  0
Area bounded byy = f(x) and y = |g(x)|
between x = 0 and x = 2
2 2
2 3
1 2
0 0
(y y )dx [(8x 4x ) (4x x )]dx
     
 
2
3 2
0
4
(x 4x 4x)dx sq. units
3
   
 .
Example 10 :
Find the area enclosed by the circle x2
+ y2
= 4, the parabola y = x2
+ x + 1, the curve
2 x x
y sin cos
4 4
 
 
 
 
and the x-axis, (where [x] denotes the integralpart ofx).
Solution:
Equation ofgiven circle is x2
+ y2
= 4 ... (1)
 – 2  x  2 and – 2  y  2
Let z = sin2
x x
cos
4 4
 = 1 – cos2
x x
cos
4 4

= 1 + t – t2
, where t = cos
x
4
Now –
1 x 1
2 4 2
 
 0 < t  1 
5
1 z
4
 
for x [ 2, 2],
  curve y =
2 x x
sin cos
4 4
 

 
 
becomes y = 1 ... (2)
Given parabola is
y = x2
+ x + 1 ... (3)
or,
2
1 3
x y
2 4
 
  
 
 
... (4)
Its axis is
1
x
2
  and vertex is
1 3
,
2 4
 

 
 
.
Now, we have to find out the area enclosed by the circle x2
+ y2
= 4,
parabola
2
3 1
y x ,
4 2
   
  
   
   
line y= 1 and x-axis
y
x
O
(0, 2)
B
A
E
Q
R U
S
T
P
D
C (2, 0)
(–2, 0) – 3
1
1
2
- -
T S R U D
(–2, 0) ( 3, 0)
 (–1, 0) (–1/2, 0) (2, 0)
Required area isshown as shaded regionin the figure.
Hence required area = area OABCO + area PQRS + area RQEAOR + 2 area CBDC.
=  
0 2
2 2
1 3
3 1 ( 3 1) 1 (x x 1)dx 2 4 x dx

        
 
 
0 2
3 2
2 1
3
1
x x x x
2 3 1 x 2 4 x 2sin
3 2 2 2


   
 
       
   
 
 
 
 
 
  1 1 3 2
2 3 1 0 1 2 (0 )
3 2 2 3
 
 
  
 
           
 
 
 
   
 
   
 
 
  5 2
2 3 1 3
6 3

    
2 1
3 sq. units
3 6

 
  
 
 
.
SOLVED OBJECTIVE EXAMPLES
Example 1 :
Area enclosed by the curve |x –2| + |y + 1| = 1 is equal to
(A) 4 sq. units (B) 6 sq. units
(C) 2 sq. units (D) 8 sq. units
Solution:
After shiftingthe origin at the point (2, –1) theequationofcurve becomes, |x| + |y| =1. This curve
willrepresent a square as shown inthe adjacent figure.
y
C
O
A
D
y - x = 1 x + y = 1
x + y = –1 x – y = 1
Area ofthis square is clearlyequalto 4 times the area oftriangleOAB. Thus required area = 2 sq.
units.
Example 2 :
Area bounded by the curves y = |x| – 2 and y = 1 – |x–1| is equal to
(A) 4 sq. units (B) 6 sq. units
(C) 2 sq. units (D) 8 sq. units
Solution:
Bounded figureABCD is a rectangle.
AB 1 1 2
  
BC 4 4 2 2
  
A(1, 1)
B
C
D
2
0 1
–1
–2
–2
y = |x| –2
y = 1 – |x –1|
Thus, bounded area = ( 2) (2 2) = 4 sq. units.
Example 3 :
Area bounded bythe curve y= max{sinx, cosx} and x-axis, betweenthe lines x
4

 and x = 2
is equalto
(A)
(4 2 1)
2

sq. units (B) (4 2 1)sq.units

(C)
(4 2 1)
sq. units
2

(D) None ofthese
Solution:
Bold lines represents the graph ofy= max{sinx, cosx}.
Required area,
/4
 


y
x
O
y = sin x
y = cos x
5 /4
/4
sin x dx sin x dx
 
 
 
 
3 /2 2
5 / 4 3 /2
cos xdx cos x dx
 
 
 
 
(4 2 1)
sq.units
2


Example 4 :
Area bounded by the parabola y = x2
– 2x + 3 and tangents drawn to it fromthe point P(1, 0) is
equalto
(A) 4 2 sq. units (B)
4 2
sq. units
3
(C)
8 2
sq. units
3
(D)
16
2 sq. units
3
Solution:
Let thedrawntangents be PAand PB.AB isclearlythe chord ofcontact ofpoint P.Thus equation
ofAB is
1
. (y 0)
2
 = x.1 – (2 + 1) + 3 i.e., y = 4
x coordinates ofpointsAand B willbe given by,
x2
– 2x + 3 = 4 i.e., x2
– 2x –1 = 0
 x = 1 2

ThusAB = 2 2 units.
Hence PAB
1
(2 2).4 4 2
2
   sq. units
A B
x
y = 4
P(1, 0)
y = x – 2x + 3
2
Now area bounded by lineAB and parabola is equalto
1 2
2
1 2
(4 2 (x 2x 3))dx


