SlideShare uma empresa Scribd logo
1 de 14
Chap. 10. Fourier Series, Integrals, and TransformsChap. 10. Fourier Series, Integrals, and Transforms
- Fourier series: series of cosine and sine terms
- for general periodic functions (even discontinuous periodic func.)
- for ODE, PDE problems
(more universal than Taylor series)
10.1. Periodic Functions. Trigonometric Series10.1. Periodic Functions. Trigonometric Series
- Periodic function: f(x+p) = f(x) for all x; period=p
- Examples) Periodic instabilities in rheological processesPeriodic instabilities in rheological processes
Spinning process
Tubular film blowing process
Flow
direction
film thickness
at die
at take-up
- f(x + np) = f(x) for all x (n: integer)
- h(x) = af(x) + bg(x) (f & g with period p; a & b: constants)  h(x) with period p.
Trigonometric SeriesTrigonometric Series
- Trigonometric series of function f(x) with period p=2:
(ak,bk: constant coefficients)
10.2. Fourier Series10.2. Fourier Series
- Representation of periodic function f(x) in terms of cosine and sine functions
Euler Formulas for the Fourier Coefficients
0 1 1 2 2f (x) a a cosx b sin x a cos2x b sin 2x= + + + + +L
0 n n
n 1
f (x) a (a cosnx b sin nx)
∞
=
⇒ = + +∑ These series converge,
its sum will be a function of period 2
 Fourier SeriesFourier Series
0 n n
n 1
f (x) a (a cosnx b sin nx)
∞
=
= + +∑ (Periodic function of period 2)
(1) Determination of the coefficient term a0
(2) Determination of the coefficients an of the cosine terms
0 n n
n 1
0 n n 0
n 1
f (x)dx a (a cosnx b sin nx) dx
a dx a cosnx dx b sin nx dx 2 a
π π
π π
π π π
π π π
π
∞
− −
=
∞
− − −
=
 
= + + 
 
 = + + = ÷
 
∑∫ ∫
∑∫ ∫ ∫
0
1
a f (x)dx
2
π
ππ −
= ∫
0 n n
n 1
0 n
n 1
n
n 1
f (x)cosmx dx a (a cosnx b sin nx) cosmxdx
1 1
a cosmxdx a cos(n m)xdx cos(n m)xdx
2 2
1 1
a sin(n m)xdx sin(n m)xdx
2 2
π π
π π
π π π
π π π
π π
π π
∞
− −
=
∞
− − −
=
∞
− −
=
 
= + + 
 
  
= + + + −  ÷
  
  
+ + + −  ÷
  
∑∫ ∫
∑∫ ∫ ∫
∑ ∫ ∫
m
1
a f(x)cosmx dx (m 1,2,3,...)
π
ππ −
= =∫
(Except n=m)(Except n=m)
(3) Determination of the coefficients bn of the cosine terms
Summary of These Calculations: Fourier Coefficients, Fourier Series
Fourier Coefficients:
Fourier Series:
,...)2,1n(dxnxsin)x(f
1
b
,...)2,1n(dxnxcos)x(f
1
a
dx)x(f
2
1
a
n
n
0
=
π
=
=
π
=
π
=
∫
∫
∫
π
π−
π
π−
π
π−
( )0 n n
n 1
f (x) a a cosnx b sin nx
∞
=
= + +∑
( )0 n n
n 1
f (x)sin mx dx a a cosnx b sin nx sin mx dx
π π
π π
∞
− −
=
 
= + + 
 
∑∫ ∫
,...)3,2,1m(dxmxsin)x(f
1
bm =
π
= ∫
π
π−
Ex.1Ex.1) Rectangular Wave
f(x) = -k (-<x<0) & k (0<x<); f(x+2)=f(x)
(See Figure. 238 for partial sums of Fourier series )






+++
π
=⇒






π
==
π
==
π
=
π−
π
=


 +−
π
=
π
=
=


 +−
π
=
π
=
=
π
=
∫∫∫
∫∫∫
∫
π
π−
π
π−
π
π−
π
π−
π
π−
x5sin
5
1
x3sin
3
1
xsin
k4
)x(f
,...
5
k4
b,0b,
3
k4
b,0b,
k4
b
)ncos1(
n
k2
dxnxsin)k(dxnxsin)k(
1
dxnxsin)x(f
1
b
0dxnxcos)k(dxnxcos)k(
1
dxnxcos)x(f
1
a
0dx)x(f
2
1
a
54321
0
0
n
0
0
n
0
k
-  x
f(x)
-k
Orthogonality of the Trigonometric SystemOrthogonality of the Trigonometric System
- Trigonometric system is orthogonal on the interval -  x  
Convergence and Sum of Fourier SeriesConvergence and Sum of Fourier Series
Theorem 1Theorem 1: A periodic function f(x) (period 2, -  x  )
~ piecewise continuous
~ with a left-hand derivative and right-hand derivative at each point
 Fourier series of f(x) is convergent. Its sum is f(x).
)nmincluding(0dxnxsinmxcos
)nm(0dxnxsinmxsin),nm(0dxnxcosmxcos
==
≠=≠=
∫
∫∫
π
π−
π
π−
π
π−
)M)x(''f(dxnxcos)x(''f
n
1
n
nxcos)x('f
dxnxsin)x('f
n
1
n
nxsin)x(f
dxnxcos)x(f
1
a
22
n
<
π
−
π
=
π
−
π
=
π
=
∫
∫∫
π
π−
π
π−
π
π−
π
π−
π
π−
2n222n
n
M2
b,
n
M2
Mdx
n
1
dxnxcos)x(''f
n
1
a ==
π
<
π
= ∫∫
π
π−
π
π−






