SlideShare a Scribd company logo
1 of 1
Download to read offline
Fig.1.  Structures  of  the  
fluorescein nucleic  acid  dyes:  
TP3  and  DAPI  (5).
Fig.2.  Schematic  presentation  of  TP3  displacement  from  
DNA  helix  followed  by  fluorescence  quenching  (5).  
Methodology:
Nucleic  acid  dye  fluorescence  quenching  assays  -­ A  drug  solution  was  added  in  1  to  10uL  
aliquots  to  a  solution  of  20  uM sonicated calf  thymus  DNA  and  2  uM dye  in  3  ml  of  acetate  
buffer  (pH  5.0).  A  fluorescence  spectrum  was  recorded  at  each  addition  of  the  drug,  and  the  
intensity  was  noted  at  λem.  The  base  level  (buffer)  was  subtracted  from  each  fluorescence  
measurement  at  λem.  This  value  was  then  divided  by  the  maximal  fluorescence  (dye  and  
DNA  only).  The  data  were  plotted  against  the  concentration  of  each  drug,  and  the  C50  value  
of  each  was  determined.  C50  is  the  concentration  of  a  drug  at  50%  fluorescence  quenching  
of  DNA-­bound  dye.  All  fluorescence  measurements  were  performed  at  25˚C.
Confirmation  of  the  fluorescence  study  results  by  NMR  -­ Proton  spectra  were  obtained  on  a  
JEOL  ECX  300-­MHz  spectrometer. Samples  (800  uL)  contained  0.5  mM imipramine, 0.5  mM
pyrocatechol violet,  or  0.3  mM janus green  B  and  different amounts  of  sonicated calf  thymus  
DNA  in  D2O.  The  spectra  were recorded  in  5-­mm  NMR  tubes.
Fig.3.  Structures  of  the  experimental  molecules  
(5).
Results:
Fluorescence  quenching  assays
Fig.5.  Fluorescence  quenching  of  DNA-­bound  TP3  (s)  
and  DAPI  (d)  by  11  different  molecules  (5).    
Fig.7.  NMR  spectra  of  0.5  mM pyrocatechol violet  
and  pyrocatechol violet  with  equimolar amounts  of  
DNA,  both  in  D2O  (5).  In  contrast  to  imipramine,  
the  proton  lines  of  the  NMR  spectra  of  pyrocatechol
violet  did  not  shift  on  the  addition  of  DNA,  revealing  
a  minor  groove  binding  mode  for  pyrocatechol
violet.
Acknowledgments:
Special  thanks  to  Dr.  Ekaterina  Korobkova,  Nikolay Azar,  and  Dr.  Nathan  Lents.
Support  for  student  stipends,  supplies,  and/or  equipment  used  in  this  research  was  supplied  by  
the  Program  for  Research  Initiatives  for  Science  Majors  (PRISM)  at  John  Jay  College.  PRISM  
is  funded  by  the  Title  V,  HSI-­STEM  and  MSEIP  programs  within  the  U.S.  Department  of  
Education;;  the  PAESMEM  program  through  the  National  Science  Foundation;;  and  New  York  
State’s  Graduate  Research  and  Teaching  Initiative.  
Determination  of  the  drug–DNA  binding  modes  
using  fluorescence-­based  assays
Baibhav  Rawal,  Alicia  K.  Williams,  Sofia  Cheliout Dasilva,  Ankit  Bhatta,,  Melinda  Liu  
Ekaterina  A.  Korobkova *
Department  of  Science,  John  Jay  College  of  Criminal  Justice
445  W  59th  St.,  New  York,  NY  10019
Table  1.  Probabilities  of  intercalative  DNA  binding  mode  and  partition  
coefficients  of  11  experimental  molecules  (5).
Compound name Partition coefficient (log[P] I/G I%
Netropsin
Tartrazine
Amaranth
Pyrocatechol violet
Berenil
New coccine
Sunset yellow FCF
Imipramine
Brilliant blue G
Congo red
Janus green
-­4.741
-­1.766
-­1.611
-­1.533
-­1.434
-­0.425
-­0.265
1.022
2.971
3.899
4.365
0.020
0.041
0.270
0.086
0.310
0.068
0.032
1.1
15
3.3
2.9
1.9
4.0
21
7.9
24
6.4
3.1
53
94
77
74
Note  (5):  The  relative  affinity,  R,  was  presented  as  log[Kb]/C50.  We  hypothesized  that  a  drug  more  
effectively  displaces  a  dye  that  has  a  similar  DNA  binding  mechanism  than  a  dye  that  has  a  different  DNA  
binding  mode.  The  ratio  of  the  R  coefficients  (I/G)  determined  with  TP3  and  DAPI  represents  contributions  
of  the  two  binding  modes  to  the  whole  drug–DNA  association  mechanism. I/G  =  RTP3/RDAPI,  where  Rdye
=  log[Kb(dye)]/C50.  C50   is  the  concentration  of  an experimental  molecule  at  50%  fluorescence  quenching  of  a  
bound  dye.  The  units  of C50 are  mol/L  (M).  The  percentage  contribution  of  the  intercalative  mode  (I%)  was  
determined  as  I%  =  [1  +  (I/G)-­1]-­1x100%.
Fig.4.  Scatchard plots  for  nucleic  acid  dyes–DNA  binding  derived  from  fluorescence  measurements  (5).    [DNA]/f  is  plotted  