  

=
4 2
3
sq. units.
Thus required area =
4 2 8 2
4 2
3 3
  sq. units.
Example 5 :
Area bounded bythe curves y= sinx, tangent drawn to it at x = 0 and the line x =
2

, is equalto
(A)
2
4
sq. units
2
 
(B)
2
4
sq. units
4
 
(C)
2
2
sq.units
4
 
(D)
2
2
sq. units
2
 
Solution:
The tangent drawnto y= sinxat x = 0 is the line y= x. Clearly the line y= x lies above the graph
of y= sinx x 0,
2

 
  
 
.
Thus required area
/ 2
0
(x sin x)dx

 

/ 2
2 2
0
x 4
cos x
2 4

   
  
 
 
 
sq. units.
Example 6 :
IfA(n) represents the area bounded bythe curve y= n. lnx, where n N
 and n> 1, the x-axis and
the lines x = 1 and x= e, then the value ofA(n) + nA(n–1) is equalto
(A)
2
n
e 1

(B)
2
n
e 1

(C) n2
(D) en2
Solution:
A(n) = n
e e
e
1
1 1
n x dx n n x.x dx n
 
 
  
 
 
 
l l  A(n – 1) = (n – 1)
 A(n) + nA(n – 1) = n + n(n – 1) = n2
Example 7 :
Value ofthe parametera such that the area bounded byy= a2
x2
+ ax + 1, coordinateaxes and the
line x = 1, attains it’s least value, is equalto
(A) –
1
4
(B) –
1
2
(C)
3
4
 (D) –1
Solution:
a2
x2
+ ax + 1 is clearlypositive for allreal values of x.Area under consideration
1 2
2 2
0
a a
(a x ax 1)dx 1
3 2
     

2
1
(2a 3a 6)
6
  
2
1 3 9 18
2 a a 6
6 2 16 16
 
 
    
 
 
 
 
=
2
1 3 39
2 a
6 4 8
 
 
 
 
 
 
 
 
which is clearlyminimumfor a = –
3
4
.
Example 8 :
Area oftheregion which consists ofallthe points satisfying the conditions|x– y| + |x+ y|  8 and
xy  2, is equalto
(A) 4(7 – ln8) sq. units (B) 4 (9 – ln8) sq. units
(C) 2(7 – ln8) sq. units (D) 2 (9 – ln 8) sq. units
Solution:
The expression|x– y| + |x+ y|  8, represents the interior regionofthe square formedbythe lines
x 4, y 4 and xy 2
   represents the regionlying inside the hyperbola xy= 2.
Required area,
 
4
4
1/2
1/2
2
2 4 dx 2 4x 2 nx
x
 
 
    
   
 
 l
= 4(7 – 3 ln2) sq. units
x = –4
x = 4
y = 4
y = x
D A
x
C B
y
y = –4
y = –x
Example 9 :
Apoint Pmoves inxyplaneinsuchawaythat [|x|]+ [|y|]=1, where [.] denotesthe greatest integer
function.Areaofthe region representing allpossible positions ofthe point Pis equalto
(A) 4 sq. units (B) 16 sq. units
(C) 2 2 sq. units (D) 8 sq. units
Solution:
If [|x|] = 1 and [|y|] = 0
then 1 | x | 2, 0 | y | 1
   
x ( 2, 1] [1, 2), y ( 1,1)
      
if [|x|] = 0, [|y|] = 1
Then x ( 1, 1), y ( 2, 1] [1,2]
     
y
x
–2 2
–2
–1
1
1
–1
O
2
Area ofrequired region
= 4(2 – 1) (1 – (–1)) = 8 sq. units.
Example 10 :
Area enclosed bythe curve y= f(x) defined parametricallyas
2
2 2
1 t 2t
x , y
1 t 1 t

 
 
is equalto
(A) sq.units
 (B) / 2 sq. units

(C)
3
sq. units
4

(D)
3
2

sq. units
Solution:
Clearlyt canbe any real number
Let
2
2
1 tan
t tan x
1 tan
 
   
 
 x cos2
 
and 2
2tan
y sin 2
1 tan

  
 
 x2
+ y2
= 1
Thus required area = 2
.1
  sq. units.

