SlideShare uma empresa Scribd logo
1 de 12
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 12
White Paper
Building Cost Effective and Scalable CORE
Networks Using an Elastic Architecture
Executive Summary
Cisco
®
CRS Elastic Core is based on the Cisco Carrier Routing System (CRS). The Elastic Core is a scalable and
flexible solution providing the lowest total cost of ownership when compared to core solutions provided by other
vendors. The Elastic Core provides:
● Scalability with up to 400 Gbps per line card, and single-chassis, back-to-back, and multichassis
configurations
● Flexibility with multiple options for packet forwarding cards including full IP core, lean core, and IP services
● Support for a wide variety of physical interfaces including Ethernet, SONET/SDH, and T3
● Clean integration of IP and optical with Cisco nLight
™
, allowing integration with the optical network using
100 Gigabit Ethernet IP over dense wavelength-division multiplexing (IPoDWDM) and an integrated IP and
optical control plane
As Cisco CRS scales from single-chassis to multichassis systems, no rewiring, network topology, or routing
changes are required as additional chassis are added. This allows service providers to easily scale their networks
while minimizing operating expenses (OpEx). Alternative solutions that do not support multichassis equipment can
require extensive rerouting, topology, and routing changes if additional core routers need to be added to a node to
support demand.
A TCO analysis shows that the CRS core is more cost effective than alternative solutions, with up to 46 percent
capital expenditures (CapEx) savings, 55 percent OpEx savings, and a total of 49 percent TCO savings.
Background Information
Core IP networks aggregate large amounts of traffic from residential, business, mobile, and wholesale networks.
With the growth of “over the top” (OTT) video, mobile broadband, and the prospect of an Internet of Everything,
core networks need to continue to scale beyond current boundaries. The Cisco Visual Networking Index
™
(Cisco VNI
™
) forecast predicts a massive growth in IP traffic, which will directly impact the core. Some highlights
from the VNI forecast are:
● Annual global IP traffic will surpass the zettabyte threshold (1.3 zettabytes) by the end of 2016. In 2016,
global IP traffic will reach 1.3 zettabytes per year or 110.3 exabytes per month.
● Global IP traffic has increased eightfold over the past 5 years, and will increase threefold over the next 5
years. Overall, IP traffic will grow at a compound annual growth rate (CAGR) of 29 percent from 2011 to
2016.
● In 2016, the gigabyte equivalent of all movies ever made will cross global IP networks every 3 minutes.
Global IP networks will deliver 12.5 petabytes every 5 minutes in 2016.
As a direct result of the growth in global IP traffic, Infonetics Research is projecting 1 Gigabit and 10 Gigabit
Ethernet ports to grow at double-digit rates and 40 Gigabit and 100 Gigabit Ethernet ports to grow at triple-digit
rates.
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 12
Cisco CRS Elastic Core solution provides a framework for scaling the core while minimizing capital and operational
expenses. The next sections describe the key value propositions and present a TCO analysis of the CRS Elastic
Core.
Cisco Elastic Core Value Proposition
Cisco CRS Elastic Core, powered by CRS routers, provides a scalable and cost-effective framework for next-
generation core networks. The elastic core is:
● Scalable
● Flexible
● Supportive of a wide variety of physical interfaces
● Cleanly integrated with optical networks through Cisco nLight
Scalability: Up to 400 Gbps per Line Card
The Cisco CRS family of routers is highly scalable while supporting a wide variety of line cards that target various
applications and price points. Three classes of line cards are available: 40 Gbps, 140 Gbps, and 400 Gbps. The
400-Gbps line cards and switch fabrics are new additions to the CRS product family, and include these
configurations:
● Four 100 Gigabit Ethernet Ports per Card
● Ten 40 Gigabit Ethernet Ports per Card
● Forty 10 Gigabit Ethernet Ports per Card
Scalability: Multichassis Architecture
The CRS routing system is a highly scalable multichassis system. The key benefit of a multichassis router is that
additional port capacity can be incrementally added to the router while maintaining a nonblocking switching fabric.
This is not the case for a traditional single-chassis router, where additional routers need to be added and
interconnected to add service ports to a routing node. This problem is illustrated in Figure 1.
Figure 1. Capacity Additions with Single-Chassis Routers
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 12
The top node in the figure depicts a single node router. In this case the number of service ports at the node fits
within a single router. As the number of ports grows, it might be necessary to add another router as depicted in the
two-router node. If the ports on the two-router node are exceeded, a third router must be added. Each time a router
is added to the node, interconnect ports must be used to interconnect the routers. There are several problems with
this approach:
● Interconnect ports consume service ports that could be used to generate revenue.
● To meet traffic requirements, between one third and one half of the ports on the router must be used for
router interconnect.
● The interconnect architecture is a blocking-switching architecture; this means that in some traffic conditions,
there may not be enough bandwidth in the router interconnect to serve demand.
● As routers are added, service ports need to be moved from one router to another, causing service
disruption and increasing operational complexity and cost.
This traditional router architecture leads to serious scalability and operational problems. It also consumes a high
level of CapEx due the expenses for ports interconnecting multiple routers. As the number of routers grows, these
problems become more severe.
Cisco CRS solves these problems by using a scalable multichassis architecture. CRS routers come in many sizes:
4-, 8-, and 16-slot chassis. Additionally, CRS routers can be scaled by combining two chassis using a back-to-back
architecture or combining up to nine chassis in a multichassis system.
A Cisco CRS multichassis system consists of two major elements: a line card chassis (LCC) and a fabric card
chassis (FCC). The LCC hosts Performance Route Processor (PRP) cards, the first and third stage of switch fabric
cards, and line cards that provide the physical interface and process data packets. The FCC hosts the second
stage of the switch fabric cards. The LCC and FCC are connected by a set of optical cables. Expanding your core
network capacity is a smooth process for Cisco CRS, supported by in-service hardware and software upgrades.
Upgrading from a single chassis to a back-to-back or multichassis system does not require any rewiring or
disruption to service ports, simplifying the operational process and reducing service downtime.
This architecture is illustrated in Figure 2. As the number of service ports grow, a second LCC is added to increase
port capacity. The two LCCs are connected back-to-back using a fabric interconnect over optical cables. No
service ports are required for interconnect and the switch fabric is nonblocking. For a two-chassis system no FCC
is required. If three or more chassis are needed, LCCs are connected using an FCC. Again no service ports are
required for interconnect and the switch fabric is nonblocking.
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 12
Figure 2. Capacity Additions with Multiple Chassis
The key benefits of the CRS multichassis architecture are:
● No service ports are required for LCC interconnect.
● The switch fabric is nonblocking.
● Adding back-to-back or multichassis capacity with an FCC is a “hitless” upgrade, with no service disruption
or system rewiring.
This architecture allows service providers to scale network capacity from 12.8 to 922 Tbps in accordance with
demand. The major CRS system components are depicted in Figure 3. The system can scale to up to 72 chassis.
However, in the field the largest deployment is 9 LCC + FCC.
Figure 3. Cisco CRS System Components
Chassis CRS 16 Slot CRS 16 Slot 2+0 Back-to-Back CRS 16 Slot X+1 Multichassis
Aggregate
Switching
Capacity
12.8 Tbps 25.6 Tbps Up to 921.6 Tbps
Number of
Forwarding
Slots
16 32 Up to 1152
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 12
Scalability: 100 Gigabit Ethernet IPoDWDM
The Cisco CRS router provides additional levels of scale with integrated, coherent 100 Gigabit Ethernet IPoDWDM
optics. Integration of DWDM into the CRS line cards eliminates the need for a set of 100-Gb grey optics
interconnecting the router card to a transponder in a reconfigurable optical add-drop multiplexer (ROADM).
Figure 4 depicts a router connected to a ROADM using 100-Gb grey optics. This scenario requires a set of grey
optics on both the router and the transponder. The integrated 100-Gb solution is illustrated in Figure 5. In this
scenario, the grey optics are eliminated, reducing both CapEx and OpEx, with a TCO savings of up to 29 percent.
The details of this analysis can be found in a white paper published by ACG Research: Why Service Providers
Should Consider IPoDWDM for 100G and Beyond.
Figure 4. Router Connected to a ROADM Using Grey Optics
Figure 5. Router Directly Connected to a ROADM
Flexibility
Flexibility is a fundamental part of the CRS architecture; a variety of packet forwarding and service cards can be
selected to perform different functions, including edge services, Carrier Grade Network Address Translation (NAT),
IPv6 conversion, distributed denial of service (DDoS) protection, Internet peering, and lean core switching. The
various cards allow service providers to configure large routers with a variety of characteristics and functions,
optimizing services while reducing TCO. Cisco CRS uses a midplane architecture in which a Physical Layer
Interface Module (PLIM) plugs into the midplane and connects to a packet-forwarding card. There are many types
of PLIMs with multiple interface types, including SONET/SDH and Ethernet. The forwarding cards provide the
appropriate services at the right price points. The service provider can mix and match the following packet
forwarding cards:
● Modular Services Card (MSC): A scalable IP edge service card providing massive VLAN scale and wire-
rate hierarchical quality of service (HQoS)
● Forwarding processor (FP): A scalable IP core forwarding card targeted at core routing and Internet peering
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 12
● Label-switched path (LSP): A scalable lean IP core forwarding card targeted at lean-core Multiprotocol
Label Switching (MPLS) deployments
● Carrier-Grade Services Engine (CGSE): A scalable services engine that can run IPv6 services, anti-DDoS
services, and other network applications and services
The Cisco CRS cards can be configured as edge routers, services engines, Border Gateway Protocol (BGP) core