versus  (1  -­ f)-­1,  where  [DNA]  is  the  concentration  of  the  sonicated calf  thymus  DNA  (in  M  per  base  pair)  and  f  =  (F(corr) –
FD)/(Fmax(corr) – FD).  (A)  TP3–DNA  Scatchard plot.  The  concentration  of  TP3  was  0.75  uM,  and  the  concentration  of  DNA  
on  the  plot  varied  between  5.3  and  19  lM (bp).  Inset:  black  line,  fluorescence  spectrum  of  TP3  alone;;  red  line,  
fluorescence  spectrum  of  the  solution  containing  0.75  uM TP3  and  14  lM calf  thymus  DNA;;  λex =  642  nm  and  λem =  661  
nm.  (B)  DAPI–DNA  Scatchard plot.  The  concentration  of  DAPI  was  0.75  uM,  and  the  range  of  DNA  concentrations  on  the  
plot  was  4.9  to  14  uM (bp).  Inset:  black  line,  fluorescence  spectrum  of  DAPI  alone;;  red  line,  fluorescence  spectrum  of  the  
solution  containing  0.75  uM DAPI  and  14  uM calf  thymus  DNA;;  λex =  358  nm  and  λem =  461  nm.  a.u.,  arbitrary  units.
Fig.6 NMR  spectra  in  the aromatic  proton  regions  recorded  
from  the  solutions  of  imipramine and  the  different  
concentrations  of  DNA  with  different  molar  ratios  of  
imipramine and  DNA  base  pairs  (5).  As  the  concentration  of  
DNA  increased,  the  spectra  became  broader  and  the  
chemical  shift  changed  by  an  increment  ranging  between  -­
0.5  and  -­0.4  ppm.  The  upfield proton  shift  and  the  
corresponding  line’s  broadening  are  proven  to  be  a  
signature  of  an  intercalative  binding  mode.  
NMR    -­ results  shown  for  two  of  the  three  molecules  studied
Estimating  a  relative  affinity  and  a  binding  mode  
Introduction:
Therapeutic  drugs  (4)  and  environmental  pollutants  may  exhibit  high  reactivity  toward  
DNA  bases  and  backbone.  Understanding  the  mechanisms  of  drug-­DNA  binding  is  
crucial  for  predicting  their  potential  genotoxicity.  We  developed  a  fluorescence  
analytical  method  for  the  determination  of  the  preferential  binding  mode  for  drug-­DNA  
interactions.  Two  nucleic  acid  dyes  were  employed  in  the  method:  TO-­PRO-­3  iodide  
(TP3)  and  40,6-­diamidino-­2-­phenylindole  (DAPI).  TP3  binds  DNA  by  intercalation,  
whereas  DAPI  exhibits  minor  groove  binding.  Both  dyes  exhibit  significant  
fluorescence  magnification  on  binding  to  DNA  (2,  3).  We  evaluated  the  DNA  binding  
constant,  Kb, for  each  dye  (1).  We  performed  fluorescence  quenching  experiments  
with  11  molecules  and  measured  a  C50 value  for  each  compound.  We  determined  
preferential  binding  modes  for  these  molecules.  The  values  of  the  likelihood  of  DNA  
intercalation  were  correlated  with  the  partition  coefficients  of  the  molecules.  It  was  
found  that  netropsin,  berenil,  pyrocatechol violet,  sunset  yellow,  tartrazine,  new  
coccine and  amaranth  bind  preferentially  to  DNA  by  minor  groove  binding  
mechanism,  while  congo red,  janus green  and  brilliant  blue  do  so  preferentially  by  
intercalation.  In  addition,  we  performed  nuclear  magnetic  resonance  (NMR)  studies  of  
the  interactions  with  DNA  for  the  three  molecules.  The  results  were  consistent  with  
the  fluorescence  method  described  above.  Thus,  we  conclude  that  the  fluorescence  
method  we  developed  provides  a  reliable  determination  of  the  likelihoods  of  the  two  
different  DNA  binding  modes.
References:
1.  Healy,  E.F.,  Quantitative  determination  of  DNA–ligand binding  using  fluorescence  
spectroscopy, J.  Chem.  Educ. 84 (2007) 1304–1307.
2.  Liu,  Y.,  Danielsson,  B.,  Fluorometric broad-­range  screening  of  compounds  with  affinity  for  
nucleic  acids,  Anal.  Chem.  77  (2005)  2450–2454.
3.  Haugland,  R.P.,  in:  M.T.Z.  Spence  (Ed.),  Handbook  of  Fluorescence  Probes  and  Research  
Chemicals,  Molecular  Probes,  Eugene,  OR,  1996,  p.153.
4.  Korobkova,  E.A.,  Ng,  W.,  Vethatratnam,  A.,  Williams,  A.K.,  Nizamova,  M.,  Azar,  N.,  In  vitro  
studies  of  DNA  damage  caused  by  tricyclic antidepressants:  a  role  of peroxidase in  side  
effects  of  the  drugs,  Chem.  Res.  Toxicol.  23  (2010)  1497–1503.  
5.  Williams,  A.K.,  Cheliout Da Silva,  S.,  Bhatta,  A.,  Rawal,  B.,  Liu,  M.,  Korobkova,  E.  A.  
Determination  of  the  drug-­DNA  binding  modes  using  fluorescence-­based  asays,  Anal.  Chem.  
422  (2012)  66-­73.