Recomendados

Area Under Curve (AUC) (TN).pdf por
Area Under Curve (AUC) (TN).pdfArea Under Curve (AUC) (TN).pdf
Area Under Curve (AUC) (TN).pdfSTUDY INNOVATIONS
40 visualizações14 slides
Area Under Curve-02-THEORY por
Area Under Curve-02-THEORYArea Under Curve-02-THEORY
Area Under Curve-02-THEORYSTUDY INNOVATIONS
5 visualizações9 slides
Area under curve por
Area under curveArea under curve
Area under curveSTUDY INNOVATIONS
9 visualizações7 slides
MAT 2B SR AREAS M02 EX 7 5 SAQ(26 May 2016).ppt por
MAT 2B SR AREAS M02 EX 7 5 SAQ(26 May 2016).pptMAT 2B SR AREAS M02 EX 7 5 SAQ(26 May 2016).ppt
MAT 2B SR AREAS M02 EX 7 5 SAQ(26 May 2016).pptssuser002675
2 visualizações14 slides
Area Under Curve-01-Theory por
Area Under Curve-01-TheoryArea Under Curve-01-Theory
Area Under Curve-01-TheorySTUDY INNOVATIONS
10 visualizações9 slides
vg.pdf por
vg.pdfvg.pdf
vg.pdfSTUDY INNOVATIONS
14 visualizações11 slides

Mais conteúdo relacionado

Similar a Area Under Curve-02-Solved example

Area under curve (AUC) (Sol).pdf por
Area under curve (AUC) (Sol).pdfArea under curve (AUC) (Sol).pdf
Area under curve (AUC) (Sol).pdfSTUDY INNOVATIONS
10 visualizações3 slides
Applications of integrals por
Applications of integralsApplications of integrals
Applications of integralsnitishguptamaps
1.7K visualizações5 slides
Circle-03-THEORY por
Circle-03-THEORYCircle-03-THEORY
Circle-03-THEORYSTUDY INNOVATIONS
17 visualizações18 slides
Area Under Curve-04-Exercise- 2 por
Area Under Curve-04-Exercise- 2Area Under Curve-04-Exercise- 2
Area Under Curve-04-Exercise- 2STUDY INNOVATIONS
24 visualizações10 slides
Application Of Derivative-02-Solved example por
Application Of Derivative-02-Solved exampleApplication Of Derivative-02-Solved example
Application Of Derivative-02-Solved exampleSTUDY INNOVATIONS
10 visualizações18 slides
Area Under Curve-03-Exercise- 1 por
Area Under Curve-03-Exercise- 1Area Under Curve-03-Exercise- 1
Area Under Curve-03-Exercise- 1STUDY INNOVATIONS
12 visualizações18 slides

Similar a Area Under Curve-02-Solved example(20)

Area under curve (AUC) (Sol).pdf por STUDY INNOVATIONS
Area under curve (AUC) (Sol).pdfArea under curve (AUC) (Sol).pdf
Area under curve (AUC) (Sol).pdf
STUDY INNOVATIONS10 visualizações
Applications of integrals por nitishguptamaps
Applications of integralsApplications of integrals
Applications of integrals
nitishguptamaps1.7K visualizações
Circle-03-THEORY por STUDY INNOVATIONS
Circle-03-THEORYCircle-03-THEORY
Circle-03-THEORY
STUDY INNOVATIONS17 visualizações
Area Under Curve-04-Exercise- 2 por STUDY INNOVATIONS
Area Under Curve-04-Exercise- 2Area Under Curve-04-Exercise- 2
Area Under Curve-04-Exercise- 2
STUDY INNOVATIONS24 visualizações
Application Of Derivative-02-Solved example por STUDY INNOVATIONS
Application Of Derivative-02-Solved exampleApplication Of Derivative-02-Solved example
Application Of Derivative-02-Solved example
STUDY INNOVATIONS10 visualizações
Area Under Curve-03-Exercise- 1 por STUDY INNOVATIONS
Area Under Curve-03-Exercise- 1Area Under Curve-03-Exercise- 1
Area Under Curve-03-Exercise- 1
STUDY INNOVATIONS12 visualizações
Area under curve (AUC).pdf por STUDY INNOVATIONS
Area under curve (AUC).pdfArea under curve (AUC).pdf
Area under curve (AUC).pdf
STUDY INNOVATIONS18 visualizações
DIFFERENTIAL EQUATION & AREA UNDER CURVE por STUDY INNOVATIONS
DIFFERENTIAL EQUATION & AREA UNDER CURVEDIFFERENTIAL EQUATION & AREA UNDER CURVE
DIFFERENTIAL EQUATION & AREA UNDER CURVE
STUDY INNOVATIONS7 visualizações
0 calc7-1 por Ron Eick
0 calc7-10 calc7-1
0 calc7-1
Ron Eick632 visualizações
48 circle part 1 of 2 por tutulk
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
tutulk7K visualizações
Straight-Line-Graphs-Final -2.pptx por Kviskvis
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
Kviskvis49 visualizações
2.-Area Under Curve-01-Lecture por STUDY INNOVATIONS
2.-Area Under Curve-01-Lecture2.-Area Under Curve-01-Lecture
2.-Area Under Curve-01-Lecture
STUDY INNOVATIONS3 visualizações
Bahan ajar kalkulus integral por grand_livina_good
Bahan ajar kalkulus integralBahan ajar kalkulus integral
Bahan ajar kalkulus integral
grand_livina_good664 visualizações
Straight line and circle.pdf por STUDY INNOVATIONS
Straight line and circle.pdfStraight line and circle.pdf
Straight line and circle.pdf
STUDY INNOVATIONS40 visualizações
Quardatic Equation-02-Solved Exam por STUDY INNOVATIONS
Quardatic Equation-02-Solved ExamQuardatic Equation-02-Solved Exam
Quardatic Equation-02-Solved Exam
STUDY INNOVATIONS15 visualizações
Form 4 add maths note por Sazlin A Ghani
Form 4 add maths noteForm 4 add maths note
Form 4 add maths note
Sazlin A Ghani156.6K visualizações
8.7 numerical integration por dicosmo178
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
dicosmo178427 visualizações
8.7 numerical integration por dicosmo178
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
dicosmo178228 visualizações
8.7 numerical integration por dicosmo178
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
dicosmo178370 visualizações

