Anúncio
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Anúncio
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Anúncio
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Anúncio
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Definicion de conjuntos.docx
Próximos SlideShares
Números-Realess.pptxNúmeros-Realess.pptx
Carregando em ... 3
1 de 17
Anúncio

Mais conteúdo relacionado

Anúncio

Definicion de conjuntos.docx

  1. República bolivariana de Venezuela Ministerio del poder popular para la educación Universidad politécnica territorial Andrés Eloy Blanco Barquisimeto Edo-Lara Definición de conjuntos Alumno: Cristian Palma Deo2013 PNF Deporte
  2. Definicion de Conjuntos Un conjunto es la agrupación de diferentes elementos que comparten entre sí características y propiedades semejantes. Estos elementos pueden ser sujetos u objetos, tales como números, canciones, meses, personas, etc. Por ejemplo: el conjunto de números primos o el conjunto de planetas del sistema solar. A su vez, un conjunto puede convertirse también en un elemento. Por ejemplo: en el caso de un ramo de flores, en principio una flor sería el primer elemento, pero al conjunto de flores se lo puede considerar luego como un ramo de flores, convirtiéndose así, en un nuevo elemento. Para graficar un conjunto se utilizan corchetes para delimitar los elementos que lo conforman, que se separan entre sí mediante comas. Por ejemplo: Se define a “S” como el conjunto de los días de la semana, por lo tanto, S= [lunes, martes, miércoles, jueves, viernes, sábado, domingo]. Teoría de conjuntos La teoría de conjuntos es la rama de la matemática que estudia a los conjuntos. Fue introducida como disciplina por el matemático ruso Georg Cantor, quien definió al conjunto como la colección de elementos finitos o infinitos y lo utilizó para explicar las matemáticas. Cantor estudió el conjunto de números racionales y naturales y fue revolucionario su descubrimiento de los conjuntos de números infinitos, ya que develó la existencia de infinitos de diferentes tamaños al asegurar que siempre se puede encontrar un infinito mayor. Los descubrimientos de Cantor no fueron bien recibidos en el ámbito matemático de finales del siglo XIX. Sin embargo, hoy es considerado un visionario en el estudio de lo que él denominó los transfinitos, estudio que contribuyó al de los conjuntos abstractos e infinitos. Tipos de conjuntos
  3. A la hora de formar un conjunto, la manera y el porqué de la agrupación de los elementos que lo conforman puede variar dando lugar a diferentes tipos de conjuntos, que pueden ser:  Conjuntos finitos. Sus elementos pueden contarse o enumerarse en su totalidad. Por ejemplo: los meses del año, los días de la semana o los continentes.  Conjunto infinito. Sus elementos no se pueden contar o enumerar en su totalidad, debido a que no tienen fin. Por ejemplo: los números.  Conjunto unitario. Está compuesto por un único elemento. Por ejemplo: La Luna es el único elemento en el conjunto “satélites naturales de la Tierra”.  Conjunto vacío. No presenta ni contiene elementos.  Conjunto homogéneo. Sus elementos presentan una misma clase o categoría.  Conjunto heterogéneo. Sus elementos difieren en clase y categoría. Respecto a la relación entre conjuntos, pueden ser:  Conjuntos equivalentes. La cantidad de elementos entre dos o más conjuntos es la misma.  Conjuntos iguales. Dos o más conjuntos están compuestos por elementos idénticos. Operaciones de conjuntos Operaciones con conjuntos. Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento. ‒ Unión o reunión de conjuntos. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin
  4. que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Venn, para representar la unió de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión. Ejemplo 1. Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente: También se puede graficar del siguiente modo: Ejemplo 2. Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9}. Usando diagramas de Venn se tendría
  5. lo siguiente: Números Reales Qué son los números reales Cuando se definen los números reales se dice que son cualquier número que se encuentre o corresponda con la recta real que incluye a los números racionales y números irracionales, Por lo tanto, el dominio de los números reales se encuentra entre menos infinito y más infinito. Las principales características de los números reales son:  Orden. Todos los números reales siguen un orden, por ejemplo 1, 2, 3, 4 …  Integral. La integridad de los números reales marca que no hay espacios vacíos, es decir, cada conjunto que dispone de un límite superior tiene un límite más pequeño.  Infinitos. Los números reales no tienen final, ni por el lado positivo ni por el lado negativo. Por eso su dominio está entre menos infinito y más infinito.  Decimal. Los números reales pueden ser expresados como una expansión decimal infinita. Clasificación de los números reales La clasificación de los números reales incluye los siguientes números.  Números naturales. Son los números iguales o mayores que uno no decimales. El conjunto de los números naturales no tiene en cuenta el cero.
