Início
Conheça mais
Enviar pesquisa
Carregar
Entrar
Cadastre-se
Anúncio
Check these out next
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
harmonylab
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
Deep Learning JP
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
Yukiyoshi Sasao
【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution
cvpaper. challenge
【CVPR 2019】Learning spatio temporal representation with local and global diff...
cvpaper. challenge
Robust Vehicle Localization in Urban Environments Using Probabilistic Maps
Kitsukawa Yuki
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Deep Learning JP
PCAの最終形態GPLVMの解説
弘毅 露崎
1
de
22
Top clipped slide
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization
7 de Jul de 2020
•
0 gostou
1 gostaram
×
Seja o primeiro a gostar disto
mostrar mais
•
713 visualizações
visualizações
×
Vistos totais
0
No Slideshare
0
De incorporações
0
Número de incorporações
0
Baixar agora
Baixar para ler offline
Denunciar
Tecnologia
2020/07/03 Deep Learning JP: http://deeplearning.jp/seminar-2/
Deep Learning JP
Seguir
Deep Learning JP
Anúncio
Anúncio
Anúncio
Recomendados
K means tracker study
Hoang Hai
800 visualizações
•
12 slides
[DL輪読会]BADGR: An Autonomous Self-Supervised Learning-Based Navigation System
Deep Learning JP
1.3K visualizações
•
23 slides
北大調和系 DLゼミ A3C
Tomoya Oda
318 visualizações
•
19 slides
強化学習 DQNからPPOまで
harmonylab
8.7K visualizações
•
45 slides
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
Shunsuke Ono
12.4K visualizações
•
36 slides
[DL輪読会]Geometric Unsupervised Domain Adaptation for Semantic Segmentation
Deep Learning JP
500 visualizações
•
22 slides
Mais conteúdo relacionado
Apresentações para você
(20)
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model (MuZero)
harmonylab
•
4.7K visualizações
[DL輪読会]YOLOv4: Optimal Speed and Accuracy of Object Detection
Deep Learning JP
•
20.1K visualizações
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
Yukiyoshi Sasao
•
2K visualizações
【CVPR 2019】Second-order Attention Network for Single Image Super-Resolution
cvpaper. challenge
•
438 visualizações
【CVPR 2019】Learning spatio temporal representation with local and global diff...
cvpaper. challenge
•
229 visualizações
Robust Vehicle Localization in Urban Environments Using Probabilistic Maps
Kitsukawa Yuki
•
1.1K visualizações
[DL輪読会] Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
Deep Learning JP
•
10.5K visualizações
PCAの最終形態GPLVMの解説
弘毅 露崎
•
23.5K visualizações
FPGAX2016 ドキュンなFPGA
Hiroki Nakahara
•
6.3K visualizações
PCL
Masafumi Noda
•
42.2K visualizações
[DL輪読会]Graph R-CNN for Scene Graph Generation
Deep Learning JP
•
3.6K visualizações
三次元点群処理ライブラリPCLと 統合ロボットシステム研究での 利用例の紹介
Ryohei Ueda
•
24.8K visualizações
Scan Registration for Autonomous Mining Vehicles Using 3D-NDT
Kitsukawa Yuki
•
1.5K visualizações
semantic segmentation サーベイ
yohei okawa
•
4.7K visualizações
CNNの構造最適化手法(第3回3D勉強会)
MasanoriSuganuma
•
945 visualizações
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
Kenta Oono
•
1.9K visualizações
(公開版)FPGAエクストリームコンピューティング2017
Hiroki Nakahara
•
4.3K visualizações
Taking a Deeper Look at the Inverse Compositional Algorithm
Mai Nishimura
•
2.5K visualizações
You Only Look One-level Featureの解説と見せかけた物体検出のよもやま話
Yusuke Uchida
•
9K visualizações
Deep learning入門
magoroku Yamamoto
•
3.7K visualizações
Similar a [DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization
(20)
[DL輪読会]STORM: An Integrated Framework for Fast Joint-Space Model-Predictive C...
Deep Learning JP
•
678 visualizações
これからのコンピュータビジョン技術 - cvpaper.challenge in PRMU Grand Challenge 2016 (PRMU研究会 2...
cvpaper. challenge
•
9.3K visualizações
Deep learning実装の基礎と実践
Seiya Tokui
•
105K visualizações
[DL輪読会]GQNと関連研究,世界モデルとの関係について
Deep Learning JP
•
8.6K visualizações
[DL輪読会]Learning to Navigate in Cities Without a Map
Deep Learning JP
•
1.4K visualizações
2012-03-08 MSS研究会
Kimikazu Kato
•
1.4K visualizações
[DL輪読会]Peeking into the Future: Predicting Future Person Activities and Locat...