Mais de STUDY INNOVATIONS

Chemistry-46.THERMODYNAMICS por
Chemistry-46.THERMODYNAMICSChemistry-46.THERMODYNAMICS
Chemistry-46.THERMODYNAMICSSTUDY INNOVATIONS
0 visão41 slides
Chemistry-45.Test series por
Chemistry-45.Test seriesChemistry-45.Test series
Chemistry-45.Test seriesSTUDY INNOVATIONS
0 visão3 slides
Chemistry-44.SURFACE CHEMISTRY por
Chemistry-44.SURFACE CHEMISTRYChemistry-44.SURFACE CHEMISTRY
Chemistry-44.SURFACE CHEMISTRYSTUDY INNOVATIONS
0 visão32 slides
Chemistry-43.STATE OF MATTER por
Chemistry-43.STATE OF MATTERChemistry-43.STATE OF MATTER
Chemistry-43.STATE OF MATTERSTUDY INNOVATIONS
0 visão48 slides
Chemistry-42.Some basic concept test paper por
Chemistry-42.Some basic concept test paperChemistry-42.Some basic concept test paper
Chemistry-42.Some basic concept test paperSTUDY INNOVATIONS
0 visão2 slides
Chemistry-40.SOLID STATE por
Chemistry-40.SOLID STATEChemistry-40.SOLID STATE
Chemistry-40.SOLID STATESTUDY INNOVATIONS
0 visão62 slides

Mais de STUDY INNOVATIONS(20)

Chemistry-35.Question Bank- BALANCING REDOX REACTION por STUDY INNOVATIONS
Chemistry-35.Question Bank- BALANCING REDOX REACTIONChemistry-35.Question Bank- BALANCING REDOX REACTION
Chemistry-35.Question Bank- BALANCING REDOX REACTION
Chemistry-29.NITROGEN CONTAINING COMPOUNDS por STUDY INNOVATIONS
Chemistry-29.NITROGEN CONTAINING COMPOUNDSChemistry-29.NITROGEN CONTAINING COMPOUNDS
Chemistry-29.NITROGEN CONTAINING COMPOUNDS
STUDY INNOVATIONS2 visualizações
Chemistry-28.LIQUID SOLUTION por STUDY INNOVATIONS
Chemistry-28.LIQUID SOLUTIONChemistry-28.LIQUID SOLUTION
Chemistry-28.LIQUID SOLUTION
STUDY INNOVATIONS2 visualizações
Chemistry-27.IUPAC - General Organic Chemistry-Theory & Exercise por STUDY INNOVATIONS
Chemistry-27.IUPAC - General Organic Chemistry-Theory & ExerciseChemistry-27.IUPAC - General Organic Chemistry-Theory & Exercise
Chemistry-27.IUPAC - General Organic Chemistry-Theory & Exercise
STUDY INNOVATIONS2 visualizações
Chemistry-26.IONIC EQUILIBRIUM por STUDY INNOVATIONS
Chemistry-26.IONIC EQUILIBRIUMChemistry-26.IONIC EQUILIBRIUM
Chemistry-26.IONIC EQUILIBRIUM
STUDY INNOVATIONS2 visualizações
Chemistry-25-Problems -5 por STUDY INNOVATIONS
Chemistry-25-Problems -5Chemistry-25-Problems -5
Chemistry-25-Problems -5
STUDY INNOVATIONS2 visualizações

Último

EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx por
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxISSIP
407 visualizações50 slides
The basics - information, data, technology and systems.pdf por
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdfJonathanCovena1
156 visualizações1 slide
Recap of our Class por
Recap of our ClassRecap of our Class
Recap of our ClassCorinne Weisgerber
100 visualizações15 slides
unidad 3.pdf por
unidad 3.pdfunidad 3.pdf
unidad 3.pdfMarcosRodriguezUcedo
122 visualizações38 slides
GCSE Music por
GCSE MusicGCSE Music
GCSE MusicWestHatch
47 visualizações50 slides
Meet the Bible por
Meet the BibleMeet the Bible
Meet the BibleSteve Thomason
69 visualizações80 slides

Último(20)

EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx por ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP407 visualizações
The basics - information, data, technology and systems.pdf por JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena1156 visualizações
Recap of our Class por Corinne Weisgerber
Recap of our ClassRecap of our Class
Recap of our Class
Corinne Weisgerber100 visualizações
GCSE Music por WestHatch
GCSE MusicGCSE Music
GCSE Music
WestHatch47 visualizações
Meet the Bible por Steve Thomason
Meet the BibleMeet the Bible
Meet the Bible
Steve Thomason69 visualizações
AUDIENCE - BANDURA.pptx por iammrhaywood
AUDIENCE - BANDURA.pptxAUDIENCE - BANDURA.pptx
AUDIENCE - BANDURA.pptx
iammrhaywood131 visualizações
CUNY IT Picciano.pptx por apicciano
CUNY IT Picciano.pptxCUNY IT Picciano.pptx
CUNY IT Picciano.pptx
apicciano56 visualizações
Retail Store Scavenger Hunt.pptx por jmurphy154
Retail Store Scavenger Hunt.pptxRetail Store Scavenger Hunt.pptx
Retail Store Scavenger Hunt.pptx
jmurphy15447 visualizações
GCSE Geography por WestHatch
GCSE GeographyGCSE Geography
GCSE Geography
WestHatch47 visualizações
BÀI TẬP BỔ TRỢ TIẾNG ANH FAMILY AND FRIENDS NATIONAL EDITION - LỚP 4 (CÓ FIL... por Nguyen Thanh Tu Collection
BÀI TẬP BỔ TRỢ TIẾNG ANH FAMILY AND FRIENDS NATIONAL EDITION - LỚP 4 (CÓ FIL...BÀI TẬP BỔ TRỢ TIẾNG ANH FAMILY AND FRIENDS NATIONAL EDITION - LỚP 4 (CÓ FIL...
BÀI TẬP BỔ TRỢ TIẾNG ANH FAMILY AND FRIENDS NATIONAL EDITION - LỚP 4 (CÓ FIL...
Nguyen Thanh Tu Collection58 visualizações
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively por PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 651 visualizações
Relationship of psychology with other subjects. por palswagata2003
Relationship of psychology with other subjects.Relationship of psychology with other subjects.
Relationship of psychology with other subjects.
palswagata200377 visualizações
Purpose of maths student display.pptx por christianmathematics
Purpose of maths student display.pptxPurpose of maths student display.pptx
Purpose of maths student display.pptx
christianmathematics190 visualizações
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx por Ms. Pooja Bhandare
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptxPharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx
Pharmaceutical Inorganic chemistry UNIT-V Radiopharmaceutical.pptx
Ms. Pooja Bhandare120 visualizações
MIXING OF PHARMACEUTICALS.pptx por Anupkumar Sharma
MIXING OF PHARMACEUTICALS.pptxMIXING OF PHARMACEUTICALS.pptx
MIXING OF PHARMACEUTICALS.pptx
Anupkumar Sharma107 visualizações
11.28.23 Social Capital and Social Exclusion.pptx por mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239383 visualizações