More Related Content

What's hot

A New Lupan type Triterpene Butilinol from Viburnum grandiflorum
A New Lupan type Triterpene Butilinol from Viburnum grandiflorumA New Lupan type Triterpene Butilinol from Viburnum grandiflorum
A New Lupan type Triterpene Butilinol from Viburnum grandiflorumIOSR Journals
 
Theoretical study of electronic properties of few variants
Theoretical study of electronic properties of few variantsTheoretical study of electronic properties of few variants
Theoretical study of electronic properties of few variantsAlexander Decker
 
SIMONA CAVALU_Adsorption behavior of hyaluronidase onto silver
SIMONA CAVALU_Adsorption behavior of hyaluronidase onto silverSIMONA CAVALU_Adsorption behavior of hyaluronidase onto silver
SIMONA CAVALU_Adsorption behavior of hyaluronidase onto silverSimona Cavalu
 
Spectroscopic Study on the Interaction between Mobic and Lysozyme
Spectroscopic Study on the Interaction between Mobic and LysozymeSpectroscopic Study on the Interaction between Mobic and Lysozyme
Spectroscopic Study on the Interaction between Mobic and LysozymeAI Publications
 
Dias et al-2017-journal_of_mass_spectrometry
Dias et al-2017-journal_of_mass_spectrometryDias et al-2017-journal_of_mass_spectrometry
Dias et al-2017-journal_of_mass_spectrometryTatianaManziniVieira
 
ASMS2012_Technical-small
ASMS2012_Technical-smallASMS2012_Technical-small
ASMS2012_Technical-smalljwylde
 
Membrane Electrode Assembly based on Sulfonated Polystyrene as Proton Exchang...
Membrane Electrode Assembly based on Sulfonated Polystyrene as Proton Exchang...Membrane Electrode Assembly based on Sulfonated Polystyrene as Proton Exchang...
Membrane Electrode Assembly based on Sulfonated Polystyrene as Proton Exchang...AnuragSingh1049
 
Comparing the Effects of Different Osmolytes in the B-to-Z DNA Transition
Comparing the Effects of Different Osmolytes in the B-to-Z DNA TransitionComparing the Effects of Different Osmolytes in the B-to-Z DNA Transition
Comparing the Effects of Different Osmolytes in the B-to-Z DNA TransitionCharlotte C
 
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-6502014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650Konstantin German
 
srep40375&Supplementary Material
srep40375&Supplementary Materialsrep40375&Supplementary Material
srep40375&Supplementary MaterialDmitry Gakamsky
 
Application of Radioisotopes 186Re and 188Re to Cancerous Tissue
Application of Radioisotopes 186Re and 188Re to Cancerous TissueApplication of Radioisotopes 186Re and 188Re to Cancerous Tissue
Application of Radioisotopes 186Re and 188Re to Cancerous TissueAnthony Pace
 
Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.theijes
 

What's hot (20)

A New Lupan type Triterpene Butilinol from Viburnum grandiflorum
A New Lupan type Triterpene Butilinol from Viburnum grandiflorumA New Lupan type Triterpene Butilinol from Viburnum grandiflorum
A New Lupan type Triterpene Butilinol from Viburnum grandiflorum
 