Deep Learning JP
•
2.7K visualizações
[DL輪読会]EfficientDet: Scalable and Efficient Object Detection
Deep Learning JP
•
6.9K visualizações
ae-10. 中間まとめ(ディープラーニング)
kunihikokaneko1
•
395 visualizações
【CVPR 2019】Do Better ImageNet Models Transfer Better?
cvpaper. challenge
•
853 visualizações
Top-K Off-Policy Correction for a REINFORCE Recommender System
harmonylab
•
3.7K visualizações
Rainbow
Takahiro Yoshinaga
•
7.4K visualizações
PyTorch, PixyzによるGenerative Query Networkの実装
Shohei Taniguchi
•
517 visualizações
Paper Introduction "RankCompete:Simultaneous ranking and clustering of info...
Kotaro Yamazaki
•
109 visualizações
論文紹介「PointNetLK: Robust & Efficient Point Cloud Registration Using PointNet」
Naoya Chiba
•
3.1K visualizações
ICCV2019 report
Tatsuya Shirakawa
•
4.5K visualizações
(文献紹介)深層学習による動被写体ロバストなカメラの動き推定
Morpho, Inc.
•
349 visualizações
【チュートリアル】コンピュータビジョンによる動画認識 v2
Hirokatsu Kataoka
•
4.9K visualizações
Globally and Locally Consistent Image Completion
harmonylab
•
7.8K visualizações
Dimensionality reduction with t-SNE(Rtsne) and UMAP(uwot) using R packages.
Satoshi Kato
•
7.5K visualizações
Anúncio
Mais de Deep Learning JP
(20)
【DL輪読会】大量API・ツールの扱いに特化したLLM
Deep Learning JP
•
40 visualizações
【DL輪読会】DINOv2: Learning Robust Visual Features without Supervision
Deep Learning JP
•
24 visualizações
【DL輪読会】Poisoning Language Models During Instruction Tuning Instruction Tuning...
Deep Learning JP
•
52 visualizações
【DL輪読会】Egocentric Video Task Translation (CVPR 2023 Highlight)
Deep Learning JP
•
59 visualizações
【DL輪読会】Flow Matching for Generative Modeling
Deep Learning JP
•
766 visualizações
【DL輪読会】Visual Classification via Description from Large Language Models (ICLR...
Deep Learning JP
•
1.3K visualizações
【DL輪読会】GPT-4Technical Report
Deep Learning JP
•
889 visualizações
【DL輪読会】Emergent World Representations: Exploring a Sequence ModelTrained on a...
Deep Learning JP
•
232 visualizações
【DL輪読会】Reward Design with Language Models
Deep Learning JP
•
605 visualizações
【DL輪読会】Foundation Models for Decision Making: Problems, Methods, and Opportun...
Deep Learning JP
•
281 visualizações
【DL輪読会】One-Shot Domain Adaptive and Generalizable Semantic Segmentation with ...
Deep Learning JP
•
215 visualizações
【DL輪読会】DiffRF: Rendering-guided 3D Radiance Field Diffusion [N. Muller+ CVPR2...
Deep Learning JP
•
359 visualizações
【DL輪読会】Hyena Hierarchy: Towards Larger Convolutional Language Models
Deep Learning JP
•
811 visualizações
【DL輪読会】Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Mo...
Deep Learning JP
•
1.1K visualizações
【DL輪読会】Segment Anything
Deep Learning JP
•
1.8K visualizações
【DL輪読会】Is Conditional Generative Modeling All You Need For Decision-Making?
Deep Learning JP
•
244 visualizações
【DL輪読会】Decoupling Human and Camera Motion from Videos in the Wild (CVPR2023)
Deep Learning JP
•
417 visualizações
【DL輪読会】AUTOGT: AUTOMATED GRAPH TRANSFORMER ARCHITECTURE SEARCH
Deep Learning JP
•
242 visualizações
【DL輪読会】Bridge-Prompt: Toward Ordinal Action Understanding in Instructional Vi...
Deep Learning JP
•
320 visualizações
【DL輪読会】SDEdit: Guided Image Synthesis and Editing with Stochastic Differentia...
