William Hill is one of the UK’s largest, most well-established gaming companies with a global presence across 9 countries with over 16,000 employees. In recent years the gaming industry and in particular sports betting, has been revolutionised by technology. Customers now demand a wide range of events and markets to bet on both pre-game and in-play 24/7. This has driven out a business need to process more data, provide more updates and offer more markets and prices in real time. At William Hill, we have invested in a completely new trading platform using Apache Kafka. We process vast quantities of data from a variety of feeds, this data is fed through a variety of odds compilation models, before being piped out to UI apps for use by our trading teams to provide events, markets and pricing data out to various end points across the whole of William Hill. We deal with thousands of sporting events, each with sometimes hundreds of betting markets, each market receiving hundreds of updates. This scales up to vast numbers of messages flowing through our system. We have to process, transform and route that data in real time. Using Apache Kafka, we have built a high throughput, low latency pipeline, based on Cloud hosted Microservices. When we started, we were on a steep learning curve with Kafka, Microservices and associated technologies. This led to fast learnings and fast failings. In this session, we will tell the story of what we built, what went well, what didn’t go so well and what we learnt. This is a story of how a team of developers learnt (and are still learning) how to use Kafka. We hope that you will be able to take away lessons and learnings of how to build a data processing pipeline with Apache Kafka.