Nmr In Drug Discovery 04
Nmr In Drug Discovery 04Nmr In Drug Discovery 04
Nmr In Drug Discovery 04
 
American Journal of Materials & Applied Science
American Journal of Materials & Applied ScienceAmerican Journal of Materials & Applied Science
American Journal of Materials & Applied Science
 
Theoretical study of electronic properties of few variants
Theoretical study of electronic properties of few variantsTheoretical study of electronic properties of few variants
Theoretical study of electronic properties of few variants
 
D04010021033
D04010021033D04010021033
D04010021033
 
SIMONA CAVALU_Adsorption behavior of hyaluronidase onto silver
SIMONA CAVALU_Adsorption behavior of hyaluronidase onto silverSIMONA CAVALU_Adsorption behavior of hyaluronidase onto silver
SIMONA CAVALU_Adsorption behavior of hyaluronidase onto silver
 
Spectroscopic Study on the Interaction between Mobic and Lysozyme
Spectroscopic Study on the Interaction between Mobic and LysozymeSpectroscopic Study on the Interaction between Mobic and Lysozyme
Spectroscopic Study on the Interaction between Mobic and Lysozyme
 
Dias et al-2017-journal_of_mass_spectrometry
Dias et al-2017-journal_of_mass_spectrometryDias et al-2017-journal_of_mass_spectrometry
Dias et al-2017-journal_of_mass_spectrometry
 
ASMS2012_Technical-small
ASMS2012_Technical-smallASMS2012_Technical-small
ASMS2012_Technical-small
 
Poonam more
Poonam morePoonam more
Poonam more
 
Membrane Electrode Assembly based on Sulfonated Polystyrene as Proton Exchang...
Membrane Electrode Assembly based on Sulfonated Polystyrene as Proton Exchang...Membrane Electrode Assembly based on Sulfonated Polystyrene as Proton Exchang...
Membrane Electrode Assembly based on Sulfonated Polystyrene as Proton Exchang...
 
POSTER 2013.ppt
POSTER 2013.pptPOSTER 2013.ppt
POSTER 2013.ppt
 
Comparing the Effects of Different Osmolytes in the B-to-Z DNA Transition
Comparing the Effects of Different Osmolytes in the B-to-Z DNA TransitionComparing the Effects of Different Osmolytes in the B-to-Z DNA Transition
Comparing the Effects of Different Osmolytes in the B-to-Z DNA Transition
 
E03011031034
E03011031034E03011031034
E03011031034
 
Poster
Poster Poster
Poster
 
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-6502014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
 
srep40375&Supplementary Material
srep40375&Supplementary Materialsrep40375&Supplementary Material
srep40375&Supplementary Material
 
Application of Radioisotopes 186Re and 188Re to Cancerous Tissue
Application of Radioisotopes 186Re and 188Re to Cancerous TissueApplication of Radioisotopes 186Re and 188Re to Cancerous Tissue
Application of Radioisotopes 186Re and 188Re to Cancerous Tissue
 
NMR - KRISHNAN
NMR - KRISHNANNMR - KRISHNAN
NMR - KRISHNAN
 
Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.Acoustic Parameters of acetic acid in benzene at 3 MHz.
Acoustic Parameters of acetic acid in benzene at 3 MHz.
 

Viewers also liked

trabalho de CYNTHIA RAQUEL CUSTODIO FERREIRA
trabalho de CYNTHIA RAQUEL CUSTODIO FERREIRAtrabalho de CYNTHIA RAQUEL CUSTODIO FERREIRA
trabalho de CYNTHIA RAQUEL CUSTODIO FERREIRAintaead
 
Tổ chức sự kiện chuyên nghiệp, cung cấp BG,BB ca sỹ, nhóm nhạc tại TPHCM
Tổ chức sự kiện chuyên nghiệp, cung cấp BG,BB ca sỹ, nhóm nhạc tại TPHCMTổ chức sự kiện chuyên nghiệp, cung cấp BG,BB ca sỹ, nhóm nhạc tại TPHCM
Tổ chức sự kiện chuyên nghiệp, cung cấp BG,BB ca sỹ, nhóm nhạc tại TPHCMTien Thao
 
HM SCALES AUST Brochure 0116 WEB
HM SCALES AUST Brochure 0116 WEBHM SCALES AUST Brochure 0116 WEB
HM SCALES AUST Brochure 0116 WEBSandy Hughes
 
Slides 3por WALESKA SIRIDO LIMA
Slides 3por WALESKA SIRIDO LIMASlides 3por WALESKA SIRIDO LIMA
Slides 3por WALESKA SIRIDO LIMAintaead
 
