O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.
Introduction / Background
TEM Results
EEC-1132648 Summer Research Pro...
Próximos SlideShares
Carregando em…5

RETE Poster Mn3O4 PPy

89 visualizações

Publicada em

  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

RETE Poster Mn3O4 PPy

  1. 1.   Introduction / Background TEM Results Discussion Conclusions Acknowledgements References EEC-1132648 Summer Research Project:  ELECTROCHEMICAL CAPACITORS C.S.Peterson; M.P.Yeager; W.Du.; X.Teng The Joan and James Lietzel Center for  Science, Technology, Engineering and Math  Education: Research Experience for  Teachers in Engineering Program 2012 Topic: METAL OXIDE NANAOSTRUCTURES AS FARADIAC REDOX REACTIONS FOR ENERGY STORAGE APPLICATIONS OPTIONS WITH POWER AND ENERGY DENSITIES BETWEEN BATTERIES AND CAPACITORS: Goal: Can a coating of polypyrrole on nanoparticle Mn3O4 metal oxide be  prepared by in-situ polymerization to improve the specific capacitance  of by reducing charge-transfer resistance over the  electrode/electrolyte interface? Electrochemical capacitors (EC) store energy in an electric field  that can be charged and discharged rapidly. These  electrochemical capacitors are useful in combination with  conventional batteries in providing electrical energy storage and  release where rapid high power delivery or uptake is needed.  Though small single cell low voltage EC have been commercially  available, different applications require improved energy density.  Psuedo-capacitors or redox-supercapacitors (SCs) are a class of  the EC energy storage device that fill the gap between batteries  with high energy densities and electrostatic capacitors with high  power densities. These redox-capacitors rely on metal oxides  nanomaterials which undergo fast and reversible surface reactions  for charge storage. Emerging energy applications for EC/SC with  characteristics of high power and improved energy densities has  prompted research into materials for electrodes in EC/SCs. These  materials should be low cost, low toxicity, have large specific  capacitance and long life cycle based on to their potential for multi- electron transfer during Faradaic reactions. This is an investigation to enhance the conductivity of the redox  reaction by reducing the distance traveled to between the metal  oxide and the electrode through creating a nanometer thickness  layer of polypyrrole conductive polymer on the metal oxide through  in-situ polymerization. To facilitate charge transfer of Faradaic redox reaction of :                    Mn+2--> Mn+3 + e- conductive polymer, polypyrrole, PPy, was formed from the  monomer in-situ with nanoparticle metal oxide.  Compared cyclic voltagrammetric specific capacitance   *100/ % Mn3O4 (+ 20% PTFE non-conductive)  *50/50 % in-situ polymerizered pyrrole / Mn3O4  *90/10 % in-situ polymerizered pyrrole / Mn3O4  *100 % polymerizered pyrrole In-situ polymerization of pyrrole on metal oxide nanoparticles for pseudo capacitors. IN-SITU Polymerization Synthesis: Nanoparticle Metal Oxide Mn3O4 7/12 syn /50% by weight PPy 1 to 10 Mn3O4to PPy: 7/12 syn with 10% /90% by weight PPy  50/50 % by weight Ppy/Mn3O4:  90/10 % by weight Ppy/Mn3O4  7/12/12 synthesis  The optimization of electrode materials are critical for further  development. Increasing the surface area through synthesis of  nanometer size particles increase surface reactions. How these metal  oxides are adhered to the electrode may play a significant role in their  effectiveness. Though there is ongoing research of the choice of metal  oxide for redox reaction, reducing the resistivity to the electron charge  transfer to the electrode from the Faradaic redox reaction may enhance  the specific capacitance and charge / discharge cycle endurance of the  psuedo-capacitor.  