peering routers, or lean-core MPLS switches. This flexibility allows service providers to mix and match functions in
a single chassis or multichassis CRS, thus optimizing their network and reducing overall TCO. This approach
contrasts with that of some competitors that use different products for lean core routing, full core routing, and edge
routing.
Wide Variety of Physical Interfaces
The CRS router allows service providers to mix and match a wide variety of physical interfaces using PLIMs. The
PLIMs can be matched with the various packet forwarding cards to optimize the network architecture and services.
The interfaces include:
● T3/E3
● SONET/SDN: OC3/STM through OC768/STM256
● Ethernet: 1-, 10-, 40-, and 100-Gigabit Ethernet
● Integrated 100-Gb IPoDWDM or grey optics interfaces
This variety of physical interfaces gives service providers the flexibility to serve existing as well as future interfaces
with the same CRS router
IP and Optical Integration with nLight
Another key value proposition of the Cisco CRS system is that it is closely integrated with the optical network. This
provides a wide range of financial benefits that are articulated and quantified in an ACG white paper entitled:
The Economics of Cisco’s nLight Multilayer Control Plane Architecture.
The fundamental problem is that because the IP and optical control planes are not integrated, service providers’
networks are always overengineered and underutilized, with 50 to75 percent of network capacity deployed for
network resiliency, not for passing traffic. Cisco has addressed this problem with nLight: a multilayer routing and
optimization architecture that focuses on IP and optical integration, increasing network agility and flexibility while
improving network utilization. By enabling information flows between the routing and optical layers, nLight provides
an end-to-end protection and restoration approach that meets performance constraints, such as “five 9s” (99.999
percent) availability, at much lower TCO than present methods, such as the widely used 1+1 optical protection
scheme. Cisco’s broad portfolio of DWDM enablers, such as colorless, contentionless, and omnidirectional
add/drop, and Flex Spectrum transmission, are enablers of nLight.
Cisco nLight is the optical and IP layer of Cisco Open Network Environment (ONE), a portfolio of Cisco
technologies and open standards that provides programmatic control of the network. Cisco nLight provides
programmatic interfaces between the routing layer (Layer 3) and the optical transport layer (Layer 1). Figure 6
shows where nLight resides within the overall Cisco ONE framework.
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 12
Figure 6. Cisco nLight Within Cisco ONE
As shown in Figure 6, nLight provides an integrated optical and IP control plane. The integrated control plane
produces a virtual and agile IP and optical topology. Using the integrated control plane, it is possible to
simultaneously optimize optical and IP total cost of ownership subject to constraints such as:
● Latency
● Shared Risk Link Groups (SRLG)
● Restoration
● Protection
Optimization of the IP and optical topology is further enhanced by the Cisco ONE controller, which analyzes
network traffic, topology, and failure conditions and uses this information to run optimization algorithms to provide
the lowest-cost network that satisfies network resiliency and performance constraints. The controller architecture,
which enhances the capabilities provided by nLight, is an optional component of the Cisco ONE architecture.
Business Case for Cisco CRS Elastic Core
This section uses a TCO model to quantify the financial benefits of a CRS Elastic Core.
Model for TCO Comparisons
This model uses a hypothetical greenfield network to compare a CRS network with core networks provided by from
two competitors called Vendor A and Vendor B. The key characteristics of the CRS Elastic Core as compared to
solutions provided by Vendor A and B are presented in Figure 7. The CRS system scales from single chassis to
multichassis, supports a large variety of packet forwarding and physical interfaces, and integrates tightly with the
optical network.
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 12
Figure 7. Cisco CRS Elastic Core Compared to Competitor Solutions
Cisco Vendor A Vendor B
● 400 Gbps per Slot
● IP Edge Services
● Full IP Core
● Lean MPLS Core
● Ethernet
● SONET/SDH
● Single Chassis,
Back-to-Back, and
Multichassis
● IPoDWDM
● nLight
● 400 Gbps per Slot
● Full IP Core
● Lean MPLS Core
● Ethernet
● 120 Gbps per Slot
● IP Edge Services
● SONET/SDH
● Ethernet
● 240 Gbps per Slot
● Full IP Core
● Ethernet
● SONET/SDH
● Single Chassis and
Multichassis
● 400 Gbps per Slot
● Lean MPLS Core
● Ethernet
The core router provided by vendor A is an Ethernet-only core routing solution. Therefore, if SONET/SDH
interfaces are present in the core network, a second services router is required. Also, Vendor A does not support
multichassis systems, so if additional chassis are needed in a core node, service interfaces must be used to
combine multiple routers into a larger routing node. Vendor A does not support IPoDWDM, so 100-Gb grey optics
and 100-Gb transponders are required for DWDM transport.
Vendor B has separate products for core routing and core MPLS switching (lean core). The MPLS switch is
targeted at core packet transport functions and does not support IP peering or SONET/SDN interfaces. Therefore
two core routers are needed if the network design demands IP peering, SONET/SDH interfaces, and lean MPLS
links. Vendor B does not support IPoDWDM, so 100-Gb grey optics and 100-Gb transponders are required for
DWDM transport.
For each of the three solutions, network configurations are generated based on a set of assumptions:
● Core network containing 10 nodes
● Demands evenly divided among all the nodes and the total demand specified in Table 1
● 400-Gb Cisco CRS line cards and switching fabric
● FP 400 cards used for access ports on the CRS router (demand)
● LSP 400 cards used for trunk-side ports on the CRS router
The demand includes Ethernet, SONET/SDH, and full and lean IP ports. Full IP ports are defined as ports that
require IP routing with full support for routing protocols and Internet peering. Lean ports are layer 2.5 transport
ports that only require MPLS and minimal IP routing.
Table 1. Port Requirements for Total Demand
Port Requirements Number of Ports CAGR
10GE Full IP 500 10%
100GE Full IP 500 10%
OC192 Full IP 500 2%
10GE Lean IP 100 10%
100GE Lean IP 100 10%
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 12
Each of the architectures is presented in the figures that follow. Figure 8 shows the Cisco CRS core architecture.
The demand for full IP ports is served by the FP 400 forwarding engines. Demand for lean core ports and the core
links interconnecting core nodes is served by LSP 400 forwarding engines.
Figure 8. Cisco CRS Core Architecture
The architecture for Vendor A’s solution is presented in Figure 9. All 10 Gigabit Ethernet and 100 Gigabit Ethernet
full and lean IP ports are serviced by the large core router. However, SONET/SDH ports must be served by an
edge router that is connected to the core router. Also, Vendor A uses 100 Gb grey optics with 100 Gb transponders
for core links interconnecting routers over a DWDM network.
Figure 9. Vendor A Core Architecture
Vendor B’s solution is presented in Figure 10. Vendor B uses a large core router for traditional full IP routing and
has both Ethernet and SONET/SDH interfaces. Vendor B has a different product for lean core switching that uses a
scaled-down MPLS switch. Lean core circuits are terminated on the MPLS switch and all core links are
interconnected through the MPLS switch.
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 12
Figure 10. Vendor B Core Architecture
TCO Results
A TCO model was used to analyze and compare CapEx and OpEx of the three solutions.
Figure 11 and Table 2 present the 6-year cumulative CapEx and OpEx of each solution. CapEx consists of all
equipment and systems integration expenditures. OpEx consists of environmental expenses, service provider
operations expenses, and vendor technical service expenses. The analysis shows that for the assumptions
presented earlier, the overall TCO of the Cisco solution is 49 percent lower than that of Vendor B and 38 percent
lower than that of Vendor A. The TCO benefits are due to a variety of factors including the flexibility of Cisco CRS
to support both lean and full IP interfaces, Ethernet and SONET interfaces, back-to-back and multichassis scaling,
and integrated IP and optical transport with Cisco nLight.
Figure 11. Six-Year Cumulative TCO Comparison
Table 2. Six-Year Cumulative TCO Comparison
Cisco Vendor B Vendor A
Cumulative CAPEX $202,713,399 $378,032,049 $323,119,414
Cumulative OPEX $60,572,050 $135,196,826 $98,369,411
Cumulative TCO $263,285,449 $513,228,875 $421,488,825
TCO Savings N/A 49% 38%
CapEx Savings N/A 46% 37%
OpEx Savings N/A 55% 38%
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 12
Total annual power consumption for each of the solutions is shown in Figure 12. The efficiency and flexibility of
Cisco CRS to support demand in a single multichassis system rather than with separate routers and switches is
one of the key factors leading to power efficiency.
Figure 12. Annual Power Consumption Comparison
A detailed comparison of the OpEx of each solution is presented in Figure 13. OpEx categories include:
● Certification and upgrades: processes required for new software releases and new system deployments
● Service: cost of technical support and service provided by the vendor
● Network care: labor expenses incurred by the service provider for managing and operating the core
network
● Space: Cost of floor space in the point of presence (POP)
● Cooling: Cost of cooling core router equipment
● Power: Cost of power for core router equipment
A single integrated CRS elastic core reduces expenses in each of these categories as compared to the solutions
provided by Vendor A and Vendor B.
© 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 12
Figure 13. Operating Expense Components
Conclusion
The key benefits of Cisco CRS Elastic Core are scalability and flexibility. The CRS can scale from single chassis to
multichassis with no additional wiring, topology, or routing changes, minimizing operations disruptions and reducing
OpEx. The wide range of packet forwarding engines and physical interfaces provides the flexibility to cost-
effectively scale the core with a CRS solution - adding chassis, forwarding engines, service engines, and physical
interfaces as demand for various services grows. Solutions from other vendors require different routers or MPLS
switches to provide different core services. Cisco CRS Elastic Core provides all of these interfaces and services on
a single, scalable, multichassis system.
A TCO analysis shows that the CRS Elastic Core solution is more cost effective than alternative solutions, with up
to 46 percent CapEx savings, 55 percent OpEx savings, and a 49 percent TCO savings.
Printed in USA C11-727983-00 05/13