Deep Learning JP
•
336 visualizações
Último
(20)
ペンタエリスリトール市場.pdf
HinaMiyazu
•
3 visualizações
MC-800DMT intrusion detector manual
Vedard Security Alarm System Store
•
2 visualizações
留信网认证可查【拜欧拉大学文凭证书毕业证购买】
1lkjhg
•
3 visualizações
20230602_enebular_meetup_kitazaki_v1.pdf
Ayachika Kitazaki
•
15 visualizações
Üslup ve tercüme.pdf
1Hmmtks
•
2 visualizações
モバイル・クラウド・コンピューティング-データを如何に格納し、組み合わせ、情報として引き出すか
Masahiko Funaki
•
2 visualizações
Windows ChatGPT Bing AI.pptx
Atomu Hidaka
•
6 visualizações
《杨百翰大学毕业证|学位证书校内仿真版本》
d520dasw12
•
2 visualizações
Forguncy8 製品概要 202305.pptx
フォーガンシー
•
54 visualizações
PCベース制御による集中制御.pdf
ssusercd9928
•
19 visualizações
触感に関わる共感覚的表現と基本6感情の対応関係の検証
Matsushita Laboratory
•
12 visualizações
量子論.pdf
hiro150493
•
7 visualizações
社内ソフトスキルを考える
infinite_loop
•
82 visualizações
統計学の攻略_推測統計学の考え方.pdf
akipii Oga
•
191 visualizações
Kubernetes超入門
Takashi Suzuki
•
5 visualizações
3Dプリンタって いいね
infinite_loop
•
54 visualizações
20230523_IoTLT_vol99_kitazaki_v1.pdf
Ayachika Kitazaki
•
108 visualizações
SoftwareControl.pdf
ssusercd9928
•
15 visualizações
20230601_Visual_IoTLT_vol14_kitazaki_v1.pdf
Ayachika Kitazaki
•
52 visualizações
初学者のためのプロンプトエンジニアリング実践.pptx
Akifumi Niida
•
415 visualizações
Anúncio
[DL輪読会]Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization
1 DEEP LEARNING JP [DL
Papers] http://deeplearning.jp/ Differentiable Mapping Networks: Learning Structured Map Representations for Sparse Visual Localization Jumpei Arima
書誌情報 • タイトル: Differentiable Mapping
Networks: Learning Structured Map Representations for Sparse Visual Localization • 著者: Peter Karkus, Anelia Angelova, Vincent Vanhoucke, Rico Jonschkowski – first authorはNational University of Singapore – Robotics at Googleでのインターン中の成果 • 会議:ICRA2020 • project page: https://sites.google.com/view/differentiable-mapping • arxiv: https://arxiv.org/abs/2005.09530 2
背景 • Robot 学習の課題 –
実データのコストが高い、reality gap、Long horizon task、… • Visual Navigation – DD-PPO: LEARNING NEAR-PERFECT POINTGOAL NAVIGATORS FROM 2.5 BILLION FRAMES[ICLR2020] • simでのvisual navigation方策獲得に2.5 billion steps(180 days of GPU-time) 3 ・データ効率を上げる ・従来のRoboticsの技術の活用 ・Robotics特有の事前知識の導入
背景 • Differentiable Algorithm
Networks for Composable Robot Learning[RSS2019] – データ駆動とモデル駆動の利点を融合した手法 • Learning Explore Using Active Neural SLAM[CVPR2020] – habitat challenge2019優勝チームの手法 – Mapping, Localization, Planningを別々に学習(一部解析的手法含む) – 階層的なシステムで、サンプル効率・性能ともに向上 4
背景 • 微分可能なRobotics研究 5
問題設定 <Sparse visual mapping
and localization> →street viewから得られるな情報(数視点からの画像)からMappingし 与えられた画像から位置を推定する <課題> • 疎な情報だけからマッピングをする • 視点が大きく変わったところから 推定する必要がある <応用先> • 自動運転(都市環境での自己位置推定) • multi-robot mapping • 外観の変化が多い倉庫 etc. 6
背景 <良い地図表現とは> • 地図は環境の変化と下位タスク(自己位置推定など)のために 柔軟に対応する必要がある • 少ないデータから空間構造を構築する必要がある <従来のマッピング>
<DNNを用いた手法> ・空間構造 ・柔軟に対応可能 ・変化に対応しづらい ・タスクに特化したマップ生成可能 ・タスクごとに変更できない ・空間構造が欠ける 7