Cat Peterson is an in-service high school teacher in Naugatuck, CT. Prior to teaching, she earned a B.S. in Chemistry from the University of Connecticut and enjoyed ten years of S.T.E.M. careers, holding jobs as application chemist, quality director, product/ project manager and program launch leader for a variety of engineered polymer composite manufacturers. Cat then became certified in 7-12 grade Chemistry and General Science, and teaches Academic and Honors chemistry to sophomores and juniors along with diverse science electives. After earning her M.S. in Chemistry from Saint Joseph College in 2009, she had been reenergized in promoting S.T.E.M. education and career awareness. This opportunity to conduct summer research in a S.T.E.M. area through the National Science Foundation grant awarded to the James and Joan Lietzel Center at the University of New Hampshire, Durham, NH. has empowered her to encourage, excite and teach students to appreciate science, math, technology and engineering. The Mn3O4 metal oxide was synthesized per a  method devised by Matt P. Yeager et al. The  material was centrifuged, vacuum dried and  massed to allow for nown ratio of metal oxide to  polymer. Verification  of particle size of 15-20 nm  by TEM magnification 40000 times is shown below:  Prepared dilute solution MnCl2 10 mL of DIDW H2O 70mg Mn(II)Cl2*4H2O Prepared 0.300 M KOH: 10 mL of DIDW H2O 163 mg KOH Placed in Syringe Pump Added dropwise with programmable syringe pump at rate of 0.167 ml per minute for 50 minutes. 145 mg KOH / 8.33 mL used. Allowed 30 additional minutes stirring to react. Used four centrifuge tubes. Centrifuged for 10 minutes: clear supernatant. Decanted and consolidated to two tubes. Filled with DI H2O for wash and centrifuged for 10 minutes. Decanted and consolidated to one tube. Filled with ethanol and centrifuged 10 minutes. Decanted and vacuum dried at room temp for 16  hours. TEM sample prepared on carbon support . Half Cell Results Hope to get some actual CVs this week  and calculate Specific Capacitance for  plain glassy carbon electron and four  samples listed above  Report in Farads per gram Compare to other 650 F g-1 etc. A sample of Mn3O4 from synthesis, mass of 10.2 mg was diluted  with 4.450  mL to a 0.010M aqueous solution which was sonicated for 10 minutes prior to   and 10 additional minutes after adding 105 µL of a 10% pyrrole monomer  dissolved in ethanol. To initiate polymerization 105 µL of 0.010M aqueous  Fe(NO3)3 was added, followed by 30 minutes of sonication. The sample was  centrifuged and dried. A small dimension particles appeared to settle.  A similar method was used in the preparation of the 9 to 1 sample pyrrole /  M3O4, using 9 times the amount of pyrrole and Fe (NO3)3. The particle size  that settled was noticeably larger and descended at an increased rate.             50/50 % in-situ polymerizered  pyrrole / Mn3O4      90/10 % in-situ polymerizered            pyrrole / Mn3O4 TEM images were taken from samples  that had been oven dried and then  redissolved in ethanol, prepared on  carbon supported copper wire screens. TEM images are at 40000 times magnification.  The 15-20 nm octahedral shape  Mn3O4 particles can still be vsualized though the particles appear to be  clumped together in 100-300 nm structures, The  lighter gray, more evident in the 90/10, is assumed to  be the polypyrrole compound. FURTHER INVESTIGATIONS: •Comparision to other ratios of Ppy/Mn3O4 for  optimization or other conductive polymers. •SEM determination of individual particle size Even  if the PPy / Mn3O4 are not clearly distinct  individually coated particles, the aggregate particle  size appears to be less than 1000 nm and have a  high surface area structure. • UNH Department of Chemical Engineering • Xaiowei Teng, Wenxin Du, Matthew P. Yeager for encouraging me to undertake a unique direction utilizing their resources which allowed me to pursue a distinct research project and enduring my unending questions • Matthew Sullivan and Dom Montollo for coaching with laboratory synthesis and testing procedures. • Carole Lessard, Katie Stella, Baron Richardson, Michelle Kelly, Berkley Sadona and April Cartwright for their camaraderie, inspiration, and sharing of their instructional experiences in a professional development mode. • Nancy Cherim, at UNH-UIC for access, training and assistance in TEM photography. • Stephen R. Hale, at the Lietzel Center for coordinating the RETE program and providing well- defined direction, appropriate resources, confident leadership and encouragement throughout this experience. Mass on electrode of 5 micrograms total; therefore Mn3O4 loading was reduced while Ppy was increased