Mais conteúdo relacionado

Mais procurados

Cisco UCS: meeting the growing need for bandwidth
Cisco UCS: meeting the growing need for bandwidthCisco UCS: meeting the growing need for bandwidth
Cisco UCS: meeting the growing need for bandwidthPrincipled Technologies
 
Optics for 100G and beyond
Optics for 100G and beyondOptics for 100G and beyond
Optics for 100G and beyondCPqD
 
Generic framing procedure
Generic framing procedureGeneric framing procedure
Generic framing procedureSudanshu Gupta
 
Nokia IES Configuration guide
Nokia IES Configuration guideNokia IES Configuration guide
Nokia IES Configuration guideAbel Saduwa
 
Ipv6 application in 5G bearer network--C&T RF Antennas Inc
Ipv6 application in 5G bearer network--C&T RF Antennas IncIpv6 application in 5G bearer network--C&T RF Antennas Inc
Ipv6 application in 5G bearer network--C&T RF Antennas IncAntenna Manufacturer Coco
 
Next Generation Storage Networking for Next Generation Data Centers
Next Generation Storage Networking for Next Generation Data CentersNext Generation Storage Networking for Next Generation Data Centers
Next Generation Storage Networking for Next Generation Data CentersTheFibreChannel
 
White Paper: Evolving Technolgies for Mobile Front and Backhauling
White Paper: Evolving Technolgies for Mobile Front and BackhaulingWhite Paper: Evolving Technolgies for Mobile Front and Backhauling
White Paper: Evolving Technolgies for Mobile Front and BackhaulingSusmita Adhikari Joshi
 
Control Plane for High Capacity Networks Public
Control Plane for High Capacity Networks PublicControl Plane for High Capacity Networks Public
Control Plane for High Capacity Networks PublicCPqD
 
Transceiver Options for Brocade 5100 Switch
Transceiver Options for Brocade 5100 SwitchTransceiver Options for Brocade 5100 Switch
Transceiver Options for Brocade 5100 SwitchMonica Geller
 
Emerging Trends and Applications for Cost Effective ROADMs
Emerging Trends and Applications for Cost Effective ROADMsEmerging Trends and Applications for Cost Effective ROADMs
Emerging Trends and Applications for Cost Effective ROADMsCPqD
 
routing Protocols and Virtual private network
routing Protocols and Virtual private networkrouting Protocols and Virtual private network
routing Protocols and Virtual private networkhayenas
 
Untangled: Improve Efficiency with Modern Cable Choices
Untangled: Improve Efficiency with Modern Cable ChoicesUntangled: Improve Efficiency with Modern Cable Choices
Untangled: Improve Efficiency with Modern Cable ChoicesTheFibreChannel
 
Optical Signal Property Synthesis at Runtime – An new approach for coherent t...
Optical Signal Property Synthesis at Runtime – An new approach for coherent t...Optical Signal Property Synthesis at Runtime – An new approach for coherent t...
Optical Signal Property Synthesis at Runtime – An new approach for coherent t...CPqD
 
White paper 10 gigabit ethernet
White paper 10 gigabit ethernetWhite paper 10 gigabit ethernet
White paper 10 gigabit ethernetKasun Tharaka
 
OFC/NFOEC: Software Defined Optical Networks
OFC/NFOEC: Software Defined Optical NetworksOFC/NFOEC: Software Defined Optical Networks
OFC/NFOEC: Software Defined Optical NetworksADVA
 

Mais procurados (20)

Cisco UCS: meeting the growing need for bandwidth
Cisco UCS: meeting the growing need for bandwidthCisco UCS: meeting the growing need for bandwidth
Cisco UCS: meeting the growing need for bandwidth
 
Optics for 100G and beyond
Optics for 100G and beyondOptics for 100G and beyond
Optics for 100G and beyond
 
Generic framing procedure
Generic framing procedureGeneric framing procedure
Generic framing procedure
 
Nokia IES Configuration guide
Nokia IES Configuration guideNokia IES Configuration guide
Nokia IES Configuration guide
 
10G Ethernet Overview & Use Cases
10G Ethernet Overview & Use Cases10G Ethernet Overview & Use Cases
10G Ethernet Overview & Use Cases
 