Area Under Curve-02-Solved example

  • 1. SOLVED SUBJECTIVE EXAMPLES Example 1 : Find the area bounded by y = x |sinx| and x-axis between x = 0, x = 2. Solution: xsin x, if sin x 0, i.e., 0 x y xsin x,if sin x 0, i.e., x 2              Required area = 2 0 xsin x dx ( xsin x)dx        0 0 x ( cos x) ( cos x)dx        2 2 (x( cos x)) ( cos x)dx          y y= x O x 2  2 0 sin x (2 ) sin x 4           sq. units Example 2 : If the line y = mx divides the area enclosed by the lines x = 0, y = 0, x = 3/2 and the curve y= 1 + 4x – x2 into two equalparts, then find the value ofm. Solution: The given curve is y – 5 = – (x – 2)2 Thus givencurve is a parabola with vertex at (2, 5) and axis x = 2 Given that area CBFC =Area CDEBC So area CDEBFC = 2 Area CBFC Area CDEBFC 3/2 2 0 (1 4x x )dx     3/2 3 2 0 x 3 9 9 39 x 2x 2 3 2 4 8 8              sq. units Area CBFC 3/ 2 0 9m mxdx 4    y = mx y x F x = 3/2 y = 1 + 4x – x 2 B E D C So we must have 39 18m 8 8  or 13 m 6 
  • 2. Example 3 : Find out the area enclosed bythe polynomialfunctionofleast degree satisfying 1/ x 3 x 0 f(x) lim 1 x         = e and the circle x2 + y2 = 2 above the axis Solution: Since 1/ x 3 x 0 f(x) lim 1 x         exists and f(x) is of least degree, so f(x) must be of the formf(x) = ax4 , solving the limit we get a = 1, so f(x) = x4 . Hence we have two curves y = x4 ... (i) 2 y 2 x   ... (ii) Solving we get, 2 4 8 2 2 x x x x 2 0        (x2 – 1) (x6 + x4 + x2 + 2) = 0 y = x4 x –1 1 2 y 2 x = -  x2 – 1 = 0  x =  1 Required area   1 2 4 0 2 2 x x dx     1 5 2 1 0 x 2 x x 2 2 x sin 2 2 5 2              1 1 3 2 2 4 5 5 2                    sq. units. Example 4 : Find out the area enclosed byy = x2 + cosx and its normal at x= 2  in the first quadrant. Solution: f(x) = x2 + cos x  f (x)  = 2x – sinx  f ( ) 1 2     Equation ofnormalat x = 2  is 2 1 y x 4 1 2                      x (0, 1)A P Q R O
  • 3. at x axis, y = 0  2 ( 1) x 4 2       Required area = area OAPQO + area of triangle PQR /2 2 2 2 0 1 ( 1) (x cos x)dx 2 4 2 2 4                       /2 3 2 0 x ( 1) sin x 3 8                =     3 2 3 4 1 1 1 1 24 8 4 24 32                         = 5 4 3 1 32 32 24       . Example 5 : Find out the ratio of areas in which the function f(x) = 3 x x 100 35          divides the circle x2 + y2 – 4x + 2y + 1 = 0 ([.] denotes the greatest integer function). Solution: Circle is x2 + y2 – 4x + 2y + 1 = 0 X Y (x –2) + (y + 1) = 4 2 2 f(x) = 0 for 0 < x < 4 (2 3,0) - (2 3, + 0) or, (x – 2)2 + (y + 1)2 = 4 = 22 ... (i) Now for 0 x 4   3 3 x x x x 0 1 0 100 35 100 35               So, the circle have to find out the ratio inwhichx axis divides the circle (i). Now, at x-axis, y= 0. So, (x–2)2 = 3
  • 4. So, the circle cuts the x axis at the points (2 – 3 , 0) and (2 + 3 , 0) Let   2 3 2 2 3 4 3 3 A 4 (x 2) 1 dx 3           The required ratio is A 4 3 3 4 A 8 3 3        Example 6 : Find the area of the figure enclosed by the curve 5x2 + 6xy + 2y2 + 7x + 6y + 6 = 0 Solution: Equationofcurve canbe re-written as 2y2 + 6(1 + x) y + 5x2 + 7x + 6 = 0 1 3(1 x) (3 x)(x 1) y 2       , 2 3(1 x) (3 x)(x 1) y 2       Therefore the curves (y1 and y2 ) are defined for values of xfor which (3 – x) (x – 1)  0 i.e., 1 x 3   (Actuallythe given equationdenotes an ellipse, because 0   and h2 < ab). Required area willbe given by 3 3 1 2 1 1 A (y y )dx A (3 x)(x 1) dx         y x O y1 y2 1 2 3 –3 –6 Put x = 3 cos2  + sin2  i.e., dx = – 2sin2 d / 2 2 0 A 2 sin 2 d sq. units 2       Example 7 : Find the area enclosed between the curves y = ln(x + e), x = ln 1 y       and x-axis. Solution: Given curves are y= ln(x + e) and x = ln 1 y       or, x = –ln y or, y = e–x or, x 1 y e      