+++++++ 22220
3
1
3
1
2
1
2
1
11M2a~)x(fConvergent !
At discontinuous point, Fourier series
converge to the average, (f(x+)+f(x-))/2)
10.3. Functions of Any Period p=2L10.3. Functions of Any Period p=2L
- Transition from period p=2 to period p=2L
- Function f(x) with period p=2L:
(Trigonometric SeriesTrigonometric Series)
( ) ( )
)v(g)x(f
LxL
Lv
xv
L
n
v
→
≤≤−
π
=⇔π≤≤π−
π
=
,...)2,1n(dx
L
xn
sin)x(f
L
1
b
,...)2,1n(dx
L
xn
cos)x(f
L
1
a,dx)x(f
L2
1
a
L
L
n
L
L
n
L
L
0
=




 π
=
=




 π
==
∫
∫∫
−
−−
0 n n
n 1
n n
f (x) a a cos x b sin x
L L
π π∞
=
    
= + + ÷ ÷  ÷
    
∑
,...)2,1n(dvnvsin)v(f
1
b
,...)2,1n(dvnvcos)v(g
1
a,dv)v(g
2
1
a
n
n0
=
π
=
=
π
=
π
=
∫
∫∫
π
π−
π
π−
π
π−
( )0 n n
n 1
g(v) a a cosnv b sin nv
∞
=
= + +∑
Ex.1Ex.1) Periodic square wave
f(x) = 0 (-2 < x < -1); k (-1 < x < 1); 0 (1 < x < 2) p=2L=4, L=2
Ex. 2Ex. 2) Half-wave rectifier
u(t) = 0 (-L < t < 0); Esint (0 < t < L)
p = 2L = 2/
k
-1 1 x
f(x)
0dx
2
xn
sink
2
1
b
,...)11,7,3n(
n
k2
a,...),9,5,1n(
n
k2
a
2
n
sin
n
k2
dx
2
xn
cosk
2
1
a,
2
k
dxk
4
1
dx)x(f
L2
1
a
1
1
n
nn
1
1
n
1
1
L
L
0
=




 π
=
=
π
−==
π
=⇒
π
π
=




 π
====
∫
∫∫∫
−
−−−






−
π
+
π
−
π
π
+= x
2
5
cos
5
1
x
2
3
cos
3
1
x
2
cos
k2
2
k
)x(f
k
-/ 0
u(t)
/
10.4. Even and Odd Functions. Half-Range Expansions10.4. Even and Odd Functions. Half-Range Expansions
- If a function is even or odd  more compact form of Fourier series
Even and Odd FunctionsEven and Odd Functions
Even function y=g(x): g(-x) = g(x) for all x (symmetric w.r.t. y-axis)
Odd function y=g(x): g(-x) = -g(x) for all x
Three Key FactsThree Key Facts
(1) For even function, g(x),
(2) For odd function, h(x),
(3) Production of an even and an odd function  odd function
let q(x) = g(x)h(x), then q(-x) = g(-x)h(-x) = -g(x)h(x) = -q(x)
x
g(x)
Even function
x
g(x)
Odd function
∫∫ =
−
L
0
L
L
dx)x(g2dx)x(g
0dx)x(h
L
L
=∫−
In the Fourier series,
f(x) even  f(x)sin(nx/L) odd, then bn=0
f(x) odd  f(x)cos(nx/L) odd, then a0 & an=0
Theorem 1Theorem 1: Fourier cosine series, Fourier sine seriesFourier cosine series, Fourier sine series
(1) Fourier cosine series for even function with period 2L
(2) Fourier sine series for odd function with period 2L






=




 π
== ∫∫
L
0
n
L
0
0 ,...)2,1n(dx
L
xn
cos)x(f
L
2
a,dx)x(f
L
1
a∑
∞
=





 π
+=
1n
n0
L
xn
cosaa)x(f
( ) 





=
π
=
π
= ∫∫
ππ
0
n
0
0 ,...)2,1n(dxnxcos)x(f
2
a,dx)x(f
1
a( )∑
∞
=
+=
1n
n0 nxcosaa)x(f
For even function with period 2






=




 π
= ∫
L
0
n ,...)2,1n(dx
L
xn
sin)x(f
L
2
b∑
∞
=





 π
=
1n
n
L
xn
sinb)x(f
( ) 





