Início
Conheça mais
Enviar pesquisa
Carregar
Entrar
Cadastre-se
Anúncio
forecasting.ppt
Denunciar
DejeneDay
Seguir
23 de Mar de 2023
•
0 gostou
0 gostaram
×
Seja o primeiro a gostar disto
mostrar mais
•
4 visualizações
visualizações
×
Vistos totais
0
No Slideshare
0
De incorporações
0
Número de incorporações
0
Check these out next
Executive S&OP Case Study presented at GPSEG
guestdd5f19
Executive S&Op Case Study Gpseg
guest268716d
SMAC Overview
Ole Wegger
forecast
Jawed Khan
Evaluation
SahayaPrabu
Rsh qam11 ch05 ge
Firas Husseini
Simple Regression
Khawaja Naveed
Compiling Analysis Results
Matt Hansen
1
de
32
Top clipped slide
forecasting.ppt
23 de Mar de 2023
•
0 gostou
0 gostaram
×
Seja o primeiro a gostar disto
mostrar mais
•
4 visualizações
visualizações
×
Vistos totais
0
No Slideshare
0
De incorporações
0
Número de incorporações
0
Baixar agora
Baixar para ler offline
Denunciar
Negócios
forecasting matrial
DejeneDay
Seguir
Anúncio
Anúncio
Anúncio
Recomendados
Six Sigma Project- GB
Livanshu Kashyap
1.4K visualizações
•
48 slides
Forecasting of demand (management)
Manthan Chavda
901 visualizações
•
50 slides
Slides for ch05
Firas Husseini
720 visualizações
•
43 slides
05 forecasting
Firas Husseini
4.1K visualizações
•
76 slides
Chapter 16
bmcfad01
14.9K visualizações
•
45 slides
Forecasting Slides
knksmart
93.1K visualizações
•
82 slides
Mais conteúdo relacionado
Similar a forecasting.ppt
(20)
Executive S&OP Case Study presented at GPSEG
guestdd5f19
•
7.7K visualizações
Executive S&Op Case Study Gpseg
guest268716d
•
1.5K visualizações
SMAC Overview
Ole Wegger
•
69 visualizações
forecast
Jawed Khan
•
94 visualizações
Evaluation
SahayaPrabu
•
85 visualizações
Rsh qam11 ch05 ge
Firas Husseini
•
726 visualizações
Simple Regression
Khawaja Naveed
•
6K visualizações
Compiling Analysis Results
Matt Hansen
•
27 visualizações
Oracle Hyperion Financial Close Suite Tips and Tricks
Alithya
•
1.7K visualizações
Attributes.ppt
AlaaAbdelghani8
•
10 visualizações
Time series analysis- Part 2
QuantUniversity
•
745 visualizações
Project KPI
Qimiao Hu
•
88 visualizações
Presentation 4
uliana8
•
235 visualizações
Solutions Manual for Forecasting For Economics And Business 1st Edition by Gl...
HildaLa
•
1.4K visualizações
Quality Control PowerPoint Presentation Slides
SlideTeam
•
234 visualizações
Chapter 7 demand forecasting in a supply chain
sajidsharif2022
•
392 visualizações
Project attrition
digvijayra
•
965 visualizações
Forecasting for Economics and Business 1st Edition Gloria Gonzalez Rivera Sol...
vacenini
•
808 visualizações
Effective Cost Measurement through DMAIC.
Kaustav Lahiri
•
891 visualizações
forecasting
RINUSATHYAN
•
12 visualizações
Mais de DejeneDay
(16)
chapter 6.ppt
DejeneDay
•
1 visão
chapter 3.pptx
DejeneDay
•
12 visualizações
chapter 2 revised.pptx
DejeneDay
•
8 visualizações
CH 4 comp.pptx
DejeneDay
•
2 visualizações
CM CH 2.pptx
DejeneDay
•
3 visualizações
production and cost for RVU.pptx
DejeneDay
•
3 visualizações
compnsation c-1 2015.pptx
DejeneDay
•
13 visualizações
compensationnn-nnn.pdf
DejeneDay
•
2 visualizações
chapter 2 post optimality.pptx
DejeneDay
•
10 visualizações
lp 2.ppt
DejeneDay
•
13 visualizações
forecasting.ppt
DejeneDay
•
5 visualizações
psychometrics chapter one.pptx
DejeneDay
•
14 visualizações
ob exam.docx
DejeneDay
•
5 visualizações
CMC.pptx
DejeneDay
•
7 visualizações
OB chapter 1 ppt.ppt
DejeneDay
•
3 visualizações
evalaution guidlines.pdf
DejeneDay
•
3 visualizações
Anúncio
Último
(20)
9program evaluation.pptx
AbdallahAlasal1
•
0 visão
Kayla Adams personal brand
kaylaadams30
•
0 visão
Bioeast Company Profile.pdf
Danang Setiawan
•
0 visão
14298626.doc
Vy Nguyễn
•
0 visão
Dashboards-w-Examples-Showeet(widescreen).pptx
IdoShaya4
•
0 visão
YASH_PRESENTATION.pptx
Yuvraj309536
•
0 visão
Cassette Air Conditioner for light commercial
Carrier Air Conditioner India
•
0 visão
T1, W2 (Intro to bus)final 4.pptx
YousraEtman
•
0 visão
University of Hertfordshire degree.pdf
lunabarajas816
•
0 visão
IPCSMUMBAI.pptx
AkashRs22
•
0 visão
How to Communicate with Your Dog Energetically.pptx
Essence to Heal
•
0 visão
2022-10-sri-wefox-mobility-platforms one page
Matteo Carbone
•
0 visão
LAPORAN RITASE MOBIL DAILY CV.doc
ardin26
•
0 visão
Chlor-Alkali Market .pdf
pujarathod4
•