Ipv6 application in 5G bearer network--C&T RF Antennas Inc
Ipv6 application in 5G bearer network--C&T RF Antennas IncIpv6 application in 5G bearer network--C&T RF Antennas Inc
Ipv6 application in 5G bearer network--C&T RF Antennas Inc
 
Next Generation Storage Networking for Next Generation Data Centers
Next Generation Storage Networking for Next Generation Data CentersNext Generation Storage Networking for Next Generation Data Centers
Next Generation Storage Networking for Next Generation Data Centers
 
White Paper: Evolving Technolgies for Mobile Front and Backhauling
White Paper: Evolving Technolgies for Mobile Front and BackhaulingWhite Paper: Evolving Technolgies for Mobile Front and Backhauling
White Paper: Evolving Technolgies for Mobile Front and Backhauling
 
Control Plane for High Capacity Networks Public
Control Plane for High Capacity Networks PublicControl Plane for High Capacity Networks Public
Control Plane for High Capacity Networks Public
 
Transceiver Options for Brocade 5100 Switch
Transceiver Options for Brocade 5100 SwitchTransceiver Options for Brocade 5100 Switch
Transceiver Options for Brocade 5100 Switch
 
IP RAN 100NGN
IP RAN 100NGNIP RAN 100NGN
IP RAN 100NGN
 
Gsc20 session6 5_g_chih_ieee
Gsc20 session6 5_g_chih_ieeeGsc20 session6 5_g_chih_ieee
Gsc20 session6 5_g_chih_ieee
 
FCIA Speedmap - v20
FCIA Speedmap - v20FCIA Speedmap - v20
FCIA Speedmap - v20
 
Emerging Trends and Applications for Cost Effective ROADMs
Emerging Trends and Applications for Cost Effective ROADMsEmerging Trends and Applications for Cost Effective ROADMs
Emerging Trends and Applications for Cost Effective ROADMs
 
routing Protocols and Virtual private network
routing Protocols and Virtual private networkrouting Protocols and Virtual private network
routing Protocols and Virtual private network
 
Untangled: Improve Efficiency with Modern Cable Choices
Untangled: Improve Efficiency with Modern Cable ChoicesUntangled: Improve Efficiency with Modern Cable Choices
Untangled: Improve Efficiency with Modern Cable Choices
 
Optical Signal Property Synthesis at Runtime – An new approach for coherent t...
Optical Signal Property Synthesis at Runtime – An new approach for coherent t...Optical Signal Property Synthesis at Runtime – An new approach for coherent t...
Optical Signal Property Synthesis at Runtime – An new approach for coherent t...
 
White paper 10 gigabit ethernet
White paper 10 gigabit ethernetWhite paper 10 gigabit ethernet
White paper 10 gigabit ethernet
 
Huawei ipran solution
Huawei ipran solutionHuawei ipran solution
Huawei ipran solution
 
OFC/NFOEC: Software Defined Optical Networks
OFC/NFOEC: Software Defined Optical NetworksOFC/NFOEC: Software Defined Optical Networks
OFC/NFOEC: Software Defined Optical Networks
 

Semelhante a Building Cost Effective and Scalable Core Networks

Cisco SFPOC48SR
Cisco SFPOC48SRCisco SFPOC48SR
Cisco SFPOC48SRsavomir
 
Cisco cBR-8 Evolved CCAP: Deliver Scalable Network and Service Growth at a Lo...
Cisco cBR-8 Evolved CCAP: Deliver Scalable Network and Service Growth at a Lo...Cisco cBR-8 Evolved CCAP: Deliver Scalable Network and Service Growth at a Lo...
Cisco cBR-8 Evolved CCAP: Deliver Scalable Network and Service Growth at a Lo...Cisco Service Provider
 
Cisco XFP-10GLR-OC192SR
Cisco XFP-10GLR-OC192SRCisco XFP-10GLR-OC192SR
Cisco XFP-10GLR-OC192SRsavomir
 
unified ran transport solution cisco-siae microelettronica interoperability_2...
unified ran transport solution cisco-siae microelettronica interoperability_2...unified ran transport solution cisco-siae microelettronica interoperability_2...
unified ran transport solution cisco-siae microelettronica interoperability_2...Manojkumar371820
 
Network scaling cost analysis: Cisco UCS and IBM Flex System
Network scaling cost analysis: Cisco UCS and IBM Flex SystemNetwork scaling cost analysis: Cisco UCS and IBM Flex System
Network scaling cost analysis: Cisco UCS and IBM Flex SystemPrincipled Technologies
 
Cisco XFP10GEROC192IR
Cisco XFP10GEROC192IRCisco XFP10GEROC192IR
Cisco XFP10GEROC192IRsavomir
 
label switch processor datasheet
label switch processor datasheetlabel switch processor datasheet
label switch processor datasheetPranav Dharwadkar
 
iSCSI and CLEAR-Flow
iSCSI and CLEAR-FlowiSCSI and CLEAR-Flow
iSCSI and CLEAR-FlowMUK Extreme
 
Technology Brief: Flexible Blade Server IO
Technology Brief: Flexible Blade Server IOTechnology Brief: Flexible Blade Server IO
Technology Brief: Flexible Blade Server IOIT Brand Pulse
 
Cisco MEM-C6K-CPTFL256M
Cisco MEM-C6K-CPTFL256MCisco MEM-C6K-CPTFL256M
Cisco MEM-C6K-CPTFL256Msavomir
 
100g on a_standard_platform_oct14
100g on a_standard_platform_oct14100g on a_standard_platform_oct14
100g on a_standard_platform_oct14Abd Alhameed Swedan
 
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaborationPlenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaborationOri Gerstel
 
Implementation of intelligent wide area network(wan)- report
Implementation of intelligent wide area network(wan)- reportImplementation of intelligent wide area network(wan)- report
Implementation of intelligent wide area network(wan)- reportJatin Singh
 
Higher Speed, Higher Density, More Flexible SAN Switching
Higher Speed, Higher Density, More Flexible SAN SwitchingHigher Speed, Higher Density, More Flexible SAN Switching
Higher Speed, Higher Density, More Flexible SAN SwitchingTony Antony
 
Industry Brief: Streamlining Server Connectivity: It Starts at the Top
Industry Brief: Streamlining Server Connectivity: It Starts at the TopIndustry Brief: Streamlining Server Connectivity: It Starts at the Top
Industry Brief: Streamlining Server Connectivity: It Starts at the TopIT Brand Pulse
 
FFM_–_Technical_Brief_–_Network_Solutions_for_Intelligence_Surveillance_and_R...
FFM_–_Technical_Brief_–_Network_Solutions_for_Intelligence_Surveillance_and_R...FFM_–_Technical_Brief_–_Network_Solutions_for_Intelligence_Surveillance_and_R...
FFM_–_Technical_Brief_–_Network_Solutions_for_Intelligence_Surveillance_and_R...Vince Garr
 
Intel® Ethernet Update
Intel® Ethernet Update Intel® Ethernet Update
Intel® Ethernet Update Michelle Holley
 

Semelhante a Building Cost Effective and Scalable Core Networks (20)

Cisco SFPOC48SR
Cisco SFPOC48SRCisco SFPOC48SR
Cisco SFPOC48SR
 
Cisco cBR-8 Evolved CCAP: Deliver Scalable Network and Service Growth at a Lo...
Cisco cBR-8 Evolved CCAP: Deliver Scalable Network and Service Growth at a Lo...Cisco cBR-8 Evolved CCAP: Deliver Scalable Network and Service Growth at a Lo...
Cisco cBR-8 Evolved CCAP: Deliver Scalable Network and Service Growth at a Lo...
 
Cisco XFP-10GLR-OC192SR
Cisco XFP-10GLR-OC192SRCisco XFP-10GLR-OC192SR
Cisco XFP-10GLR-OC192SR
 
unified ran transport solution cisco-siae microelettronica interoperability_2...
unified ran transport solution cisco-siae microelettronica interoperability_2...unified ran transport solution cisco-siae microelettronica interoperability_2...
unified ran transport solution cisco-siae microelettronica interoperability_2...
 