=
π
= ∫
π
0
n ,...)2,1n(dxnxsin)x(f
2
b( )∑
∞
=
=
1n
n nxsinb)x(f
For odd function with period 2
Theorem 2Theorem 2: Sum of functionsSum of functions
- Fourier coefficients of a sum of f1 + f2
 sums of the corresponding Fourier coefficients of f1 and f2.
- Fourier coefficients of cf  c times the corresponding coefficients of f.
Ex. 1Ex. 1) Rectangular pulse
Ex. 2Ex. 2) Sawtooth wave: f(x) = x +  (- < x < ) and f(x + ) = f(x)
for f2 = :  
for odd f1 = x 






+++
π
=⇒ x5sin
5
1
x3sin
3
1
xsin
k4
)x(f + k+ k
previous result by Ex.1 in 10.2
2k
-  x
f(x)
-  x
f(x)
)f,xf(fff 2121 π==+=
π
π
−= ncos
2
bn






−+−+π=⇒ x3sin
3
1
x2sin
2
1
xsin2)x(f
Half-Range ExpansionsHalf-Range Expansions
Ex. 1Ex. 1) “Triangle” and its-half-range expansions
x
f(x)
L
f(x)
L x
even periodic extension feven periodic extension f11
(period: 2L)
L
f(x)
x
odd periodic extension fodd periodic extension f22
(period: 2L)
x
f(x)
L/2 L0
k
Lx
2
L
)xL(
L
k2
;
2
L
x0x
L
k2
)x(f <<−<<=
(a) Even periodic extension: use ∑
∞
=





 π
+=
1n
n0
L
xn
cosaa)x(f
(b) Odd periodic extension: use ∑
∞
=





 π
=
1n
n
L
xn
sinb)x(f
10.7. Approximation by Trigonometric Polynomials10.7. Approximation by Trigonometric Polynomials
- Fourier series ~ applied to approximation theoryapproximation theory
- Trigonometric polynomial of degree N:
- Total square error:
- Determination of the coefficients of F(x) for minimum E
( )∑=
++≈
N
1n
nn0 nxsinbnxcosaa)x(f
( )∑=
++=
N
1n
nn0 nxsinBnxcosAA)x(F (Minimize the error by usage of the F(x) !)
∫
π
π−
−= dx)Ff(E 2
∫∫∫
π
π−
π
π−
π
π−
+−= dxFfFdx2dxfE 22
( )2
N
2
1
2
N
2
1
2
0
2
BBAAA2dxF ++++++π=∫
π
π−






 =π== ∫∫∫
π
π−
π
π−
π
π−
0dx)mx)(sinnx(cos;nxdxsinnxdxcos 22
( )NN11NN1100 bBbBaAaAaA2fFdx ++++++π=∫
π
π−







π
=
π
= ∫∫
π
π−
π
π−
,dxnxcos)x(f
1
a,dx)x(f
2
1
a n0






++π+





++π−=⇒ ∑∑∫ ==
π
π−
N
1n
2
n
2
n
2
0
N
1n
nnnn00
2
)BA(A2)bBaA(aA22dxfE
nnnn
N
1n
0
n
0
n
2
0
2*
bB,aAwhen)ba(a2dxfE ==





++π−= ∑∫ =
π
π−
( ) ( )





−+−+−π=− ∑=
N
1n
2
nn
2
nn
2
00
*
)bB()aA(aA2EE (E - E*  0)(E - E*  0)
Theorem 1Theorem 1: Minimum square error
- Total square error, E, is minimum iff coefficients of F are the Fourier coefficients of f.
- Minimum value is E*
- From E*, better approximation as N increases
Bessel inequalityBessel inequality:
Parseval’s equality:
Ex. 1Ex. 1) Square error for the sawtooth wave
∫∑
π
π−
∞
= π
≤++ dxf
1
)ba(a2 2
1n
0
n
0
n
2
0 for any f(x)
∫∑
π
π−
∞
= π
=++ dxf
1
)ba(a2 2
1n
0
n
0
n
2
0

Mais conteúdo relacionado

Mais procurados

Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcRiyandika Jastin
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application Yana Qlah
 
Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula Deep Dalsania
 
Half range sine cosine fourier series
Half range sine cosine fourier seriesHalf range sine cosine fourier series
Half range sine cosine fourier seriesHardik Parmar
 
Lecture 5 6_7 - divide and conquer and method of solving recurrences
Lecture 5 6_7 - divide and conquer and method of solving recurrencesLecture 5 6_7 - divide and conquer and method of solving recurrences
Lecture 5 6_7 - divide and conquer and method of solving recurrencesjayavignesh86
 
Boundary Value Problems - Finite Difference
Boundary Value Problems - Finite DifferenceBoundary Value Problems - Finite Difference
Boundary Value Problems - Finite DifferenceMohammad Tawfik
 
Secent method
Secent methodSecent method
Secent methodritu1806
 
Crout s method for solving system of linear equations
Crout s method for solving system of linear equationsCrout s method for solving system of linear equations
Crout s method for solving system of linear equationsSugathan Velloth
 
Application of analytic function
Application of analytic functionApplication of analytic function
Application of analytic functionDr. Nirav Vyas
 
Gaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equationGaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equationStudent
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference InterpolationVARUN KUMAR
 
Partial differential equation &amp; its application.
Partial differential equation &amp; its application.Partial differential equation &amp; its application.
Partial differential equation &amp; its application.isratzerin6
 

Mais procurados (20)

Lecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etcLecture 04 newton-raphson, secant method etc
Lecture 04 newton-raphson, secant method etc
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application
 
Gauss Forward And Backward Central Difference Interpolation Formula
 Gauss Forward And Backward Central Difference Interpolation Formula  Gauss Forward And Backward Central Difference Interpolation Formula
Gauss Forward And Backward Central Difference Interpolation Formula
 
Half range sine cosine fourier series
Half range sine cosine fourier seriesHalf range sine cosine fourier series
Half range sine cosine fourier series
 
senior seminar
senior seminarsenior seminar
senior seminar
 
2nd order ode applications
2nd order ode applications2nd order ode applications
2nd order ode applications
 
Lecture 5 6_7 - divide and conquer and method of solving recurrences
Lecture 5 6_7 - divide and conquer and method of solving recurrencesLecture 5 6_7 - divide and conquer and method of solving recurrences
Lecture 5 6_7 - divide and conquer and method of solving recurrences
 
Boundary Value Problems - Finite Difference
Boundary Value Problems - Finite DifferenceBoundary Value Problems - Finite Difference
Boundary Value Problems - Finite Difference
 
maths
maths maths
maths
 
Secant method
Secant methodSecant method
Secant method
 
Secent method
Secent methodSecent method
Secent method
 
Gauss sediel
Gauss sedielGauss sediel
Gauss sediel
 
Crout s method for solving system of linear equations
Crout s method for solving system of linear equationsCrout s method for solving system of linear equations
Crout s method for solving system of linear equations
 
Application of analytic function
Application of analytic functionApplication of analytic function
Application of analytic function
 
Gaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equationGaussian elimination method & homogeneous linear equation
Gaussian elimination method & homogeneous linear equation
 
Secant Method
Secant MethodSecant Method
Secant Method
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 
Partial differential equation &amp; its application.
Partial differential equation &amp; its application.Partial differential equation &amp; its application.
Partial differential equation &amp; its application.
 
Chapter 2 (maths 3)
Chapter 2 (maths 3)Chapter 2 (maths 3)
Chapter 2 (maths 3)
 

Destaque

fourier series
fourier seriesfourier series
fourier series8laddu8
 
Clutches & brakes
Clutches & brakesClutches & brakes
Clutches & brakesMANJUNATH N
 
007a velocity by instantaneousaxis
007a velocity by instantaneousaxis007a velocity by instantaneousaxis
007a velocity by instantaneousaxisphysics101
 
Ch 4 CED (Concept in Engineering Design)
Ch 4 CED (Concept in Engineering Design)Ch 4 CED (Concept in Engineering Design)
Ch 4 CED (Concept in Engineering Design)Prem Kumar Soni
 
Fourier series expansion
Fourier series expansionFourier series expansion
Fourier series expansionFrancesco Zoino
 
Aplicaicones de las series de fourier
Aplicaicones de las series de fourierAplicaicones de las series de fourier
Aplicaicones de las series de fouriernorelis15
 
Fourier series and fourier integral
Fourier series and fourier integralFourier series and fourier integral
Fourier series and fourier integralashuuhsaqwe
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsJayanshu Gundaniya
 
numerical differentiation&integration
numerical differentiation&integrationnumerical differentiation&integration
numerical differentiation&integration8laddu8
 
Important Questions of fourier series with theoretical study Engg. Mathem...
Important Questions  of  fourier series with theoretical study   Engg. Mathem...Important Questions  of  fourier series with theoretical study   Engg. Mathem...
Important Questions of fourier series with theoretical study Engg. Mathem...Mohammad Imran
 
seven cylinder engine
seven cylinder engine seven cylinder engine
seven cylinder engine Nilesh Thorwe
 
Gate material civil engineering, environmental engineering
Gate material   civil engineering, environmental engineeringGate material   civil engineering, environmental engineering
Gate material civil engineering, environmental engineeringklirantga
 
Solved numerical problems of fourier series
Solved numerical problems of fourier seriesSolved numerical problems of fourier series
Solved numerical problems of fourier seriesMohammad Imran
 
Clutch(single and multi plate)
Clutch(single and multi plate)Clutch(single and multi plate)
Clutch(single and multi plate)10me027
 

Destaque (20)

fourier series
fourier seriesfourier series
fourier series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Clutches & brakes
Clutches & brakesClutches & brakes
Clutches & brakes
 
007a velocity by instantaneousaxis
007a velocity by instantaneousaxis007a velocity by instantaneousaxis
007a velocity by instantaneousaxis
 
1532 fourier series
1532 fourier series1532 fourier series
1532 fourier series
 
Ch 4 CED (Concept in Engineering Design)
Ch 4 CED (Concept in Engineering Design)Ch 4 CED (Concept in Engineering Design)
Ch 4 CED (Concept in Engineering Design)
 