0 visão
CP HL MEN.pptx
DaffaDamasYoridho
•
0 visão
OS-SOSU-M1369-CMMS_Intro.pptx
AZLANAiyub
•
0 visão
霍华德大学毕业证办理|Howard文凭购买
yneno
•
0 visão
Discover the Best Outdoor Living and Home Automation Solutions in Melbourne
MVSMelbourne
•
0 visão
CCTVHeadquarters.pdf
DANISHPUTRAMDFARIS
•
0 visão
Factors to Consider While Choosing Bulk Storage Silos.pdf
SodiMate
•
0 visão
forecasting.ppt
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-1 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Quantitative Analysis for Management Forecasting
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-2 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Forecasting Models Moving Average Exponential Smoothing Trend Projections Time Series Methods Forecasting Techniques Delphi Methods Jury of Executive Opinion Sales Force Composite Consumer Market Survey Qualitative Models Causal Methods Regression Analysis Multiple Regression
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-3 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Scatter Diagram for Sales 0 50 100 150 200 250 300 350 400 450 0 2 4 6 8 10 12 Time (Years) Annual Sales Televisions
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-4 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Decomposition of Time Series Time series can be decomposed into: Trend (T): gradual up or down movement over time Seasonality (S): pattern of fluctuations above or below trend line that occurs every year Cycles(C): patterns in data that occur every several years Random variations (R): “blips”in the data caused by chance and unusual situations
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-5 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Product Demand Showing Components -150 -50 50 150 250 350 450 550 650 0 1 2 3 4 5 Time (Years Demand Trend Actual Data Cyclic Random
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-6 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Moving Averages n n) period in (demand : average Moving
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-7 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Calculation of Three-Month Moving Average Month Actual Shed Sales Three-Month Moving Average January 10 February 12 March 13 April 16 3 2 11 13)/3 12 (10 = + + May 19 3 2 13 16)/3 13 (12 = + + June 23 16 19)/3 16 (13 = + + July 26 3 1 19 23)/3 19 (16 = + +
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-8 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Weighted Moving Averages weights ) period in )(demand period for (weight average moving Weighted = n n
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-9 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Calculating Weighted Moving Averages Weights Applied Period 3 Last month 2 Two months ago 1 Three months ago 3*Sales last month + 2*Sales two months ago + 1*Sales three months ago 6 Sum of weights
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-10 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Calculation of Three-Month Moving Average Month Actual Shed Sales Three-Month Moving Average January 10 February 12 March 13 April 16 6 1 12 10)]/6 * (1 12) * (2 13) * [(3 = + + May 19 3 1 14 12)]/6 * (1 13) * (2 16) * [(3 = + + June 23 17 13)]/6 * (1 16) * (2 19) * [(3 = + + July 26 2 1 20 16)]/6 * (1 19) * (2 23) * [(3 = + +
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-11 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Exponential Smoothing New forecast = previous forecast + (previous actual - previous) or: where ( ) 1 1 1 - - - - + = t t t t F A F F actual period previous constant between 0~1 smoothing forecast previous forecast new = = = = -1 1 t t- t A F F
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-12 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Table 5.5
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-13 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Table 5.5 Continued =0.50 Qtr Actual Tonnage Unloaded Forecast using =0.50 1 180 175 2 168 177.50 =175.00+0.50(180-175) 3 159 172.75 =177.50+0.50(168-177.50) 4 175 165.38 =172.25+0.50(159-172.25) 5 190 170.19 =165.38+0.50(175-165.38) 6 205 179.09 =170.19+0.50(190-170.19) 7 180 179.54 =179.09+0.50(180-179.09) 8 182 182.00 =179.54+0.50(182-179.54) 9 ?