Proposed Method • DNNによる柔軟な環境表現と幾何情報による空間把握を 組み合わせた方法を提案 →全体が微分可能なモデルなので、タスクに特化したマップ表現が可能 8
Proposed Method <Mapping> 数視点からの画像から潜在Mapを生成 <Egocentric Spatial
Attention> query視点から潜在Mapを解釈 するための注意機構 (query視点に潜在Mapを座標変換) <Particle Filter Localization> 微分可能なPFで自己位置推定 9
Proposed Method <Mapping> • Context画像を 画像埋め込み表現:
𝑉 𝑖 視点座標: 𝑠 𝑖 = (𝑥, 𝑦, 𝑠𝑖𝑛𝜑, 𝑐𝑜𝑠𝜑) で表現された潜在マップ m を生成 • Feature Extractorは4層のCNN – Context画像間で重みは共有 10 𝑚 = < 𝑉 𝑖, 𝑠 𝑖 > 𝑖 = 1: 𝑁𝑐
Proposed Method <Egocentric Spatial
Attention> • query基準の空間構造に対しての注意機構 • query keyとview keysのスカラ積を重みとした Context画像埋め込み表現を重み付け和を算出 • 地図の空間構造を活用し、特徴量抽出の難易度を大幅に減少する 11
Proposed Method <Particle Filter
Localization> • Differentiable PFを用いて潜在マップとquery画像から自己位置推定を行う • 𝑏𝑡 𝑠 ≈< 𝑠𝑡 𝑘 , log 𝜔 𝑡 𝑘 > 𝑘 = 1: 𝐾 – 𝑠𝑡 𝑘 : ロボットの候補位置(query画像の視点)←初期分布𝑏0 – log 𝜔 𝑡 𝑘 : particleの対数尤度 12 Observation Model log 𝜔 𝑡 𝑘 = log 𝑙 𝜃 + log 𝜔 𝑡−1 𝑘 + 𝜂 m:View embedding map Transition Model 𝑠𝑡 𝑘 = 𝑓𝑇(𝑠𝑡−1 𝑘 −, ∆ 𝑡) 𝑠𝑡 = 𝑘 𝜔 𝑡 𝑘 𝑠𝑡 𝑘
Proposed Method <Observation Model> •
particleの位置𝑠𝑡 𝑘 と潜在マップ𝑚 を与えられたとき 画像𝑄𝑡 を観測する条件付き対数確率 𝑙 𝜃(𝑄𝑡, 𝑠𝑡 𝑘 , 𝑚) ≈ log 𝑝(𝑄𝑡|𝑠𝑡 𝑘 , 𝑚) を推定 • Networkはparticleの対数尤度𝑙 𝑡 𝑘 = log 𝑝(𝑄𝑡|𝑠𝑡 𝑘 , 𝑚)を直接出力する log 𝜔 𝑡 𝑘 = log 𝑙 𝜃(𝑄𝑡, 𝑠𝑡 𝑘 , 𝑚) + log 𝜔 𝑡−1 𝑘 + 𝜂 – 正規化されてないので 𝜂 = − log 𝑗=1 𝐾 𝑒log 𝜔 𝑡 𝑘 で正規化する • particle間で学習パラメータは共有 13
Proposed Method <End-to-End training> •
DMNは全体が微分可能であるので、localizationのタスクに対してマッピン グを最適化するように学習が可能。 • 損失関数はMSE (αはハイパラ(0.5)) ℒ = 𝑠 − 𝑠∗ 2 = 𝑥 − 𝑥∗ 2 + (𝑦 − 𝑦∗)2+ 𝛼(𝜑 − 𝜑∗)2 コンテキストの数とパーティクルの数は重みを共有しているので 変えることが可能 14
Experiments <dataset> • sim: GQN
dataset(データ量はGQNの1%) – Rooms(100k env * 10img), Mazes(960 env * 300 img) • real: Street View dataset – 40*40mの範囲からランダムに10画像をsample(train:3838746test: 16359) <評価> • Global LocalizationとTrackingにおける自己位置推定精度 – (x,yのRMSEが8.94m以下(範囲の約15%)のときglobal localizationが成功とする) 15
Experiments <比較手法> • Mapping – Latent
image map • 空間構造を明に表現しないnetwork – Latent vector map • Latent image mapのmap部分をvectorで表現 • Localization – Regression • 回帰によってposeを直接推定(DMNのparticleが一つと同じ) – Closet context • query poseに最も近いcontextのpose(画像の類似度による手法の上限としての指標) – Uninformed estimate • 初期分布から狀態遷移のみを考慮した場合(タスクの難しさを示す) 16
Experiments <simでのGlobal Localization> • 複雑な環境になると(Rooms
→Mazes) RegressionよりPFが優れていることがわかる 17
Experiments <realでのGlobal Localization> • 提案手法であるView-embed(提案手法)とPF(提案手法)の双方が real
dataの複雑で広範囲のlocalizationには効果的であることがわかる 18
Experiments <5stepのtracking後の自己位置推定精度> • Street Viewで最も提案手法の有用性が示せてる •
PFが複雑な環境で効果的 19
Experiments <データ効率(Fig. 7)> 比較手法に比べてtrainingデータ量が少ない時に性能が高い <Contextの数(Fig. 8,9)> Contextの数の上昇によっての成功率の増加率は提案手法が高い 20
Experiments <長距離tracking精度 (Fig. 10)
> PFが長距離を考えるには適している <particleの数 (Fig. 11) > 増やした方が良い結果(計算コストとトレードオフ) 21
Conclusion • Sparseな画像のみが与えられるLocalizationに最適化された 微分可能な地図生成ネットワーク(DMN)を提案 • Egocentric
Spatial Attentionで空間的に構造化された潜在マップを 用いることで、広範囲な複雑な環境において、 学習データが少なくても適用できることを示した <Future Work> • 世界中どこでもVisual Localizationを可能にする • 微分可能なVisual SLAMへの応用 22
Anúncio