Jordao l indomar
Jordao l indomarJordao l indomar
Jordao l indomarintaead
 
Ead slidesRAFAEL GOMES DE SOUSA
Ead slidesRAFAEL GOMES DE SOUSA Ead slidesRAFAEL GOMES DE SOUSA
Ead slidesRAFAEL GOMES DE SOUSA intaead
 
Prelaunch kalpataru sunrise in thane property in thane-new launch by kalpatar...
Prelaunch kalpataru sunrise in thane property in thane-new launch by kalpatar...Prelaunch kalpataru sunrise in thane property in thane-new launch by kalpatar...
Prelaunch kalpataru sunrise in thane property in thane-new launch by kalpatar...New Project Deals
 
Resumen del Libro los 7 habitos de la gente altamente efectiva
Resumen del Libro los 7 habitos de la gente altamente efectivaResumen del Libro los 7 habitos de la gente altamente efectiva
Resumen del Libro los 7 habitos de la gente altamente efectivaIsnaily Rodriguez
 

Viewers also liked (12)

trabalho de CYNTHIA RAQUEL CUSTODIO FERREIRA
trabalho de CYNTHIA RAQUEL CUSTODIO FERREIRAtrabalho de CYNTHIA RAQUEL CUSTODIO FERREIRA
trabalho de CYNTHIA RAQUEL CUSTODIO FERREIRA
 
Tổ chức sự kiện chuyên nghiệp, cung cấp BG,BB ca sỹ, nhóm nhạc tại TPHCM
Tổ chức sự kiện chuyên nghiệp, cung cấp BG,BB ca sỹ, nhóm nhạc tại TPHCMTổ chức sự kiện chuyên nghiệp, cung cấp BG,BB ca sỹ, nhóm nhạc tại TPHCM
Tổ chức sự kiện chuyên nghiệp, cung cấp BG,BB ca sỹ, nhóm nhạc tại TPHCM
 
HM SCALES AUST Brochure 0116 WEB
HM SCALES AUST Brochure 0116 WEBHM SCALES AUST Brochure 0116 WEB
HM SCALES AUST Brochure 0116 WEB
 
Slides 3por WALESKA SIRIDO LIMA
Slides 3por WALESKA SIRIDO LIMASlides 3por WALESKA SIRIDO LIMA
Slides 3por WALESKA SIRIDO LIMA
 
Jordao l indomar
Jordao l indomarJordao l indomar
Jordao l indomar
 
Ead slidesRAFAEL GOMES DE SOUSA
Ead slidesRAFAEL GOMES DE SOUSA Ead slidesRAFAEL GOMES DE SOUSA
Ead slidesRAFAEL GOMES DE SOUSA
 
Unit 2 toys 2
Unit 2 toys 2Unit 2 toys 2
Unit 2 toys 2
 
PSY Video slides
PSY Video slidesPSY Video slides
PSY Video slides
 
Prelaunch kalpataru sunrise in thane property in thane-new launch by kalpatar...
Prelaunch kalpataru sunrise in thane property in thane-new launch by kalpatar...Prelaunch kalpataru sunrise in thane property in thane-new launch by kalpatar...
Prelaunch kalpataru sunrise in thane property in thane-new launch by kalpatar...
 
Resumen del Libro los 7 habitos de la gente altamente efectiva
Resumen del Libro los 7 habitos de la gente altamente efectivaResumen del Libro los 7 habitos de la gente altamente efectiva
Resumen del Libro los 7 habitos de la gente altamente efectiva
 
TOWERS WORLI
TOWERS WORLI TOWERS WORLI
TOWERS WORLI
 
Microsoft excel beginner
Microsoft excel beginnerMicrosoft excel beginner
Microsoft excel beginner
 

Similar to PRISM Spring 2012 drug DNA binding poster

Toxic Interaction Mechanism of food Colorant Sunset Yellow with trypsin by Sp...
Toxic Interaction Mechanism of food Colorant Sunset Yellow with trypsin by Sp...Toxic Interaction Mechanism of food Colorant Sunset Yellow with trypsin by Sp...
Toxic Interaction Mechanism of food Colorant Sunset Yellow with trypsin by Sp...AI Publications
 
DNA Sequencing in Phylogeny
DNA Sequencing in PhylogenyDNA Sequencing in Phylogeny
DNA Sequencing in PhylogenyBikash1489
 
Smith_Biochemistry_2011
Smith_Biochemistry_2011Smith_Biochemistry_2011
Smith_Biochemistry_2011Austin Smith
 
