Atualizámos a nossa política de privacidade. Clique aqui para ver os detalhes. Toque aqui para ver os detalhes.
Ative o seu período de avaliaçõo gratuito de 30 dias para desbloquear leituras ilimitadas.
Ative o seu teste gratuito de 30 dias para continuar a ler.
Baixar para ler offline
Graph applications were once considered “exotic” and expensive. Until recently, few software engineers had much experience putting graphs to work. However, the use cases are now becoming more commonplace.
This talk explores a practical use case, one which addresses key issues of data governance and reproducible research, and depends on sophisticated use of graph technology.
Consider: some academic disciplines such as astronomy enjoy a wealth of data — mostly open data. Popular machine learning algorithms, open source Python libraries, and distributed systems all owe much to those disciplines and their history of big data.
Other disciplines require strong guarantees for privacy and security. Datasets used in social science research involve confidential details about human subjects: medical histories, wages, home addresses for family members, police records, etc.
Those cannot be shared openly, which impedes researchers from learning about related work by others. Reproducibility of research and the pace of science in general are limited. Nonetheless, social science research is vital for civil governance, especially for evidence-based policymaking (US federal law since 2018).
Even when data may be too sensitive to share openly, often the metadata can be shared. Constructing knowledge graphs of metadata about datasets — along with metadata about authors, their published research, methods used, data providers, data stewards, and so on — that provides effective means to tackle hard problems in data governance.
Knowledge graph work supports use cases such as entity linking, discovery and recommendations, axioms to infer about compliance, etc. This talk reviews the Rich Context AI competition and the related ADRF framework used now by more than 15 federal agencies in the US.
We’ll explore knowledge graph use cases, use of open standards and open source, and how this enhances reproducible research. Social science research for the public sector has much in common with data use in industry.
Issues of privacy, security, and compliance overlap, pointing toward what will be required of banks, media channels, etc., and what technologies apply. We’ll look at comparable work emerging in other parts of industry: open source projects, open standards emerging, and in particular a new set of features in Project Jupyter that support knowledge graphs about data governance.
Graph applications were once considered “exotic” and expensive. Until recently, few software engineers had much experience putting graphs to work. However, the use cases are now becoming more commonplace.
This talk explores a practical use case, one which addresses key issues of data governance and reproducible research, and depends on sophisticated use of graph technology.
Consider: some academic disciplines such as astronomy enjoy a wealth of data — mostly open data. Popular machine learning algorithms, open source Python libraries, and distributed systems all owe much to those disciplines and their history of big data.
Other disciplines require strong guarantees for privacy and security. Datasets used in social science research involve confidential details about human subjects: medical histories, wages, home addresses for family members, police records, etc.
Those cannot be shared openly, which impedes researchers from learning about related work by others. Reproducibility of research and the pace of science in general are limited. Nonetheless, social science research is vital for civil governance, especially for evidence-based policymaking (US federal law since 2018).
Even when data may be too sensitive to share openly, often the metadata can be shared. Constructing knowledge graphs of metadata about datasets — along with metadata about authors, their published research, methods used, data providers, data stewards, and so on — that provides effective means to tackle hard problems in data governance.
Knowledge graph work supports use cases such as entity linking, discovery and recommendations, axioms to infer about compliance, etc. This talk reviews the Rich Context AI competition and the related ADRF framework used now by more than 15 federal agencies in the US.
We’ll explore knowledge graph use cases, use of open standards and open source, and how this enhances reproducible research. Social science research for the public sector has much in common with data use in industry.
Issues of privacy, security, and compliance overlap, pointing toward what will be required of banks, media channels, etc., and what technologies apply. We’ll look at comparable work emerging in other parts of industry: open source projects, open standards emerging, and in particular a new set of features in Project Jupyter that support knowledge graphs about data governance.
Parece que você já adicionou este slide ao painel
Você recortou seu primeiro slide!
Recortar slides é uma maneira fácil de colecionar slides importantes para acessar mais tarde. Agora, personalize o nome do seu painel de recortes.A família SlideShare acabou de crescer. Desfrute do acesso a milhões de ebooks, áudiolivros, revistas e muito mais a partir do Scribd.
Cancele a qualquer momento.Leitura ilimitada
Aprenda de forma mais rápida e inteligente com os maiores especialistas
Transferências ilimitadas
Faça transferências para ler em qualquer lugar e em movimento
Também terá acesso gratuito ao Scribd!
Acesso instantâneo a milhões de e-books, audiolivros, revistas, podcasts e muito mais.
Leia e ouça offline com qualquer dispositivo.
Acesso gratuito a serviços premium como Tuneln, Mubi e muito mais.
Atualizámos a nossa política de privacidade de modo a estarmos em conformidade com os regulamentos de privacidade em constante mutação a nível mundial e para lhe fornecer uma visão sobre as formas limitadas de utilização dos seus dados.
Pode ler os detalhes abaixo. Ao aceitar, está a concordar com a política de privacidade atualizada.
Obrigado!