Fourier series expansion
Fourier series expansionFourier series expansion
Fourier series expansion
 
Fourier series
Fourier series Fourier series
Fourier series
 
Aplicaicones de las series de fourier
Aplicaicones de las series de fourierAplicaicones de las series de fourier
Aplicaicones de las series de fourier
 
Fourier series and fourier integral
Fourier series and fourier integralFourier series and fourier integral
Fourier series and fourier integral
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
numerical differentiation&integration
numerical differentiation&integrationnumerical differentiation&integration
numerical differentiation&integration
 
Important Questions of fourier series with theoretical study Engg. Mathem...
Important Questions  of  fourier series with theoretical study   Engg. Mathem...Important Questions  of  fourier series with theoretical study   Engg. Mathem...
Important Questions of fourier series with theoretical study Engg. Mathem...
 
SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4SDEE: Lectures 3 and 4
SDEE: Lectures 3 and 4
 
seven cylinder engine
seven cylinder engine seven cylinder engine
seven cylinder engine
 
Gate material civil engineering, environmental engineering
Gate material   civil engineering, environmental engineeringGate material   civil engineering, environmental engineering
Gate material civil engineering, environmental engineering
 
Solved numerical problems of fourier series
Solved numerical problems of fourier seriesSolved numerical problems of fourier series
Solved numerical problems of fourier series
 
Fourier series and transforms
Fourier series and transformsFourier series and transforms
Fourier series and transforms
 
Indian Films Women Sex Roles
Indian Films Women Sex RolesIndian Films Women Sex Roles
Indian Films Women Sex Roles
 
Clutch(single and multi plate)
Clutch(single and multi plate)Clutch(single and multi plate)
Clutch(single and multi plate)
 

Semelhante a 1531 fourier series- integrals and trans

Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptshivamvadgama50
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsA Jorge Garcia
 
Fourier 3
Fourier 3Fourier 3
Fourier 3nugon
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3Amin khalil
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfhabtamu292245
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralJelaiAujero
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10Yasser Ahmed
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctionsSufyan Sahoo
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1Ans Ali
 
Difrentiation
DifrentiationDifrentiation
Difrentiationlecturer
 
The chain rule
The chain ruleThe chain rule
The chain ruleJ M
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 

Semelhante a 1531 fourier series- integrals and trans (20)

Fourier series
Fourier seriesFourier series
Fourier series
 
Derivatives
DerivativesDerivatives
Derivatives
 
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.pptRvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
Rvtvtbthtbrvrvthrbrhtjrhrjtjrgtjtgrhrpde.ppt
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
 
Seismic data processing lecture 3
Seismic data processing lecture 3Seismic data processing lecture 3
Seismic data processing lecture 3
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Limit and continuity
Limit and continuityLimit and continuity
Limit and continuity
 
Math 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdfMath 1102-ch-3-lecture note Fourier Series.pdf
Math 1102-ch-3-lecture note Fourier Series.pdf
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
3. Functions II.pdf
3. Functions II.pdf3. Functions II.pdf
3. Functions II.pdf
 
exponen dan logaritma
exponen dan logaritmaexponen dan logaritma
exponen dan logaritma
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
Applied numerical methods lec10
Applied numerical methods lec10Applied numerical methods lec10
Applied numerical methods lec10
 
03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
chap 2 Ex#1.1
chap 2 Ex#1.1chap 2 Ex#1.1
chap 2 Ex#1.1
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 

Mais de Dr Fereidoun Dejahang

27 j20 my news punch -dr f dejahang 27-01-2020
27 j20 my news punch -dr f dejahang  27-01-202027 j20 my news punch -dr f dejahang  27-01-2020
27 j20 my news punch -dr f dejahang 27-01-2020Dr Fereidoun Dejahang
 
028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrun028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrunDr Fereidoun Dejahang
 
026 fast react-productivity improvement
026 fast react-productivity improvement026 fast react-productivity improvement
026 fast react-productivity improvementDr Fereidoun Dejahang
 
022 b construction productivity-write
022 b construction productivity-write022 b construction productivity-write
022 b construction productivity-writeDr Fereidoun Dejahang
 
016 communication in construction sector
016 communication in construction sector016 communication in construction sector
016 communication in construction sectorDr Fereidoun Dejahang
 
014 changes-cost overrun measurement
014 changes-cost overrun measurement014 changes-cost overrun measurement
014 changes-cost overrun measurementDr Fereidoun Dejahang
 
013 changes in construction projects
013 changes in construction projects013 changes in construction projects
013 changes in construction projectsDr Fereidoun Dejahang
 

Mais de Dr Fereidoun Dejahang (20)

27 j20 my news punch -dr f dejahang 27-01-2020
27 j20 my news punch -dr f dejahang  27-01-202027 j20 my news punch -dr f dejahang  27-01-2020
27 j20 my news punch -dr f dejahang 27-01-2020
 
28 dej my news punch rev 28-12-2019
28 dej my news punch rev 28-12-201928 dej my news punch rev 28-12-2019
28 dej my news punch rev 28-12-2019
 