  • 5. Clearlythe two curves cut at x = 0 Graph ofcurves (i) and (ii) willbe as showninthe figure. x C A O (1 – e, 0) x = –e Y y = ln(x + e) y = e–x Y’ B x’ Required area = shaded area 1 1 2 0 (x x )dy    1 y 0 [ ln y (e e)]dy      1 y 0 (yln y – y) e ey         1 y 0 y ln y y e ey          y 0 (0 1 e e) (0 0 1 0) lim ylog y 0                  = 1 + 1 = 2 sq. units. Example 8 : Find the area enclosed by the parabola (y – 2)2 = x– 1, the tangent to the parabola at (2, 3) and the x-axis. Solution: Given parabola is (y – 2)2 = x – 1 ... (i) Its axis is y = 2 and vertex is (1, 2). Let P (2, 3)  . From (i), 2(y – 2) dy 1 dx  dy 1 dx 2(y 2)    At dy 1 P(2, 3), dx 2   Equation of tangent at P(2, 3) is y x O y = 3 y = 2 Q(–4, 0) P (2, 3) A (1, 2) R (5, 0) y – 3 = 1 (x 2) 2  or, x 2y 4 0    ... (ii) Line (ii) cuts the x-axis at (–4, 0) and y-axis at (0, 2). Required area, RQPAR = 3 1 2 0 (x x )dy   3 3 2 2 0 0 [(y 2) 1 (2y 4)]dy (y 6y 9)dy           3 3 2 0 y 3y 9y 3            = (9 – 27 + 27) – 0 = 9 sq. units.
  • 6. Example 9 : Find the area of the region bounded by the curves y = f(x), y = |g(x)| and the lines x = 0, x = 2, where fand g are continuous functions satisfying f(x+ y) = f(x) + f(y) – 8xyfor all x, y R  and g(x + y) = g(x) + g(y) + 3xy (x + y) for all x, y R  . also f (0) 8 and g (0) 4     Solution: Given, f(x + y) = f(x) + f(y) – 8xyfor all x, y Putting x = 0 and y = 0, we get f(0) = f(0) + f(0)  f(0) = 0 h 0 f (x h) f (x) f (x) lim h      h 0 f (x h) f (x 0) lim h      h 0 f (x) f(h) 8xh f(x) f(0) 8x.0 lim h        h 0 f (h) f (0) lim 8x f (0) 8x h        Thus f (x) 8 8x [ f (0) 8]       Integrating bothsides, we get f(x) = 8x – 4x2 + c ... (2) Putting x = 0, we get f(0) = 0 + c  c = 0 [ f (0) 0]   Hence f(x) = 8x – 4x2 ... (3) Given g(x + y) = g(x) + g(y) + 3xy(x + y) for allx and y Putting x = y= 0, we get g(0) = 0 ... (4) Now h 0 h 0 g(x h) g(x) g(x h) g(x 0) g (x) lim lim h h           2 h 0 g(h) g(0) lim 3x 3xh h            2 2 g (0) 3x 4 3x [ g (0) 4]          Thus g (x )  = – 4 + 3x2 ... (5)  g(x) = – 4x + x3 + k Putting x = 0, we get g(0) = k  k = 0 [ g(0) 0]    g(x) = x3 – 4x ... (6) For points where y= f(x) and y= g(x) intersect,
  • 7. 8x – 4x2 = x3 – 4x  x3 + 4x2 – 12 x = 0  x = 0, 2, – 6 Sign scheme for f(x) i.e., for (8x – 4x2 ) is – –ve +ve 0 2 –ve  Y O X y = f(x) (2, 0) y = |g(x)| Sign scheme for g(x) i.e. for x(x2 – 4) is – –ve +ve +ve –2 0 2 –ve  f(x) – |g(x)| = 8x – 4x2 – (4x – x3 ) ( g(x)  0 in [0, 2]) = x3 – 4x2 + 4x = x(x – 2)2  0 Area bounded byy = f(x) and y = |g(x)| between x = 0 and x = 2 2 2 2 3 1 2 0 0 (y y )dx [(8x 4x ) (4x x )]dx         2 3 2 0 4 (x 4x 4x)dx sq. units 3      . Example 10 : Find the area enclosed by the circle x2 + y2 = 4, the parabola y = x2 + x + 1, the curve 2 x x y sin cos 4 4         and the x-axis, (where [x] denotes the integralpart ofx). Solution: Equation ofgiven circle is x2 + y2 = 4 ... (1)  – 2  x  2 and – 2  y  2 Let z = sin2 x x cos 4 4  = 1 – cos2 x x cos 4 4  = 1 + t – t2 , where t = cos x 4 Now – 1 x 1 2 4 2    0 < t  1  5 1 z 4   for x [ 2, 2],   curve y = 2 x x sin cos 4 4        becomes y = 1 ... (2)
  • 8. Given parabola is y = x2 + x + 1 ... (3) or, 2 1 3 x y 2 4          ... (4) Its axis is 1 x 2   and vertex is 1 3 , 2 4        . Now, we have to find out the area enclosed by the circle x2 + y2 = 4, parabola 2 3 1 y x , 4 2                line y= 1 and x-axis y x O (0, 2) B A E Q R U S T P D C (2, 0) (–2, 0) – 3 1 1 2 - - T S R U D (–2, 0) ( 3, 0)  (–1, 0) (–1/2, 0) (2, 0) Required area isshown as shaded regionin the figure. Hence required area = area OABCO + area PQRS + area RQEAOR + 2 area CBDC. =   0 2 2 2 1 3 3 1 ( 3 1) 1 (x x 1)dx 2 4 x dx               0 2 3 2 2 1 3 1 x x x x 2 3 1 x 2 4 x 2sin 3 2 2 2                                 1 1 3 2 2 3 1 0 1 2 (0 ) 3 2 2 3                                            5 2 2 3 1 3 6 3       2 1 3 sq. units 3 6           .
  • 9. SOLVED OBJECTIVE EXAMPLES Example 1 : Area enclosed by the curve |x –2| + |y + 1| = 1 is equal to (A) 4 sq. units (B) 6 sq. units (C) 2 sq. units (D) 8 sq. units Solution: After shiftingthe origin at the point (2, –1) theequationofcurve becomes, |x| + |y| =1. This curve willrepresent a square as shown inthe adjacent figure. y C O A D y - x = 1 x + y = 1 x + y = –1 x – y = 1 Area ofthis square is clearlyequalto 4 times the area oftriangleOAB. Thus required area = 2 sq. units. Example 2 : Area bounded by the curves y = |x| – 2 and y = 1 – |x–1| is equal to (A) 4 sq. units (B) 6 sq. units (C) 2 sq. units (D) 8 sq. units Solution: Bounded figureABCD is a rectangle. AB 1 1 2    BC 4 4 2 2    A(1, 1) B C D 2 0 1 –1 –2 –2 y = |x| –2 y = 1 – |x –1| Thus, bounded area = ( 2) (2 2) = 4 sq. units. Example 3 : Area bounded bythe curve y= max{sinx, cosx} and x-axis, betweenthe lines x 4   and x = 2 is equalto (A) (4 2 1) 2  sq. units (B) (4 2 1)sq.units  (C) (4 2 1) sq. units 2  (D) None ofthese