Network scaling cost analysis: Cisco UCS and IBM Flex System
Network scaling cost analysis: Cisco UCS and IBM Flex SystemNetwork scaling cost analysis: Cisco UCS and IBM Flex System
Network scaling cost analysis: Cisco UCS and IBM Flex System
 
Cisco XFP10GEROC192IR
Cisco XFP10GEROC192IRCisco XFP10GEROC192IR
Cisco XFP10GEROC192IR
 
label switch processor datasheet
label switch processor datasheetlabel switch processor datasheet
label switch processor datasheet
 
iSCSI and CLEAR-Flow
iSCSI and CLEAR-FlowiSCSI and CLEAR-Flow
iSCSI and CLEAR-Flow
 
Technology Brief: Flexible Blade Server IO
Technology Brief: Flexible Blade Server IOTechnology Brief: Flexible Blade Server IO
Technology Brief: Flexible Blade Server IO
 
Cisco MEM-C6K-CPTFL256M
Cisco MEM-C6K-CPTFL256MCisco MEM-C6K-CPTFL256M
Cisco MEM-C6K-CPTFL256M
 
100g on a_standard_platform_oct14
100g on a_standard_platform_oct14100g on a_standard_platform_oct14
100g on a_standard_platform_oct14
 
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaborationPlenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
Plenary talk by Ori Gerstel at ACP13 on IP-optical collaboration
 
Implementation of intelligent wide area network(wan)- report
Implementation of intelligent wide area network(wan)- reportImplementation of intelligent wide area network(wan)- report
Implementation of intelligent wide area network(wan)- report
 
Higher Speed, Higher Density, More Flexible SAN Switching
Higher Speed, Higher Density, More Flexible SAN SwitchingHigher Speed, Higher Density, More Flexible SAN Switching
Higher Speed, Higher Density, More Flexible SAN Switching
 
Ccna 2 chapter 1 2014 v5
Ccna 2 chapter 1 2014 v5Ccna 2 chapter 1 2014 v5
Ccna 2 chapter 1 2014 v5
 
Industry Brief: Streamlining Server Connectivity: It Starts at the Top
Industry Brief: Streamlining Server Connectivity: It Starts at the TopIndustry Brief: Streamlining Server Connectivity: It Starts at the Top
Industry Brief: Streamlining Server Connectivity: It Starts at the Top
 
FFM_–_Technical_Brief_–_Network_Solutions_for_Intelligence_Surveillance_and_R...
FFM_–_Technical_Brief_–_Network_Solutions_for_Intelligence_Surveillance_and_R...FFM_–_Technical_Brief_–_Network_Solutions_for_Intelligence_Surveillance_and_R...
FFM_–_Technical_Brief_–_Network_Solutions_for_Intelligence_Surveillance_and_R...
 
Intel® Ethernet Update
Intel® Ethernet Update Intel® Ethernet Update
Intel® Ethernet Update
 
Examen1ccna3v5.0
Examen1ccna3v5.0Examen1ccna3v5.0
Examen1ccna3v5.0
 
City of Pforzheim case study
City of Pforzheim case studyCity of Pforzheim case study
City of Pforzheim case study
 

Mais de Cisco Service Provider

SP Network Automation: Automated Operations Overview
SP Network Automation: Automated Operations Overview SP Network Automation: Automated Operations Overview
SP Network Automation: Automated Operations Overview Cisco Service Provider
 
[Whitepaper] Cisco Vision: 5G - THRIVING INDOORS
[Whitepaper] Cisco Vision: 5G - THRIVING INDOORS[Whitepaper] Cisco Vision: 5G - THRIVING INDOORS
[Whitepaper] Cisco Vision: 5G - THRIVING INDOORSCisco Service Provider
 
[Infographic] Cisco Visual Networking Index (VNI): Mobile-Connected Devices p...
[Infographic] Cisco Visual Networking Index (VNI): Mobile-Connected Devices p...[Infographic] Cisco Visual Networking Index (VNI): Mobile-Connected Devices p...
[Infographic] Cisco Visual Networking Index (VNI): Mobile-Connected Devices p...Cisco Service Provider
 
[Infographic] Cisco Visual Networking Index (VNI): Mobile Users Growth
[Infographic] Cisco Visual Networking Index (VNI): Mobile Users Growth[Infographic] Cisco Visual Networking Index (VNI): Mobile Users Growth
[Infographic] Cisco Visual Networking Index (VNI): Mobile Users GrowthCisco Service Provider
 
Cisco Cloud-Scale Innovation Infographic
Cisco Cloud-Scale Innovation InfographicCisco Cloud-Scale Innovation Infographic
Cisco Cloud-Scale Innovation InfographicCisco Service Provider
 
Operator Drives Bandwidth Efficiency and Optimizes Satellite Link Performance
Operator Drives Bandwidth Efficiency and Optimizes Satellite Link PerformanceOperator Drives Bandwidth Efficiency and Optimizes Satellite Link Performance
Operator Drives Bandwidth Efficiency and Optimizes Satellite Link PerformanceCisco Service Provider
 
Application Engineered Routing Segment Routing and the Cisco WAN Automation ...
Application Engineered Routing  Segment Routing and the Cisco WAN Automation ...Application Engineered Routing  Segment Routing and the Cisco WAN Automation ...
Application Engineered Routing Segment Routing and the Cisco WAN Automation ...Cisco Service Provider
 
Research Highlight: Independent Validation of Cisco Service Provider Virtuali...
Research Highlight: Independent Validation of Cisco Service Provider Virtuali...Research Highlight: Independent Validation of Cisco Service Provider Virtuali...
Research Highlight: Independent Validation of Cisco Service Provider Virtuali...Cisco Service Provider
 
Cisco Policy Suite for Service Providers
Cisco Policy Suite for Service ProvidersCisco Policy Suite for Service Providers
Cisco Policy Suite for Service ProvidersCisco Service Provider
 
Deploy New Technologies Quickly with Cisco Managed Services for Service Provi...
Deploy New Technologies Quickly with Cisco Managed Services for Service Provi...Deploy New Technologies Quickly with Cisco Managed Services for Service Provi...
Deploy New Technologies Quickly with Cisco Managed Services for Service Provi...Cisco Service Provider
 
Segment Routing: Prepare Your Network For New Business Models
Segment Routing:  Prepare Your Network For New Business ModelsSegment Routing:  Prepare Your Network For New Business Models
Segment Routing: Prepare Your Network For New Business ModelsCisco Service Provider
 
Cisco Virtual Managed Services: Transform Your Business with Cloud-based Inn...
Cisco Virtual Managed Services:  Transform Your Business with Cloud-based Inn...Cisco Virtual Managed Services:  Transform Your Business with Cloud-based Inn...
Cisco Virtual Managed Services: Transform Your Business with Cloud-based Inn...Cisco Service Provider
 
Cisco Virtual Managed Services Solution
Cisco Virtual Managed Services SolutionCisco Virtual Managed Services Solution
Cisco Virtual Managed Services SolutionCisco Service Provider
 
Cisco Service Provider Vision and Strategy: Business Transforming Through Inn...
Cisco Service Provider Vision and Strategy: Business Transforming Through Inn...Cisco Service Provider Vision and Strategy: Business Transforming Through Inn...
Cisco Service Provider Vision and Strategy: Business Transforming Through Inn...Cisco Service Provider
 

Mais de Cisco Service Provider (20)

SP 5G: Unified Enablement Platform
SP 5G: Unified Enablement Platform  SP 5G: Unified Enablement Platform
SP 5G: Unified Enablement Platform
 
SP Network Automation: Automated Operations Overview
SP Network Automation: Automated Operations Overview SP Network Automation: Automated Operations Overview
SP Network Automation: Automated Operations Overview
 
[Whitepaper] Cisco Vision: 5G - THRIVING INDOORS
[Whitepaper] Cisco Vision: 5G - THRIVING INDOORS[Whitepaper] Cisco Vision: 5G - THRIVING INDOORS
[Whitepaper] Cisco Vision: 5G - THRIVING INDOORS
 
Cisco at OFC 2016
Cisco at OFC 2016Cisco at OFC 2016
Cisco at OFC 2016
 
[Infographic] Cisco Visual Networking Index (VNI): Mobile-Connected Devices p...
[Infographic] Cisco Visual Networking Index (VNI): Mobile-Connected Devices p...[Infographic] Cisco Visual Networking Index (VNI): Mobile-Connected Devices p...
[Infographic] Cisco Visual Networking Index (VNI): Mobile-Connected Devices p...
 