  6.  Números enteros. Son los números positivos y negativos no decimales, incluyendo el cero. Es decir, los números naturales incluyendo los números negativos y el cero.  Números racionales. Los que se pueden representar como el cociente de dos enteros con denominador diferente a cero. Son las fracciones que pueden crearse utilizando números naturales y enteros.  Números irracionales. Aquellos que no pueden ser expresados como una fracción de números enteros con denominador distinto a cero. Se trata de números decimales que no pueden expresarse ni de manera exacta, ni de manera periódica, siendo el número pi un ejemplo de este tipo de números. Operaciones de los números reales Las distintas operaciones de los números reales cumplen con una serie de propiedades: Propiedad Interna Cuando se suman dos números reales el resultado que se obtiene es otro número real. Lo mismo ocurre con la multiplicación de números reales, que también da como resultado otro número real. Propiedad Asociativa El modo en que se asocian o agrupan los sumandos no influye en el resultado de una suma. En el caso de una multiplicación tampoco importa la asociación pues el resultado será siempre el mismo a + (b + c) = (a + b) + c a x (b x c) = (a x b) x c Propiedad Conmutativa Tanto la suma como la multiplicación de números reales cumplen con la propiedad conmutativa que indica que el orden no varía el resultado. a + b = b + a a x b = b x a
  7. Elemento neutro y elemento opuesto En la suma el cero se convierte en el elemento neutro pues cualquier número que se sume con el 0 va a dar como resultado el mismo número. a + 0 = a Por su parte, si al sumar dos números reales se obtiene cero se dice que esos números son opuestos (e - e = 0). En cuanto a la multiplicación, el elemento neutro en los números reales es el 1, ya que cualquier número real que se multiplique por 1 da lugar al mismo número. a x 1 = a 0.453 x 1 = 0.453 En la multiplicación el inverso de un número es aquel que al multiplicarlo, da como resultado la unidad: a x 1/a = 1 3.4 x 1/3.4 = 1 Propiedad Distributiva El producto de un número real por una suma de números reales es igual a la suma de los productos de dicho número por cada uno de los sumandos. a x (b + c) = a x b + a x c Al proceso inverso de la propiedad distributiva se le conoce como sacar el factor común. a x b + a x c = a x (b + c) La gran mayoría de las situaciones físicas que tienen lugar se modelan con números reales por lo que son de suma importancia. El conjunto de los números reales está formado por otros números como los naturales, enteros, racionales e irracionales. Los números reales son infinitos y siguen un orden, pudiendo ser decimales y negativos.
  8. Es habitual que utilicemos los números naturales en el día a día y que sepamos mucho más de ellos de lo que pensamos, porque forman parte importante en nuestra sociedad para organizar, contar y realizar cálculos. Desigualdades La desigualdad matemática es aquella proposición que relaciona dos expresiones algebraicas cuyos valores son distintos. Se trata de una proposición de relación entre dos elementos diferentes, ya sea por desigualdad mayor, menor, mayor o igual, o bien menor o igual. Cada una de las distintas tipologías de desigualdad debe ser expresada con diferente signo (> o <, etcétera) y tendrá una reacción a operaciones matemáticas diferente según su naturaleza. Por lo tanto, si queremos explicar cuál es la finalidad de este concepto con el menor número de palabras posibles diremos que; el objetivo de la desigualdad matemática es mostrar que dos sujetos matemáticos expresan valores diferentes. Signos de desigualdad matemática Podemos sintetizar los signos de expresión de todas las desigualdades matemáticas posibles en los cinco siguientes:  Desigual a: ≠  Menor que: <  Menor o igual que: ≤  Mayor que: >  Mayor o igual que: ≥ Cada una de ellas debe relacionar dos elementos matemáticos. De modo que implicaría que a es menor a b, mientras que “a>b” significa que a es mayor a b. En el caso de “a≠b”, leeremos la expresión como a es desigual a b, “a≤b”; a es menor o igual a b, y “a≥b” implica que a es mayor o igual a b. Es también importante conocer que la expresión de desigualdad matemática “a≠b” no es excluyente con las expresiones “a” y “a>b”, de modo que, por ejemplo, “a≠b” y “a>b” pueden ser ciertas al mismo tiempo. Por otro lado, tampoco son excluyentes entre sí las expresiones “a≥b” y “a>b” o “a≤b” y “a”. Ejemplos