Nmr Spectroscopy In B Iology
Nmr Spectroscopy In B IologyNmr Spectroscopy In B Iology
Nmr Spectroscopy In B Iologyashu_yende
 
Hotspot mutation and fusion transcript detection from the same non-small cell...
Hotspot mutation and fusion transcript detection from the same non-small cell...Hotspot mutation and fusion transcript detection from the same non-small cell...
Hotspot mutation and fusion transcript detection from the same non-small cell...Thermo Fisher Scientific
 
Presentacion biomol.pptx
Presentacion biomol.pptxPresentacion biomol.pptx
Presentacion biomol.pptxCamilaFlorez42
 
Lecture2 nucleic acid (1)
Lecture2 nucleic acid (1)Lecture2 nucleic acid (1)
Lecture2 nucleic acid (1)SourabhKumar240
 
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621WELISANE BESINGI
 
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621WELISANE BESINGI
 
Molecular Correlates Of Drug Abuse Comorbidity
Molecular Correlates Of Drug Abuse ComorbidityMolecular Correlates Of Drug Abuse Comorbidity
Molecular Correlates Of Drug Abuse ComorbidityAlan Lesselyong
 
Research Summary of Laura J. Donahue, Ph.D.
Research Summary of Laura J. Donahue, Ph.D.Research Summary of Laura J. Donahue, Ph.D.
Research Summary of Laura J. Donahue, Ph.D.Laura Donahue
 
ShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsYousefLayyous
 
NEAFS_DSA_FTIR_Image_NBOMes and LSD_Poster
NEAFS_DSA_FTIR_Image_NBOMes and LSD_PosterNEAFS_DSA_FTIR_Image_NBOMes and LSD_Poster
NEAFS_DSA_FTIR_Image_NBOMes and LSD_PosterAmanda Moore
 
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2Rosana Lopez
 
Ligand interaction by kk sahu
Ligand interaction by kk sahuLigand interaction by kk sahu
Ligand interaction by kk sahuKAUSHAL SAHU
 
Nucleic Acids Research (1995) 23, 159-164
Nucleic Acids Research (1995) 23, 159-164Nucleic Acids Research (1995) 23, 159-164
Nucleic Acids Research (1995) 23, 159-164Dinesh Barawkar
 

Similar to PRISM Spring 2012 drug DNA binding poster (20)

C5OB00465A (1)
C5OB00465A (1)C5OB00465A (1)
C5OB00465A (1)
 
Toxic Interaction Mechanism of food Colorant Sunset Yellow with trypsin by Sp...
Toxic Interaction Mechanism of food Colorant Sunset Yellow with trypsin by Sp...Toxic Interaction Mechanism of food Colorant Sunset Yellow with trypsin by Sp...
Toxic Interaction Mechanism of food Colorant Sunset Yellow with trypsin by Sp...
 
Quantitation of DNA
Quantitation of DNAQuantitation of DNA
Quantitation of DNA
 
DNA Sequencing in Phylogeny
DNA Sequencing in PhylogenyDNA Sequencing in Phylogeny
DNA Sequencing in Phylogeny
 
Smith_Biochemistry_2011
Smith_Biochemistry_2011Smith_Biochemistry_2011
Smith_Biochemistry_2011
 
Prabhakar singh ii sem-paper v-rt pcr
Prabhakar singh  ii sem-paper v-rt pcrPrabhakar singh  ii sem-paper v-rt pcr
Prabhakar singh ii sem-paper v-rt pcr
 
Nmr Spectroscopy In B Iology
Nmr Spectroscopy In B IologyNmr Spectroscopy In B Iology
Nmr Spectroscopy In B Iology
 
Hotspot mutation and fusion transcript detection from the same non-small cell...
Hotspot mutation and fusion transcript detection from the same non-small cell...Hotspot mutation and fusion transcript detection from the same non-small cell...
Hotspot mutation and fusion transcript detection from the same non-small cell...
 
Presentacion biomol.pptx
Presentacion biomol.pptxPresentacion biomol.pptx
Presentacion biomol.pptx
 
Lecture2 nucleic acid (1)
Lecture2 nucleic acid (1)Lecture2 nucleic acid (1)
Lecture2 nucleic acid (1)
 
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
 
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
Hum. Mol. Genet.-2013-Besingi-hmg-ddt621
 
Molecular Correlates Of Drug Abuse Comorbidity
Molecular Correlates Of Drug Abuse ComorbidityMolecular Correlates Of Drug Abuse Comorbidity
Molecular Correlates Of Drug Abuse Comorbidity
 
Research Summary of Laura J. Donahue, Ph.D.
Research Summary of Laura J. Donahue, Ph.D.Research Summary of Laura J. Donahue, Ph.D.
Research Summary of Laura J. Donahue, Ph.D.
 
ShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cellsShRNA-specific regulation of FMNL2 expression in P19 cells
ShRNA-specific regulation of FMNL2 expression in P19 cells
 
NEAFS_DSA_FTIR_Image_NBOMes and LSD_Poster
NEAFS_DSA_FTIR_Image_NBOMes and LSD_PosterNEAFS_DSA_FTIR_Image_NBOMes and LSD_Poster
NEAFS_DSA_FTIR_Image_NBOMes and LSD_Poster
 
Analyst_Cover
Analyst_CoverAnalyst_Cover
Analyst_Cover
 
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
Poster_RosanaLopez_SULI_Summer2011_aug8_final_2
 
Ligand interaction by kk sahu
Ligand interaction by kk sahuLigand interaction by kk sahu
Ligand interaction by kk sahu
 
Nucleic Acids Research (1995) 23, 159-164
Nucleic Acids Research (1995) 23, 159-164Nucleic Acids Research (1995) 23, 159-164
Nucleic Acids Research (1995) 23, 159-164
 

PRISM Spring 2012 drug DNA binding poster

  • 1. Fig.1.  Structures  of  the   fluorescein nucleic  acid  dyes:   TP3  and  DAPI  (5). Fig.2.  Schematic  presentation  of  TP3  displacement  from   DNA  helix  followed  by  fluorescence  quenching  (5).   Methodology: Nucleic  acid  dye  fluorescence  quenching  assays  -­ A  drug  solution  was  added  in  1  to  10uL   aliquots  to  a  solution  of  20  uM sonicated calf  thymus  DNA  and  2  uM dye  in  3  ml  of  acetate   buffer  (pH  5.0).  A  fluorescence  spectrum  was  recorded  at  each  addition  of  the  drug,  and  the   intensity  was  noted  at  λem.  The  base  level  (buffer)  was  subtracted  from  each  fluorescence   measurement  at  λem.  This  value  was  then  divided  by  the  maximal  fluorescence  (dye  and   DNA  only).  The  data  were  plotted  against  the  concentration  of  each  drug,  and  the  C50  value   of  each  was  determined.  C50  is  the  concentration  of  a  drug  at  50%  fluorescence  quenching   of  DNA-­bound  dye.  All  fluorescence  measurements  were  performed  at  25˚C. Confirmation  of  the  fluorescence  study  results  by  NMR  -­ Proton  spectra  were  obtained  on  a   JEOL  ECX  300-­MHz  spectrometer. Samples  (800  uL)  contained  0.5  mM imipramine, 0.5  mM pyrocatechol violet,  or  0.3  mM janus green  B  and  different amounts  of  sonicated calf  thymus   DNA  in  D2O.  The  spectra  were recorded  in  5-­mm  NMR  tubes. Fig.3.  Structures  of  the  experimental  molecules   (5). Results: Fluorescence  quenching  assays Fig.5.  Fluorescence  quenching  of  DNA-­bound  TP3  (s)   and  DAPI  (d)  by  11  different  molecules  (5).     Fig.7.  NMR  spectra  of  0.5  mM pyrocatechol violet   and  pyrocatechol violet  with  equimolar amounts  of   DNA,  both  in  D2O  (5).  In  contrast  to  imipramine,   the  proton  lines  of  the  NMR  spectra  of  pyrocatechol violet  did  not  shift  on  the  addition  of  DNA,  revealing   a  minor  groove  binding  mode  for  pyrocatechol violet. Acknowledgments: Special  thanks  to  Dr.  Ekaterina  Korobkova,  Nikolay Azar,  and  Dr.  Nathan  Lents. Support  for  student  stipends,  supplies,  and/or  equipment  used  in  this  research  was  supplied  by   the  Program  for  Research  Initiatives  for  Science  Majors  (PRISM)  at  John  Jay  College.  PRISM   is  funded  by  the  Title  V,  HSI-­STEM  and  MSEIP  programs  within  the  U.S.  Department  of   Education;;  the  PAESMEM  program  through  the  National  Science  Foundation;;  and  New  York   State’s  Graduate  Research  and  Teaching  Initiative.   Determination  of  the  drug–DNA  binding  modes   using  fluorescence-­based  assays Baibhav  Rawal,  Alicia  K.  Williams,  Sofia  Cheliout Dasilva,  Ankit  Bhatta,,  Melinda  Liu   Ekaterina  A.  Korobkova * Department  of  Science,  John  Jay  College  of  Criminal  Justice 445  W  59th  St.,  New  York,  NY  10019 Table  1.  