16 fd my news punch rev 16-12-2019
16 fd my news punch rev 16-12-201916 fd my news punch rev 16-12-2019
16 fd my news punch rev 16-12-2019
 
029 fast-tracking projects
029 fast-tracking projects029 fast-tracking projects
029 fast-tracking projects
 
028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrun028 fast-tracking projects &amp; cost overrun
028 fast-tracking projects &amp; cost overrun
 
027 fast-tracked projects-materials
027 fast-tracked projects-materials027 fast-tracked projects-materials
027 fast-tracked projects-materials
 
026 fast react-productivity improvement
026 fast react-productivity improvement026 fast react-productivity improvement
026 fast react-productivity improvement
 
025 enterprise resources management
025 enterprise resources management025 enterprise resources management
025 enterprise resources management
 
022 b construction productivity-write
022 b construction productivity-write022 b construction productivity-write
022 b construction productivity-write
 
022 a construction productivity (2)
022 a construction productivity (2)022 a construction productivity (2)
022 a construction productivity (2)
 
021 construction productivity (1)
021 construction productivity (1)021 construction productivity (1)
021 construction productivity (1)
 
019 competencies-managers
019 competencies-managers019 competencies-managers
019 competencies-managers
 
018 company productivity
018 company productivity018 company productivity
018 company productivity
 
017 communication
017 communication017 communication
017 communication
 
016 communication in construction sector
016 communication in construction sector016 communication in construction sector
016 communication in construction sector
 
015 changes-process model
015 changes-process model015 changes-process model
015 changes-process model
 
014 changes-cost overrun measurement
014 changes-cost overrun measurement014 changes-cost overrun measurement
014 changes-cost overrun measurement
 
013 changes in construction projects
013 changes in construction projects013 changes in construction projects
013 changes in construction projects
 
012 bussiness planning process
012 bussiness planning process012 bussiness planning process
012 bussiness planning process
 
011 business performance management
011 business performance management011 business performance management
011 business performance management
 

Último

ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxleah joy valeriano
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 

Último (20)

ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptxMusic 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
Music 9 - 4th quarter - Vocal Music of the Romantic Period.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 

