ドメイン転移と不変表現に関するサーベイ
• On Learning Invariant Representations on Domain Adaptation, ICML2019
• Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
• Domain Agnostic Learning with Disentangled Representations, ICML2019
• Transferabiliity vs. Discriminability: Batch Spectral Penaralization for Adversarial Domain Adaptation, ICML2019
• Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers, ICML2019
• Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment, ICML2019
• Adversarial Invariant Feature Learning with Accuracy Constraint for Domain Generalization, ECML2019
• Bridging Theory and Algorithm for Domain Adaptation, ICML2019
• Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
• Learning to Generalize: Meta-Learning for Domain Generalization, AAAI2018
• MetaReg: Towards Domain Generalization using Meta-Regularization, NIPS2018
• Feature-Critic Networks for Heterogeneous Domain Generalization, ICML2019
• Unsupervised Adversarial Induction, NIPS2018
• Universal Domain Adaptation, CVPR2019
• Importance Weighted Adversarial Nets for Partial Domain Adaptation, CVPR2018
2
以降の内容
• On Learning Invariant Representations on Domain Adaptation, ICML2019
• Domain Agnostic Learning with Disentangled Representations, ICML2019
• Transferabiliity vs. Discriminability: Batch Spectral Penaralization for Adversarial Domain Adaptation, ICML2019
• Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers, ICML2019
• Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment, ICML2019
• Adversarial Invariant Feature Learning with Accuracy Constraint for Domain Generalization, ECML2019
• Bridging Theory and Algorithm for Domain Adaptation, ICML2019
• Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
• Learning to Generalize: Meta-Learning for Domain Generalization, AAAI2018
• MetaReg: Towards Domain Generalization using Meta-Regularization, NIPS2018
• Feature-Critic Networks for Heterogeneous Domain Generalization, ICML2019
• Unsupervised Adversarial Induction, NIPS2018
• Universal Domain Adaptation, CVPR2019
• Importance Weighted Adversarial Nets for Partial Domain Adaptation, CVPR2018
12
以降の内容
• On Learning Invariant Representations on Domain Adaptation, ICML2019
• Domain Agnostic Learning with Disentangled Representations, ICML2019
• Transferabiliity vs. Discriminability: Batch Spectral Penaralization for Adversarial Domain Adaptation, ICML2019
• Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers, ICML2019
• Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment, ICML2019
• Adversarial Invariant Feature Learning with Accuracy Constraint for Domain Generalization, ECML2019
• Bridging Theory and Algorithm for Domain Adaptation, ICML2019
• Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
• Learning to Generalize: Meta-Learning for Domain Generalization, AAAI2018
• MetaReg: Towards Domain Generalization using Meta-Regularization, NIPS2018
• Feature-Critic Networks for Heterogeneous Domain Generalization, ICML2019
• Unsupervised Adversarial Induction, NIPS2018
• Universal Domain Adaptation, CVPR2019
• Importance Weighted Adversarial Nets for Partial Domain Adaptation, CVPR2018
13
共通の問い:不変性を高めることは本当に良いことなのか?
On Learning Invariant Representations for Domain Adaptation, ICML2019
19
Han Zhao et al.
• Notationが違うが、Ben-Davidとの差は第3項
• ソースとターゲットに共通のラベリング関数を仮定しない
• Joint Errorは、ある特徴空間上での真のラベリング関数のミスマッチ
• ※ちなみにこの論文では対処法については議論してない
On Learning Invariant Representations for Domain Adaptation, ICML2019
20
Han Zhao et al.
Over-training hurt generalization!
理由:ラベル分布が異なる場合に学習しすぎると
真のラベリング関数がソースとターゲットでずれ
る(RTが途中から劣化!)
Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers, ICML2019
22
Hong Liu et al.
手法の概念図
• 特徴空間上を動かす代わりに、ドメイン識
別器を使って新たに事例を作る
• 特徴空間は変化しないので劣化しない
• 事例は、(1) ドメイン識別器を騙す、(2) Yの
分類平面も騙すような事例
(決定境界の近くに移す)
アルゴリズム
Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
31
Kaicho You et al.
IWCVの問題:アンバイアスだが分散が大きい
Renyi Divergence
提案法:Deep Embedded Validation
(1) 特徴空間上で密度比を計測する (ドメイン識別器を使う)
(2) Control Variatesを使う(平均をベースラインに使う)
Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
32
Kaicho You et al.
(1) 手法問わず使える (2) ターゲットとほぼ同等
(3) Control Variateは平均すると良い
メタ正則化によるドメイン転移
• On Learning Invariant Representations on Domain Adaptation, ICML2019
• Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
• Domain Agnostic Learning with Disentangled Representations, ICML2019
• Transferabiliity vs. Discriminability: Batch Spectral Penaralization for Adversarial Domain Adaptation, ICML2019
• Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers, ICML2019
• Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment, ICML2019
• Adversarial Invariant Feature Learning with Accuracy Constraint for Domain Generalization, ECML2019
• Bridging Theory and Algorithm for Domain Adaptation, ICML2019
• Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
• Learning to Generalize: Meta-Learning for Domain Generalization, AAAI2018
• MetaReg: Towards Domain Generalization using Meta-Regularization, NIPS2018
• Feature-Critic Networks for Heterogeneous Domain Generalization, ICML2019
• Unsupervised Adversarial Induction, NIPS2018
• Universal Domain Adaptation, CVPR2019
• Importance Weighted Adversarial Nets for Partial Domain Adaptation, CVPR2018
35
共通の問い: 不変性という基準を設計する必要あるのか?
より複雑な問題設定への応用
• On Learning Invariant Representations on Domain Adaptation, ICML2019
• Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
• Domain Agnostic Learning with Disentangled Representations, ICML2019
• Transferabiliity vs. Discriminability: Batch Spectral Penaralization for Adversarial Domain Adaptation, ICML2019
• Transferable Adversarial Training: A General Approach to Adapting Deep Classifiers, ICML2019
• Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment, ICML2019
• Adversarial Invariant Feature Learning with Accuracy Constraint for Domain Generalization, ECML2019
• Bridging Theory and Algorithm for Domain Adaptation, ICML2019
• Toward Accurate Model Selection in Deep Unsupervised Domain Adaptation, ICML2019
• Learning to Generalize: Meta-Learning for Domain Generalization, AAAI2018
• MetaReg: Towards Domain Generalization using Meta-Regularization, NIPS2018
• Feature-Critic Networks for Heterogeneous Domain Generalization, ICML2019
• Universal Domain Adaptation, CVPR2019
• Importance Weighted Adversarial Nets for Partial Domain Adaptation, CVPR2018
• Unsupervised Adversarial Induction, NIPS2018
40
Related Works: Feature Adaptation
Mathematical Foundation
[Ganin, 2016] “Domain-Adversarial Training of Neural Networks”
Visualization
[Ben-David, 2010] “A theory of learning from different domains”
ドメイン間の距離ソース損失
理想的なhを使うと
きの損失の差
50
Maximum Mean Discrepancy (MMD) [Tzeng, 2014]
• Sの事例間類似度 + Tの事例間の類似度 - SとTの間の類似度
• カーネルを使って計算(ガウシアンカーネルがよく使われているイメージ)
(Cited)https://www.dropbox.com/s/c8vhgrtjcqmz9yy/Gret
ton.pdf?dl=1
(Cited) [Tzeng, 2014]
51