[Infographic] Cisco Visual Networking Index (VNI): Mobile Users Growth
[Infographic] Cisco Visual Networking Index (VNI): Mobile Users Growth[Infographic] Cisco Visual Networking Index (VNI): Mobile Users Growth
[Infographic] Cisco Visual Networking Index (VNI): Mobile Users Growth
 
Cisco Cloud-Scale Innovation Infographic
Cisco Cloud-Scale Innovation InfographicCisco Cloud-Scale Innovation Infographic
Cisco Cloud-Scale Innovation Infographic
 
Simplify Operations
Simplify OperationsSimplify Operations
Simplify Operations
 
Expand Your Market Opportunities
Expand Your Market OpportunitiesExpand Your Market Opportunities
Expand Your Market Opportunities
 
Orchestrated Assurance
Orchestrated Assurance Orchestrated Assurance
Orchestrated Assurance
 
Operator Drives Bandwidth Efficiency and Optimizes Satellite Link Performance
Operator Drives Bandwidth Efficiency and Optimizes Satellite Link PerformanceOperator Drives Bandwidth Efficiency and Optimizes Satellite Link Performance
Operator Drives Bandwidth Efficiency and Optimizes Satellite Link Performance
 
Application Engineered Routing Segment Routing and the Cisco WAN Automation ...
Application Engineered Routing  Segment Routing and the Cisco WAN Automation ...Application Engineered Routing  Segment Routing and the Cisco WAN Automation ...
Application Engineered Routing Segment Routing and the Cisco WAN Automation ...
 
Research Highlight: Independent Validation of Cisco Service Provider Virtuali...
Research Highlight: Independent Validation of Cisco Service Provider Virtuali...Research Highlight: Independent Validation of Cisco Service Provider Virtuali...
Research Highlight: Independent Validation of Cisco Service Provider Virtuali...
 
Cisco Policy Suite for Service Providers
Cisco Policy Suite for Service ProvidersCisco Policy Suite for Service Providers
Cisco Policy Suite for Service Providers
 
Deploy New Technologies Quickly with Cisco Managed Services for Service Provi...
Deploy New Technologies Quickly with Cisco Managed Services for Service Provi...Deploy New Technologies Quickly with Cisco Managed Services for Service Provi...
Deploy New Technologies Quickly with Cisco Managed Services for Service Provi...
 
Segment Routing: Prepare Your Network For New Business Models
Segment Routing:  Prepare Your Network For New Business ModelsSegment Routing:  Prepare Your Network For New Business Models
Segment Routing: Prepare Your Network For New Business Models
 
Cisco Virtual Managed Services: Transform Your Business with Cloud-based Inn...
Cisco Virtual Managed Services:  Transform Your Business with Cloud-based Inn...Cisco Virtual Managed Services:  Transform Your Business with Cloud-based Inn...
Cisco Virtual Managed Services: Transform Your Business with Cloud-based Inn...
 
Cisco Virtual Managed Services Solution
Cisco Virtual Managed Services SolutionCisco Virtual Managed Services Solution
Cisco Virtual Managed Services Solution
 
IPv6: Unleashing The Power
IPv6: Unleashing The PowerIPv6: Unleashing The Power
IPv6: Unleashing The Power
 
Cisco Service Provider Vision and Strategy: Business Transforming Through Inn...
Cisco Service Provider Vision and Strategy: Business Transforming Through Inn...Cisco Service Provider Vision and Strategy: Business Transforming Through Inn...
Cisco Service Provider Vision and Strategy: Business Transforming Through Inn...
 

Último

Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Scott Keck-Warren
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 

Último (20)

Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024Advanced Test Driven-Development @ php[tek] 2024
Advanced Test Driven-Development @ php[tek] 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 