  9. Las desigualdades matemáticas están formadas, en la mayoría de ocasiones, por dos miembros o componentes. Un miembro se encontrará a la izquierda del símbolo y el otro a la derecha. Un ejemplo sería expresar: 4x – 2 > 9. Lo leeríamos diciendo que “cuatro veces nuestra incógnita menos dos es superior a nueve”. Siendo el elemento 4x-2 el elemento A y 9 el elemento B. La resolución nos mostraría que (en números naturales) la desigualdad se cumple si x es igual o superior a 3 (x≥3). Tipología de desigualdades Existen dos tipos distintos de desigualdades dependiendo de su nivel de aceptación. Ninguna de ellas no incluye la desigualdad general (≠). Son las siguientes:  Desigualdades estrictas: son aquellas que no aceptan la igualdad entre elementos. De este modo, entenderemos como desigualdades de este tipo el “mayor que” (>) o “menor que” (<).  Desigualdades amplias o no estrictas: todas aquellas en las que no se especifica si uno de los elementos es mayor/menor o igual. Por lo tanto, estamos hablando de “menor o igual que” (≤), o bien “mayor o igual que” (≥). Propiedades Para operar con desigualdades debemos conocer todas sus propiedades:  Si los miembros de la expresión son multiplicados por el mismo valor, no cambia el signo de la desigualdad: 4x – 2 > 9 = 3(4x-2) > 3·9  Si los miembros de la expresión son divididos por el mismo valor, no cambia el signo de la desigualdad: 4x – 2 > 9 = (4x-2)/3 > 9/3  Si los miembros de la expresión son sumados o restados por el mismo valor, no cambia el signo de la desigualdad: 4x – 2 > 9 = 4x-2 -3 > 9 - 3 / 4x – 2 > 9 = 4x-2 +3 > 9+3 Y también debes saber aquellas propiedades en las que la desigualdad sí que cambia de sentido:  Si los miembros de la expresión son multiplicados por un valor negativo, sí cambia de sentido: 4x – 2 > 9 = -3(4x-2) < -3·9
  10.  Si los miembros de la expresión son divididos por un valor negativo, sí cambia de sentido: 4x – 2 > 9 = (4x-2) / -3 < 9/-3 Notación encadenada Conocemos por desigualdad de notación encadenada todas aquellas expresiones de desigualdad en las que se relacionan más de dos elementos. Sería este caso si, por ejemplo, relacionamos a, b y c de modo que cada uno es menor al otro. Pongamos como ejemplo: a < b < c indica que “a es menor que b” y, a su vez, “b es menor que c”. De modo que podemos deducir que “a es menor que c”, esta propiedad la conocemos por el nombre de propiedad transitiva. Diferencia entre desigualdad e inecuación Es importante conocer que existe un elemento matemático diferente a la desigualdad matemática que es usualmente confundido con ella: las inecuaciones. Una inecuación se basa en una desigualdad, pero su resultado puede ser incongruente o, simplemente, denotar que no existe solución posible al enunciado. Por lo tanto, una inecuación puede ser una desigualdad, pero, por otro lado, una desigualdad no tiene por qué ser una inecuación. Por ejemplo, 3 < 5 es una desigualdad que se cumple, pero no será nunca una inecuación porque no contiene ninguna incógnita. Por lo tanto, una desigualdad es una proposición que relaciona dos expresiones algebraicas cuyos valores son distintos. No necesita contener una incógnita y si es así puede ser, a la vez, una inecuación. Para operar con ellas debes entender sus propiedades ante la suma, resta, multiplicación y división de sus elementos. Definición de Valor El valor númerico de una expresión algebraica, para un determinado valor, es el número que se obtiene al sustituir en ésta por valor numérico dado y realizar las operaciones indicadas. L(r) = 2 r r = 5 cm. L(5)= 2 · · 5 = 10 cm