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-14 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Trend Projection General regression equation: + = 2 X 2 n X Y X n XY b Y a Y where bX a Y - - = = = intercept axis - variable) (dependent predicted be to variable the of value computed
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-15 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Table5.7
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-16 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Solved Formula
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-17 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Midwestern Manufacturing’s Demand 60 70 80 90 100 110 120 130 140 150 160 1993 1994 1995 1996 1997 1998 1999 2000 2001 Forecast points Trend Line Actual demand line X y 54 . 10 70 . 56 + =
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-18 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Computing Seasonality Indices Using Answering Machine Sales
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-19 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Trend Analysis with Seasonal Indices Y = 1150 + 20x Where x=1,2,…12 for Jan, Feb,….Dec So; Jan =[1150+20(1)]*.957 = 1119.69 Feb =[1150+50(2)]*.851 = 1012.69 Mar =[1150+20(3)]*.904 = 1093.84 . . Dec = [1150*20(12)]*.851 = 1182.89
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-20 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Trend Analysis Example with Seasonality: Trend analysis was used to forecast the number of new hotel registrants (in ooo’s). The following data was used. yr1 yr2 1 Jan 17 17 2 Feb 16 15 3 Mar 16 17 4 Apr 25 24 5 May 24 23 6 June 25 25 7 July 23 24 8 Aug 20 19 9 Sep 20 20 10 Oct 16 15 11 Nov 16 15 12 Dec 17 17
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-21 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 The trend analysis, using year1 data was Y= 20.5 + 0.1455X a) Compute the seasonal index b) Forecast July of year3, October of year3 c) What is the forecast for December if the average yearly demand for year is thought to increase by 10% higher than year1? Trend Analysis Example :
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-22 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Using Regression Analysis to Forecast(Causal) Y Triple A' Sales ($100,000's) X Local Payroll ($100,000,000) 2.0 1 3.0 3 2.5 4 2.0 2 2.0 1 3.5 7
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-23 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Using Regression Analysis to Forecast - continued Sales, Y Payroll, X X2 XY 2.0 1 1 2.0 3.0 3 9 9.0 2.5 4 16 10.0 2.0 2 4 4.0 2.0 1 1 2.0 3.5 7 49 24.5 S Y = 15.0 SX = 18 SX2 = 80 SXY = 51.5
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-24 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Using Regression Analysis to Forecast - continued Calculating the required parameters: ( )( )( ) ( )( ) ( )( ) X . . Ŷ . . . X b Y a . . . X n X Y X n XY b . Y Y X X 25 0 75 1 75 1 3 25 0 5 2 25 0 6 80 5 2 3 6 5 51 5 2 6 15 6 3 6 18 6 3 2 2 2 + = = - = - = = - - = - - = = = = = = =
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-25 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Regression Equation 0 1 2 3 4 0 1 2 3 4 5 6 7 8 Area Payroll ($100,000,000) Triple A's Sale s ($100,000)
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-26 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Methods to evaluate the Casual Regression Equation Standard Error of the Estimate (the standard deviation) Correlation Coefficient -1 < r <1 Coefficient of Determination 0 < r <1 the percent of variation in Y ( the dependent variable ) that is described by the X’s (independent variables ) 2
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-27 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Standard Error of the Estimate - continued ( ) points data of number equation regression the from computed variable dependent the of value point data each of value = = - = - - = n Y Y Y where n Y Y S c c X , Y 2 2 This is the standard deviation of the regression For Payroll example, S = 0.306 Y,X
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-28 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Correlation Coefficient = ( ) [ ] - 2 2 ( ) [ ] - - 2 2 2 Y Y ( Y n X X n - Y X XY n r For Payroll example, r = 0.91
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-29 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Coefficient - Four Values Fig. 5.7
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-30 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Multiple Regression to Forecast #5-32 SUMMARY OUTPUT Regression Statistics Multiple R 0.656652082 R Square 0.431191956 Adjusted R Square 0.374311152 Standard Error 8.302983493 Observations 12 ANOVA df SS MS F Significance F Regression 1 522.6046512 522.6046512 7.580623398 0.020362831 Residual 10 689.3953488 68.93953488 Total 11 1212 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 6.441860465 5.476681644 1.176234239 0.266742687 -5.760948796 18.64466973 # Tourists 1.23255814 0.447666868 2.753293191 0.020362831 0.235094026 2.230022253
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-31 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Multiple Regression to Forecast #5-32 SUMMARY OUTPUT Regression Statistics Multiple R 0.673989793 R Square 0.454262242 Adjusted R Square 0.332987184 Standard Error 8.572787458 Observations 12 ANOVA df SS MS F Significance F Regression 2 550.5658367 275.2829184 3.745718626 0.065528166 Residual 9 661.4341633 73.49268481 Total 11 1212 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 7.720611916 6.022703676 1.281917944 0.231907613 -5.903700728 21.34492456 Year -0.54576985 0.884817709 -0.616816147 0.552637609 -2.547368093 1.455828393 # Tourists 1.438808374 0.570482864 2.522088682 0.032656541 0.148285494 2.729331253
To accompany Quantitative
Analysis for Management, 7e by Render/ Stair 5-32 © 2000 by Prentice Hall, Inc. ,Upper Saddle River, N.J. 07458 Regression SAS printout Problem Attendance Wins 40,000 6 60,000 11 60,000 9 50,000 9 45,000 8 55,000 8 50,000 10 a) What is the dependent variable? b) Plot the data is it correlated?
Anúncio