Building Cost Effective and Scalable Core Networks

  • 1. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 12 White Paper Building Cost Effective and Scalable CORE Networks Using an Elastic Architecture Executive Summary Cisco ® CRS Elastic Core is based on the Cisco Carrier Routing System (CRS). The Elastic Core is a scalable and flexible solution providing the lowest total cost of ownership when compared to core solutions provided by other vendors. The Elastic Core provides: ● Scalability with up to 400 Gbps per line card, and single-chassis, back-to-back, and multichassis configurations ● Flexibility with multiple options for packet forwarding cards including full IP core, lean core, and IP services ● Support for a wide variety of physical interfaces including Ethernet, SONET/SDH, and T3 ● Clean integration of IP and optical with Cisco nLight ™ , allowing integration with the optical network using 100 Gigabit Ethernet IP over dense wavelength-division multiplexing (IPoDWDM) and an integrated IP and optical control plane As Cisco CRS scales from single-chassis to multichassis systems, no rewiring, network topology, or routing changes are required as additional chassis are added. This allows service providers to easily scale their networks while minimizing operating expenses (OpEx). Alternative solutions that do not support multichassis equipment can require extensive rerouting, topology, and routing changes if additional core routers need to be added to a node to support demand. A TCO analysis shows that the CRS core is more cost effective than alternative solutions, with up to 46 percent capital expenditures (CapEx) savings, 55 percent OpEx savings, and a total of 49 percent TCO savings. Background Information Core IP networks aggregate large amounts of traffic from residential, business, mobile, and wholesale networks. With the growth of “over the top” (OTT) video, mobile broadband, and the prospect of an Internet of Everything, core networks need to continue to scale beyond current boundaries. The Cisco Visual Networking Index ™ (Cisco VNI ™ ) forecast predicts a massive growth in IP traffic, which will directly impact the core. Some highlights from the VNI forecast are: ● Annual global IP traffic will surpass the zettabyte threshold (1.3 zettabytes) by the end of 2016. In 2016, global IP traffic will reach 1.3 zettabytes per year or 110.3 exabytes per month. ● Global IP traffic has increased eightfold over the past 5 years, and will increase threefold over the next 5 years. Overall, IP traffic will grow at a compound annual growth rate (CAGR) of 29 percent from 2011 to 2016. ● In 2016, the gigabyte equivalent of all movies ever made will cross global IP networks every 3 minutes. Global IP networks will deliver 12.5 petabytes every 5 minutes in 2016. As a direct result of the growth in global IP traffic, Infonetics Research is projecting 1 Gigabit and 10 Gigabit Ethernet ports to grow at double-digit rates and 40 Gigabit and 100 Gigabit Ethernet ports to grow at triple-digit rates.
  • 2. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 2 of 12 Cisco CRS Elastic Core solution provides a framework for scaling the core while minimizing capital and operational expenses. The next sections describe the key value propositions and present a TCO analysis of the CRS Elastic Core. Cisco Elastic Core Value Proposition Cisco CRS Elastic Core, powered by CRS routers, provides a scalable and cost-effective framework for next- generation core networks. The elastic core is: ● Scalable ● Flexible ● Supportive of a wide variety of physical interfaces ● Cleanly integrated with optical networks through Cisco nLight Scalability: Up to 400 Gbps per Line Card The Cisco CRS family of routers is highly scalable while supporting a wide variety of line cards that target various applications and price points. Three classes of line cards are available: 40 Gbps, 140 Gbps, and 400 Gbps. The 400-Gbps line cards and switch fabrics are new additions to the CRS product family, and include these configurations: ● Four 100 Gigabit Ethernet Ports per Card ● Ten 40 Gigabit Ethernet Ports per Card ● Forty 10 Gigabit Ethernet Ports per Card Scalability: Multichassis Architecture The CRS routing system is a highly scalable multichassis system. The key benefit of a multichassis router is that additional port capacity can be incrementally added to the router while maintaining a nonblocking switching fabric. This is not the case for a traditional single-chassis router, where additional routers need to be added and interconnected to add service ports to a routing node. This problem is illustrated in Figure 1. Figure 1. Capacity Additions with Single-Chassis Routers
  • 3. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 3 of 12 The top node in the figure depicts a single node router. In this case the number of service ports at the node fits within a single router. As the number of ports grows, it might be necessary to add another router as depicted in the two-router node. If the ports on the two-router node are exceeded, a third router must be added. Each time a router is added to the node, interconnect ports must be used to interconnect the routers. There are several problems with this approach: ● Interconnect ports consume service ports that could be used to generate revenue. ● To meet traffic requirements, between one third and one half of the ports on the router must be used for router interconnect. ● The interconnect architecture is a blocking-switching architecture; this means that in some traffic conditions, there may not be enough bandwidth in the router interconnect to serve demand. ● As routers are added, service ports need to be moved from one router to another, causing service disruption and increasing operational complexity and cost. This traditional router architecture leads to serious scalability and operational problems. It also consumes a high level of CapEx due the expenses for ports interconnecting multiple routers. As the number of routers grows, these problems become more severe. Cisco CRS solves these problems by using a scalable multichassis architecture. CRS routers come in many sizes: 4-, 8-, and 16-slot chassis. Additionally, CRS routers can be scaled by combining two chassis using a back-to-back architecture or combining up to nine chassis in a multichassis system. A Cisco CRS multichassis system consists of two major elements: a line card chassis (LCC) and a fabric card chassis (FCC). The LCC hosts Performance Route Processor (PRP) cards, the first and third stage of switch fabric cards, and line cards that provide the physical interface and process data packets. The FCC hosts the second stage of the switch fabric cards. The LCC and FCC are connected by a set of optical cables. Expanding your core network capacity is a smooth process for Cisco CRS, supported by in-service hardware and software upgrades. Upgrading from a single chassis to a back-to-back or multichassis system does not require any rewiring or disruption to service ports, simplifying the operational process and reducing service downtime. This architecture is illustrated in Figure 2. As the number of service ports grow, a second LCC is added to increase port capacity. The two LCCs are connected back-to-back using a fabric interconnect over optical cables. No service ports are required for interconnect and the switch fabric is nonblocking. For a two-chassis system no FCC is required. If three or more chassis are needed, LCCs are connected using an FCC. Again no service ports are required for interconnect and the switch fabric is nonblocking.
  • 4. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 4 of 12 Figure 2. Capacity Additions with Multiple Chassis The key benefits of the CRS multichassis architecture are: ● No service ports are required for LCC interconnect. ● The switch fabric is nonblocking. ● Adding back-to-back or multichassis capacity with an FCC is a “hitless” upgrade, with no service disruption or system rewiring. This architecture allows service providers to scale network capacity from 12.8 to 922 Tbps in accordance with demand. The major CRS system components are depicted in Figure 3. The system can scale to up to 72 chassis. However, in the field the largest deployment is 9 LCC + FCC. Figure 3. Cisco CRS System Components Chassis CRS 16 Slot CRS 16 Slot 2+0 Back-to-Back CRS 16 Slot X+1 Multichassis Aggregate Switching Capacity 12.8 Tbps 25.6 Tbps Up to 921.6 Tbps Number of Forwarding Slots 16 32 Up to 1152
  • 5. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 5 of 12 Scalability: 100 Gigabit Ethernet IPoDWDM The Cisco CRS router provides additional levels of scale with integrated, coherent 100 Gigabit Ethernet IPoDWDM optics. Integration of DWDM into the CRS line cards eliminates the need for a set of 100-Gb grey optics interconnecting the router card to a transponder in a reconfigurable optical add-drop multiplexer (ROADM). Figure 4 depicts a router connected to a ROADM using 100-Gb grey optics. This scenario requires a set of grey optics on both the router and the transponder. The integrated 100-Gb solution is illustrated in Figure 5. In this scenario, the grey optics are eliminated, reducing both CapEx and OpEx, with a TCO savings of up to 29 percent. The details of this analysis can be found in a white paper published by ACG Research: Why Service Providers Should Consider IPoDWDM for 100G and Beyond. Figure 4. Router Connected to a ROADM Using Grey Optics Figure 5. Router Directly Connected to a ROADM Flexibility Flexibility is a fundamental part of the CRS architecture; a variety of packet forwarding and service cards can be selected to perform different functions, including edge services, Carrier Grade Network Address Translation (NAT), IPv6 conversion, distributed denial of service (DDoS) protection, Internet peering, and lean core switching. The various cards allow service providers to configure large routers with a variety of characteristics and functions, optimizing services while reducing TCO. Cisco CRS uses a midplane architecture in which a Physical Layer Interface Module (PLIM) plugs into the midplane and connects to a packet-forwarding card. There are many types of PLIMs with multiple interface types, including SONET/SDH and Ethernet. The forwarding cards provide the appropriate services at the right price points. The service provider can mix and match the following packet forwarding cards: ● Modular Services Card (MSC): A scalable IP edge service card providing massive VLAN scale and wire- rate hierarchical quality of service (HQoS) ● Forwarding processor (FP): A scalable IP core forwarding card targeted at core routing and Internet peering