  11. S(l) = l2 l = 5 cm A(5) = 52 = 25 cm2 V(a) = a3 a = 5 cm V(5) = 53 = 125 cm3 Valor numérico de un polinomio El valor numérico de un polinomio es el resultado que obtenemos al sustituir la variable x por un número cualquiera. P(x) = 2x3 + 5x - 3 ; x = 1 P(1) = 2 · 13 + 5 · 1 - 3 = 2 + 5 - 3 = 4 Q(x) = x4 − 2x3 + x2 + x − 1 ; x = 1 Q(1) = 14 − 2 · 13 + 1 2 + 1 − 1 = 1 − 2 + 1 + 1 − 1 = 0 R(x) = x10 − 1024 : x = −2 R(−2) = (−2)10 − 1024 = 1024 − 1024 = 0 Absoluto Valor absoluto de un números entero El valor absoluto de un número entero es el número natural que resulta al suprimir su signo. El valor absoluto lo escribiremos entre barras verticales. |−5| = 5 |5| = 5 Valor absoluto de un número real Valor absoluto de un número real a, se escribe |a|, es el mismo número a cuando es positivo o cero, y opuesto de a, si a es negativo. |5| = 5 |-5 |= 5 |0| = 0 |x| = 2 x = −2 x = 2
  12. |x|< 2 − 2< x < 2 x (−2, 2 ) |x|> 2 x< −2 ó x>2 (−∞ , −2) ∪ (2, +∞) |x −2 |< 5 − 5 < x − 2 < 5 − 5 + 2 < x < 5 + 2 − 3 < x < 7 Propiedades del valor absoluto 1 Los números opuestos tienen igual valor absoluto. |a| = |−a| |5| = |−5| = 5 2 El valor absoluto de un producto es igual al producto de los valores absolutos de los factores. |a · b| = |a| ·|b| |5 · (−2)| = |5| · |(−2)| |− 10| = |5| · |2| 10 = 10 3 El valor absoluto de una suma es menor o igual que la suma de los valores absolutos de los sumandos. |a + b| ≤ |a| + |b| |5 + (−2)| ≤ |5| + |(−2)| |3| ≤ |5| + |2| 3 ≤ 7 Función valor absoluto Las funciones en valor absoluto se transforman en funciones a trozos, siguiendo los siguientes pasos: 1. Se iguala a cero la función, sin el valor absoluto, y se calculan sus raíces. 2.
  13. Se forman intervalos con las raíces y se evalúa el signo de cada intervalo. 3. Definimos la función a trozos, teniendo en cuenta que en los intervalos donde la x es negativa se cambia el signo de la función. 4 Representamos la función resultante. D=
  14. D= Desigualdades con Valor Absoluto Desigualdades de valor absoluto Una desigualdad de valor absoluto es una desigualdad que tiene un signo de valor absoluto con una variable dentro. Desigualdades de valor absoluto (<): La desigualdad | x | < 4 significa que la distancia entre x y 0 es menor que 4. Así, x > -4 Y x < 4. El conjunto solución es . Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa.
  15. La solución es la intersección de las soluciones de estos dos casos. En otras palabras, para cualesquiera numéros reales a y b , si | a | < b , entonces a < b Y a > - b . Ejemplo 1 : Resuelva y grafique. | x – 7| < 3 Para resolver este tipo de desigualdad, necesitamos descomponerla en una desigualdad compuesta . x – 7 < 3 Y x – 7 > –3 –3 < x – 7 < 3 Sume 7 en cada expresión. -3 + 7 < x - 7 + 7 < 3 + 7 4 < x <10 La gráfica se vería así: Desigualdades de valor absoluto (>): La desigualdad | x | > 4 significa que la distancia entre x y 0 es mayor que 4. Así, x < -4 O x > 4. El conjunto solución es . Cuando se resuelven desigualdes de valor absoluto, hay dos casos a considerar.
  16. Caso 1: La expresión dentro de los símbolos de valor absoluto es positiva. Caso 2: La expresión dentro de los símbolos de valor absoluto es negativa. En otras palabras, para cualesquiera numéros reales a y b , si | a | > b , entonces a > b O a < - b . Ejemplo 2 : Resuelva y grafique. Separe en dos desigualdades. Reste 2 de cada lado en cada desigualdad. La gráfica se vería así: Bibliografia https://www.conoce3000.com/html/espaniol/Libros/Matematica01/Cap10- 03-OperacionesConjuntos.php https://www.superprof.es/diccionario/matematicas/algebra/valor- numerico.html#:~:text=Qu%C3%A9%20significa%20valor%20num%C3%A9ric o%20en%20Matem%C3%A1ticas&text=El%20valor%20n%C3%BAmerico%20 de%20una,y%20realizar%20las%20operaciones%20indicadas.
  17. https://www.superprof.es/diccionario/matematicas/aritmetica/valor- absoluto.html https://www.varsitytutors.com/hotmath/hotmath_help/spanish/topics/abso lute-value-inequalities
Anúncio