1531 fourier series- integrals and trans

  • 1. Chap. 10. Fourier Series, Integrals, and TransformsChap. 10. Fourier Series, Integrals, and Transforms - Fourier series: series of cosine and sine terms - for general periodic functions (even discontinuous periodic func.) - for ODE, PDE problems (more universal than Taylor series) 10.1. Periodic Functions. Trigonometric Series10.1. Periodic Functions. Trigonometric Series - Periodic function: f(x+p) = f(x) for all x; period=p - Examples) Periodic instabilities in rheological processesPeriodic instabilities in rheological processes Spinning process Tubular film blowing process Flow direction film thickness at die at take-up
  • 2. - f(x + np) = f(x) for all x (n: integer) - h(x) = af(x) + bg(x) (f & g with period p; a & b: constants)  h(x) with period p. Trigonometric SeriesTrigonometric Series - Trigonometric series of function f(x) with period p=2: (ak,bk: constant coefficients) 10.2. Fourier Series10.2. Fourier Series - Representation of periodic function f(x) in terms of cosine and sine functions Euler Formulas for the Fourier Coefficients 0 1 1 2 2f (x) a a cosx b sin x a cos2x b sin 2x= + + + + +L 0 n n n 1 f (x) a (a cosnx b sin nx) ∞ = ⇒ = + +∑ These series converge, its sum will be a function of period 2  Fourier SeriesFourier Series 0 n n n 1 f (x) a (a cosnx b sin nx) ∞ = = + +∑ (Periodic function of period 2)
  • 3. (1) Determination of the coefficient term a0 (2) Determination of the coefficients an of the cosine terms 0 n n n 1 0 n n 0 n 1 f (x)dx a (a cosnx b sin nx) dx a dx a cosnx dx b sin nx dx 2 a π π π π π π π π π π π ∞ − − = ∞ − − − =   = + +     = + + = ÷   ∑∫ ∫ ∑∫ ∫ ∫ 0 1 a f (x)dx 2 π ππ − = ∫ 0 n n n 1 0 n n 1 n n 1 f (x)cosmx dx a (a cosnx b sin nx) cosmxdx 1 1 a cosmxdx a cos(n m)xdx cos(n m)xdx 2 2 1 1 a sin(n m)xdx sin(n m)xdx 2 2 π π π π π π π π π π π π π π ∞ − − = ∞ − − − = ∞ − − =   = + +       = + + + −  ÷       + + + −  ÷    ∑∫ ∫ ∑∫ ∫ ∫ ∑ ∫ ∫ m 1 a f(x)cosmx dx (m 1,2,3,...) π ππ − = =∫ (Except n=m)(Except n=m)
  • 4. (3) Determination of the coefficients bn of the cosine terms Summary of These Calculations: Fourier Coefficients, Fourier Series Fourier Coefficients: Fourier Series: ,...)2,1n(dxnxsin)x(f 1 b ,...)2,1n(dxnxcos)x(f 1 a dx)x(f 2 1 a n n 0 = π = = π = π = ∫ ∫ ∫ π π− π π− π π− ( )0 n n n 1 f (x) a a cosnx b sin nx ∞ = = + +∑ ( )0 n n n 1 f (x)sin mx dx a a cosnx b sin nx sin mx dx π π π π ∞ − − =   = + +    ∑∫ ∫ ,...)3,2,1m(dxmxsin)x(f 1 bm = π = ∫ π π−
  • 5. Ex.1Ex.1) Rectangular Wave f(x) = -k (-<x<0) & k (0<x<); f(x+2)=f(x) (See Figure. 238 for partial sums of Fourier series )       +++ π =⇒       π == π == π = π− π =    +− π = π = =    +− π = π = = π = ∫∫∫ ∫∫∫ ∫ π π− π π− π π− π π− π π− x5sin 5 1 x3sin 3 1 xsin k4 )x(f ,... 5 k4 b,0b, 3 k4 b,0b, k4 b )ncos1( n k2 dxnxsin)k(dxnxsin)k( 1 dxnxsin)x(f 1 b 0dxnxcos)k(dxnxcos)k( 1 dxnxcos)x(f 1 a 0dx)x(f 2 1 a 54321 0 0 n 0 0 n 0 k -  x f(x) -k
  • 6. Orthogonality of the Trigonometric SystemOrthogonality of the Trigonometric System - Trigonometric system is orthogonal on the interval -  x   Convergence and Sum of Fourier SeriesConvergence and Sum of Fourier Series Theorem 1Theorem 1: A periodic function f(x) (period 2, -  x  ) ~ piecewise continuous ~ with a left-hand derivative and right-hand derivative at each point  Fourier series of f(x) is convergent. Its sum is f(x). )nmincluding(0dxnxsinmxcos )nm(0dxnxsinmxsin),nm(0dxnxcosmxcos == ≠=≠= ∫ ∫∫ π π− π π− π π− )M)x(''f(dxnxcos)x(''f n 1 n nxcos)x('f dxnxsin)x('f n 1 n nxsin)x(f dxnxcos)x(f 1 a 22 n < π − π = π − π = π = ∫ ∫∫ π π− π π− π π− π π− π π− 2n222n n M2 b, n M2 Mdx n 1 dxnxcos)x(''f n 1 a == π < π = ∫∫ π π− π π−       +++++++ 22220 3 1 3 1 2 1 2 1 11M2a~)x(fConvergent ! At discontinuous point, Fourier series converge to the average, (f(x+)+f(x-))/2)
  • 7. 10.3. Functions of Any Period p=2L10.3. Functions of Any Period p=2L - Transition from period p=2 to period p=2L - Function f(x) with period p=2L: (Trigonometric SeriesTrigonometric Series) ( ) ( ) )v(g)x(f LxL Lv xv L n v → ≤≤− π =⇔π≤≤π− π = ,...)2,1n(dx L xn sin)x(f L 1 b ,...)2,1n(dx L xn cos)x(f L 1 a,dx)x(f L2 1 a L L n L L n L L 0 =      π = =      π == ∫ ∫∫ − −− 0 n n n 1 n n f (x) a a cos x b sin x L L π π∞ =      = + + ÷ ÷  ÷      ∑ ,...)2,1n(dvnvsin)v(f 1 b ,...)2,1n(dvnvcos)v(g 1 a,dv)v(g 2 1 a n n0 = π = = π = π = ∫ ∫∫ π π− π π− π π− ( )0 n n n 1 g(v) a a cosnv b sin nv ∞ = = + +∑