  • 10. Solution: Bold lines represents the graph ofy= max{sinx, cosx}. Required area, /4     y x O y = sin x y = cos x 5 /4 /4 sin x dx sin x dx         3 /2 2 5 / 4 3 /2 cos xdx cos x dx         (4 2 1) sq.units 2   Example 4 : Area bounded by the parabola y = x2 – 2x + 3 and tangents drawn to it fromthe point P(1, 0) is equalto (A) 4 2 sq. units (B) 4 2 sq. units 3 (C) 8 2 sq. units 3 (D) 16 2 sq. units 3 Solution: Let thedrawntangents be PAand PB.AB isclearlythe chord ofcontact ofpoint P.Thus equation ofAB is 1 . (y 0) 2  = x.1 – (2 + 1) + 3 i.e., y = 4 x coordinates ofpointsAand B willbe given by, x2 – 2x + 3 = 4 i.e., x2 – 2x –1 = 0  x = 1 2  ThusAB = 2 2 units. Hence PAB 1 (2 2).4 4 2 2    sq. units A B x y = 4 P(1, 0) y = x – 2x + 3 2 Now area bounded by lineAB and parabola is equalto 1 2 2 1 2 (4 2 (x 2x 3))dx       = 4 2 3 sq. units. Thus required area = 4 2 8 2 4 2 3 3   sq. units.
  • 11. Example 5 : Area bounded bythe curves y= sinx, tangent drawn to it at x = 0 and the line x = 2  , is equalto (A) 2 4 sq. units 2   (B) 2 4 sq. units 4   (C) 2 2 sq.units 4   (D) 2 2 sq. units 2   Solution: The tangent drawnto y= sinxat x = 0 is the line y= x. Clearly the line y= x lies above the graph of y= sinx x 0, 2         . Thus required area / 2 0 (x sin x)dx     / 2 2 2 0 x 4 cos x 2 4               sq. units. Example 6 : IfA(n) represents the area bounded bythe curve y= n. lnx, where n N  and n> 1, the x-axis and the lines x = 1 and x= e, then the value ofA(n) + nA(n–1) is equalto (A) 2 n e 1  (B) 2 n e 1  (C) n2 (D) en2 Solution: A(n) = n e e e 1 1 1 n x dx n n x.x dx n              l l  A(n – 1) = (n – 1)  A(n) + nA(n – 1) = n + n(n – 1) = n2 Example 7 : Value ofthe parametera such that the area bounded byy= a2 x2 + ax + 1, coordinateaxes and the line x = 1, attains it’s least value, is equalto (A) – 1 4 (B) – 1 2 (C) 3 4  (D) –1
  • 12. Solution: a2 x2 + ax + 1 is clearlypositive for allreal values of x.Area under consideration 1 2 2 2 0 a a (a x ax 1)dx 1 3 2        2 1 (2a 3a 6) 6    2 1 3 9 18 2 a a 6 6 2 16 16                  = 2 1 3 39 2 a 6 4 8                 which is clearlyminimumfor a = – 3 4 . Example 8 : Area oftheregion which consists ofallthe points satisfying the conditions|x– y| + |x+ y|  8 and xy  2, is equalto (A) 4(7 – ln8) sq. units (B) 4 (9 – ln8) sq. units (C) 2(7 – ln8) sq. units (D) 2 (9 – ln 8) sq. units Solution: The expression|x– y| + |x+ y|  8, represents the interior regionofthe square formedbythe lines x 4, y 4 and xy 2    represents the regionlying inside the hyperbola xy= 2. Required area,   4 4 1/2 1/2 2 2 4 dx 2 4x 2 nx x                 l = 4(7 – 3 ln2) sq. units x = –4 x = 4 y = 4 y = x D A x C B y y = –4 y = –x Example 9 : Apoint Pmoves inxyplaneinsuchawaythat [|x|]+ [|y|]=1, where [.] denotesthe greatest integer function.Areaofthe region representing allpossible positions ofthe point Pis equalto (A) 4 sq. units (B) 16 sq. units (C) 2 2 sq. units (D) 8 sq. units
  • 13. Solution: If [|x|] = 1 and [|y|] = 0 then 1 | x | 2, 0 | y | 1     x ( 2, 1] [1, 2), y ( 1,1)        if [|x|] = 0, [|y|] = 1 Then x ( 1, 1), y ( 2, 1] [1,2]       y x –2 2 –2 –1 1 1 –1 O 2 Area ofrequired region = 4(2 – 1) (1 – (–1)) = 8 sq. units. Example 10 : Area enclosed bythe curve y= f(x) defined parametricallyas 2 2 2 1 t 2t x , y 1 t 1 t      is equalto (A) sq.units  (B) / 2 sq. units  (C) 3 sq. units 4  (D) 3 2  sq. units Solution: Clearlyt canbe any real number Let 2 2 1 tan t tan x 1 tan          x cos2   and 2 2tan y sin 2 1 tan        x2 + y2 = 1 Thus required area = 2 .1   sq. units.