  • 6. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 6 of 12 ● Label-switched path (LSP): A scalable lean IP core forwarding card targeted at lean-core Multiprotocol Label Switching (MPLS) deployments ● Carrier-Grade Services Engine (CGSE): A scalable services engine that can run IPv6 services, anti-DDoS services, and other network applications and services The Cisco CRS cards can be configured as edge routers, services engines, Border Gateway Protocol (BGP) core peering routers, or lean-core MPLS switches. This flexibility allows service providers to mix and match functions in a single chassis or multichassis CRS, thus optimizing their network and reducing overall TCO. This approach contrasts with that of some competitors that use different products for lean core routing, full core routing, and edge routing. Wide Variety of Physical Interfaces The CRS router allows service providers to mix and match a wide variety of physical interfaces using PLIMs. The PLIMs can be matched with the various packet forwarding cards to optimize the network architecture and services. The interfaces include: ● T3/E3 ● SONET/SDN: OC3/STM through OC768/STM256 ● Ethernet: 1-, 10-, 40-, and 100-Gigabit Ethernet ● Integrated 100-Gb IPoDWDM or grey optics interfaces This variety of physical interfaces gives service providers the flexibility to serve existing as well as future interfaces with the same CRS router IP and Optical Integration with nLight Another key value proposition of the Cisco CRS system is that it is closely integrated with the optical network. This provides a wide range of financial benefits that are articulated and quantified in an ACG white paper entitled: The Economics of Cisco’s nLight Multilayer Control Plane Architecture. The fundamental problem is that because the IP and optical control planes are not integrated, service providers’ networks are always overengineered and underutilized, with 50 to75 percent of network capacity deployed for network resiliency, not for passing traffic. Cisco has addressed this problem with nLight: a multilayer routing and optimization architecture that focuses on IP and optical integration, increasing network agility and flexibility while improving network utilization. By enabling information flows between the routing and optical layers, nLight provides an end-to-end protection and restoration approach that meets performance constraints, such as “five 9s” (99.999 percent) availability, at much lower TCO than present methods, such as the widely used 1+1 optical protection scheme. Cisco’s broad portfolio of DWDM enablers, such as colorless, contentionless, and omnidirectional add/drop, and Flex Spectrum transmission, are enablers of nLight. Cisco nLight is the optical and IP layer of Cisco Open Network Environment (ONE), a portfolio of Cisco technologies and open standards that provides programmatic control of the network. Cisco nLight provides programmatic interfaces between the routing layer (Layer 3) and the optical transport layer (Layer 1). Figure 6 shows where nLight resides within the overall Cisco ONE framework.
  • 7. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 7 of 12 Figure 6. Cisco nLight Within Cisco ONE As shown in Figure 6, nLight provides an integrated optical and IP control plane. The integrated control plane produces a virtual and agile IP and optical topology. Using the integrated control plane, it is possible to simultaneously optimize optical and IP total cost of ownership subject to constraints such as: ● Latency ● Shared Risk Link Groups (SRLG) ● Restoration ● Protection Optimization of the IP and optical topology is further enhanced by the Cisco ONE controller, which analyzes network traffic, topology, and failure conditions and uses this information to run optimization algorithms to provide the lowest-cost network that satisfies network resiliency and performance constraints. The controller architecture, which enhances the capabilities provided by nLight, is an optional component of the Cisco ONE architecture. Business Case for Cisco CRS Elastic Core This section uses a TCO model to quantify the financial benefits of a CRS Elastic Core. Model for TCO Comparisons This model uses a hypothetical greenfield network to compare a CRS network with core networks provided by from two competitors called Vendor A and Vendor B. The key characteristics of the CRS Elastic Core as compared to solutions provided by Vendor A and B are presented in Figure 7. The CRS system scales from single chassis to multichassis, supports a large variety of packet forwarding and physical interfaces, and integrates tightly with the optical network.
  • 8. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 8 of 12 Figure 7. Cisco CRS Elastic Core Compared to Competitor Solutions Cisco Vendor A Vendor B ● 400 Gbps per Slot ● IP Edge Services ● Full IP Core ● Lean MPLS Core ● Ethernet ● SONET/SDH ● Single Chassis, Back-to-Back, and Multichassis ● IPoDWDM ● nLight ● 400 Gbps per Slot ● Full IP Core ● Lean MPLS Core ● Ethernet ● 120 Gbps per Slot ● IP Edge Services ● SONET/SDH ● Ethernet ● 240 Gbps per Slot ● Full IP Core ● Ethernet ● SONET/SDH ● Single Chassis and Multichassis ● 400 Gbps per Slot ● Lean MPLS Core ● Ethernet The core router provided by vendor A is an Ethernet-only core routing solution. Therefore, if SONET/SDH interfaces are present in the core network, a second services router is required. Also, Vendor A does not support multichassis systems, so if additional chassis are needed in a core node, service interfaces must be used to combine multiple routers into a larger routing node. Vendor A does not support IPoDWDM, so 100-Gb grey optics and 100-Gb transponders are required for DWDM transport. Vendor B has separate products for core routing and core MPLS switching (lean core). The MPLS switch is targeted at core packet transport functions and does not support IP peering or SONET/SDN interfaces. Therefore two core routers are needed if the network design demands IP peering, SONET/SDH interfaces, and lean MPLS links. Vendor B does not support IPoDWDM, so 100-Gb grey optics and 100-Gb transponders are required for DWDM transport. For each of the three solutions, network configurations are generated based on a set of assumptions: ● Core network containing 10 nodes ● Demands evenly divided among all the nodes and the total demand specified in Table 1 ● 400-Gb Cisco CRS line cards and switching fabric ● FP 400 cards used for access ports on the CRS router (demand) ● LSP 400 cards used for trunk-side ports on the CRS router The demand includes Ethernet, SONET/SDH, and full and lean IP ports. Full IP ports are defined as ports that require IP routing with full support for routing protocols and Internet peering. Lean ports are layer 2.5 transport ports that only require MPLS and minimal IP routing. Table 1. Port Requirements for Total Demand Port Requirements Number of Ports CAGR 10GE Full IP 500 10% 100GE Full IP 500 10% OC192 Full IP 500 2% 10GE Lean IP 100 10% 100GE Lean IP 100 10%
  • 9. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 9 of 12 Each of the architectures is presented in the figures that follow. Figure 8 shows the Cisco CRS core architecture. The demand for full IP ports is served by the FP 400 forwarding engines. Demand for lean core ports and the core links interconnecting core nodes is served by LSP 400 forwarding engines. Figure 8. Cisco CRS Core Architecture The architecture for Vendor A’s solution is presented in Figure 9. All 10 Gigabit Ethernet and 100 Gigabit Ethernet full and lean IP ports are serviced by the large core router. However, SONET/SDH ports must be served by an edge router that is connected to the core router. Also, Vendor A uses 100 Gb grey optics with 100 Gb transponders for core links interconnecting routers over a DWDM network. Figure 9. Vendor A Core Architecture Vendor B’s solution is presented in Figure 10. Vendor B uses a large core router for traditional full IP routing and has both Ethernet and SONET/SDH interfaces. Vendor B has a different product for lean core switching that uses a scaled-down MPLS switch. Lean core circuits are terminated on the MPLS switch and all core links are interconnected through the MPLS switch.
  • 10. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 10 of 12 Figure 10. Vendor B Core Architecture TCO Results A TCO model was used to analyze and compare CapEx and OpEx of the three solutions. Figure 11 and Table 2 present the 6-year cumulative CapEx and OpEx of each solution. CapEx consists of all equipment and systems integration expenditures. OpEx consists of environmental expenses, service provider operations expenses, and vendor technical service expenses. The analysis shows that for the assumptions presented earlier, the overall TCO of the Cisco solution is 49 percent lower than that of Vendor B and 38 percent lower than that of Vendor A. The TCO benefits are due to a variety of factors including the flexibility of Cisco CRS to support both lean and full IP interfaces, Ethernet and SONET interfaces, back-to-back and multichassis scaling, and integrated IP and optical transport with Cisco nLight. Figure 11. Six-Year Cumulative TCO Comparison Table 2. Six-Year Cumulative TCO Comparison Cisco Vendor B Vendor A Cumulative CAPEX $202,713,399 $378,032,049 $323,119,414 Cumulative OPEX $60,572,050 $135,196,826 $98,369,411 Cumulative TCO $263,285,449 $513,228,875 $421,488,825 TCO Savings N/A 49% 38% CapEx Savings N/A 46% 37% OpEx Savings N/A 55% 38%
  • 11. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 11 of 12 Total annual power consumption for each of the solutions is shown in Figure 12. The efficiency and flexibility of Cisco CRS to support demand in a single multichassis system rather than with separate routers and switches is one of the key factors leading to power efficiency. Figure 12. Annual Power Consumption Comparison A detailed comparison of the OpEx of each solution is presented in Figure 13. OpEx categories include: ● Certification and upgrades: processes required for new software releases and new system deployments ● Service: cost of technical support and service provided by the vendor ● Network care: labor expenses incurred by the service provider for managing and operating the core network ● Space: Cost of floor space in the point of presence (POP) ● Cooling: Cost of cooling core router equipment ● Power: Cost of power for core router equipment A single integrated CRS elastic core reduces expenses in each of these categories as compared to the solutions provided by Vendor A and Vendor B.
  • 12. © 2013 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 12 of 12 Figure 13. Operating Expense Components Conclusion The key benefits of Cisco CRS Elastic Core are scalability and flexibility. The CRS can scale from single chassis to multichassis with no additional wiring, topology, or routing changes, minimizing operations disruptions and reducing OpEx. The wide range of packet forwarding engines and physical interfaces provides the flexibility to cost- effectively scale the core with a CRS solution - adding chassis, forwarding engines, service engines, and physical interfaces as demand for various services grows. Solutions from other vendors require different routers or MPLS switches to provide different core services. Cisco CRS Elastic Core provides all of these interfaces and services on a single, scalable, multichassis system. A TCO analysis shows that the CRS Elastic Core solution is more cost effective than alternative solutions, with up to 46 percent CapEx savings, 55 percent OpEx savings, and a 49 percent TCO savings. Printed in USA C11-727983-00 05/13