  • 8. Ex.1Ex.1) Periodic square wave f(x) = 0 (-2 < x < -1); k (-1 < x < 1); 0 (1 < x < 2) p=2L=4, L=2 Ex. 2Ex. 2) Half-wave rectifier u(t) = 0 (-L < t < 0); Esint (0 < t < L) p = 2L = 2/ k -1 1 x f(x) 0dx 2 xn sink 2 1 b ,...)11,7,3n( n k2 a,...),9,5,1n( n k2 a 2 n sin n k2 dx 2 xn cosk 2 1 a, 2 k dxk 4 1 dx)x(f L2 1 a 1 1 n nn 1 1 n 1 1 L L 0 =      π = = π −== π =⇒ π π =      π ==== ∫ ∫∫∫ − −−−       − π + π − π π += x 2 5 cos 5 1 x 2 3 cos 3 1 x 2 cos k2 2 k )x(f k -/ 0 u(t) /
  • 9. 10.4. Even and Odd Functions. Half-Range Expansions10.4. Even and Odd Functions. Half-Range Expansions - If a function is even or odd  more compact form of Fourier series Even and Odd FunctionsEven and Odd Functions Even function y=g(x): g(-x) = g(x) for all x (symmetric w.r.t. y-axis) Odd function y=g(x): g(-x) = -g(x) for all x Three Key FactsThree Key Facts (1) For even function, g(x), (2) For odd function, h(x), (3) Production of an even and an odd function  odd function let q(x) = g(x)h(x), then q(-x) = g(-x)h(-x) = -g(x)h(x) = -q(x) x g(x) Even function x g(x) Odd function ∫∫ = − L 0 L L dx)x(g2dx)x(g 0dx)x(h L L =∫−
  • 10. In the Fourier series, f(x) even  f(x)sin(nx/L) odd, then bn=0 f(x) odd  f(x)cos(nx/L) odd, then a0 & an=0 Theorem 1Theorem 1: Fourier cosine series, Fourier sine seriesFourier cosine series, Fourier sine series (1) Fourier cosine series for even function with period 2L (2) Fourier sine series for odd function with period 2L       =      π == ∫∫ L 0 n L 0 0 ,...)2,1n(dx L xn cos)x(f L 2 a,dx)x(f L 1 a∑ ∞ =       π += 1n n0 L xn cosaa)x(f ( )       = π = π = ∫∫ ππ 0 n 0 0 ,...)2,1n(dxnxcos)x(f 2 a,dx)x(f 1 a( )∑ ∞ = += 1n n0 nxcosaa)x(f For even function with period 2       =      π = ∫ L 0 n ,...)2,1n(dx L xn sin)x(f L 2 b∑ ∞ =       π = 1n n L xn sinb)x(f ( )       = π = ∫ π 0 n ,...)2,1n(dxnxsin)x(f 2 b( )∑ ∞ = = 1n n nxsinb)x(f For odd function with period 2
  • 11. Theorem 2Theorem 2: Sum of functionsSum of functions - Fourier coefficients of a sum of f1 + f2  sums of the corresponding Fourier coefficients of f1 and f2. - Fourier coefficients of cf  c times the corresponding coefficients of f. Ex. 1Ex. 1) Rectangular pulse Ex. 2Ex. 2) Sawtooth wave: f(x) = x +  (- < x < ) and f(x + ) = f(x) for f2 = :   for odd f1 = x        +++ π =⇒ x5sin 5 1 x3sin 3 1 xsin k4 )x(f + k+ k previous result by Ex.1 in 10.2 2k -  x f(x) -  x f(x) )f,xf(fff 2121 π==+= π π −= ncos 2 bn       −+−+π=⇒ x3sin 3 1 x2sin 2 1 xsin2)x(f
  • 12. Half-Range ExpansionsHalf-Range Expansions Ex. 1Ex. 1) “Triangle” and its-half-range expansions x f(x) L f(x) L x even periodic extension feven periodic extension f11 (period: 2L) L f(x) x odd periodic extension fodd periodic extension f22 (period: 2L) x f(x) L/2 L0 k Lx 2 L )xL( L k2 ; 2 L x0x L k2 )x(f <<−<<= (a) Even periodic extension: use ∑ ∞ =       π += 1n n0 L xn cosaa)x(f (b) Odd periodic extension: use ∑ ∞ =       π = 1n n L xn sinb)x(f
  • 13. 10.7. Approximation by Trigonometric Polynomials10.7. Approximation by Trigonometric Polynomials - Fourier series ~ applied to approximation theoryapproximation theory - Trigonometric polynomial of degree N: - Total square error: - Determination of the coefficients of F(x) for minimum E ( )∑= ++≈ N 1n nn0 nxsinbnxcosaa)x(f ( )∑= ++= N 1n nn0 nxsinBnxcosAA)x(F (Minimize the error by usage of the F(x) !) ∫ π π− −= dx)Ff(E 2 ∫∫∫ π π− π π− π π− +−= dxFfFdx2dxfE 22 ( )2 N 2 1 2 N 2 1 2 0 2 BBAAA2dxF ++++++π=∫ π π−        =π== ∫∫∫ π π− π π− π π− 0dx)mx)(sinnx(cos;nxdxsinnxdxcos 22 ( )NN11NN1100 bBbBaAaAaA2fFdx ++++++π=∫ π π−        π = π = ∫∫ π π− π π− ,dxnxcos)x(f 1 a,dx)x(f 2 1 a n0
  • 14.       ++π+      ++π−=⇒ ∑∑∫ == π π− N 1n 2 n 2 n 2 0 N 1n nnnn00 2 )BA(A2)bBaA(aA22dxfE nnnn N 1n 0 n 0 n 2 0 2* bB,aAwhen)ba(a2dxfE ==      ++π−= ∑∫ = π π− ( ) ( )      −+−+−π=− ∑= N 1n 2 nn 2 nn 2 00 * )bB()aA(aA2EE (E - E*  0)(E - E*  0) Theorem 1Theorem 1: Minimum square error - Total square error, E, is minimum iff coefficients of F are the Fourier coefficients of f. - Minimum value is E* - From E*, better approximation as N increases Bessel inequalityBessel inequality: Parseval’s equality: Ex. 1Ex. 1) Square error for the sawtooth wave ∫∑ π π− ∞ = π ≤++ dxf 1 )ba(a2 2 1n 0 n 0 n 2 0 for any f(x) ∫∑ π π− ∞ = π =++ dxf 1 )ba(a2 2 1n 0 n 0 n 2 0