Probabilities  of  intercalative  DNA  binding  mode  and  partition   coefficients  of  11  experimental  molecules  (5). Compound name Partition coefficient (log[P] I/G I% Netropsin Tartrazine Amaranth Pyrocatechol violet Berenil New coccine Sunset yellow FCF Imipramine Brilliant blue G Congo red Janus green -­4.741 -­1.766 -­1.611 -­1.533 -­1.434 -­0.425 -­0.265 1.022 2.971 3.899 4.365 0.020 0.041 0.270 0.086 0.310 0.068 0.032 1.1 15 3.3 2.9 1.9 4.0 21 7.9 24 6.4 3.1 53 94 77 74 Note  (5):  The  relative  affinity,  R,  was  presented  as  log[Kb]/C50.  We  hypothesized  that  a  drug  more   effectively  displaces  a  dye  that  has  a  similar  DNA  binding  mechanism  than  a  dye  that  has  a  different  DNA   binding  mode.  The  ratio  of  the  R  coefficients  (I/G)  determined  with  TP3  and  DAPI  represents  contributions   of  the  two  binding  modes  to  the  whole  drug–DNA  association  mechanism. I/G  =  RTP3/RDAPI,  where  Rdye =  log[Kb(dye)]/C50.  C50   is  the  concentration  of  an experimental  molecule  at  50%  fluorescence  quenching  of  a   bound  dye.  The  units  of C50 are  mol/L  (M).  The  percentage  contribution  of  the  intercalative  mode  (I%)  was   determined  as  I%  =  [1  +  (I/G)-­1]-­1x100%. Fig.4.  Scatchard plots  for  nucleic  acid  dyes–DNA  binding  derived  from  fluorescence  measurements  (5).    [DNA]/f  is  plotted   versus  (1  -­ f)-­1,  where  [DNA]  is  the  concentration  of  the  sonicated calf  thymus  DNA  (in  M  per  base  pair)  and  f  =  (F(corr) – FD)/(Fmax(corr) – FD).  (A)  TP3–DNA  Scatchard plot.  The  concentration  of  TP3  was  0.75  uM,  and  the  concentration  of  DNA   on  the  plot  varied  between  5.3  and  19  lM (bp).  Inset:  black  line,  fluorescence  spectrum  of  TP3  alone;;  red  line,   fluorescence  spectrum  of  the  solution  containing  0.75  uM TP3  and  14  lM calf  thymus  DNA;;  λex =  642  nm  and  λem =  661   nm.  (B)  DAPI–DNA  Scatchard plot.  The  concentration  of  DAPI  was  0.75  uM,  and  the  range  of  DNA  concentrations  on  the   plot  was  4.9  to  14  uM (bp).  Inset:  black  line,  fluorescence  spectrum  of  DAPI  alone;;  red  line,  fluorescence  spectrum  of  the   solution  containing  0.75  uM DAPI  and  14  uM calf  thymus  DNA;;  λex =  358  nm  and  λem =  461  nm.  a.u.,  arbitrary  units. Fig.6 NMR  spectra  in  the aromatic  proton  regions  recorded   from  the  solutions  of  imipramine and  the  different   concentrations  of  DNA  with  different  molar  ratios  of   imipramine and  DNA  base  pairs  (5).  As  the  concentration  of   DNA  increased,  the  spectra  became  broader  and  the   chemical  shift  changed  by  an  increment  ranging  between  -­ 0.5  and  -­0.4  ppm.  The  upfield proton  shift  and  the   corresponding  line’s  broadening  are  proven  to  be  a   signature  of  an  intercalative  binding  mode.   NMR    -­ results  shown  for  two  of  the  three  molecules  studied Estimating  a  relative  affinity  and  a  binding  mode   Introduction: Therapeutic  drugs  (4)  and  environmental  pollutants  may  exhibit  high  reactivity  toward   DNA  bases  and  backbone.  Understanding  the  mechanisms  of  drug-­DNA  binding  is   crucial  for  predicting  their  potential  genotoxicity.  We  developed  a  fluorescence   analytical  method  for  the  determination  of  the  preferential  binding  mode  for  drug-­DNA   interactions.  Two  nucleic  acid  dyes  were  employed  in  the  method:  TO-­PRO-­3  iodide   (TP3)  and  40,6-­diamidino-­2-­phenylindole  (DAPI).  TP3  binds  DNA  by  intercalation,   whereas  DAPI  exhibits  minor  groove  binding.  Both  dyes  exhibit  significant   fluorescence  magnification  on  binding  to  DNA  (2,  3).  We  evaluated  the  DNA  binding   constant,  Kb, for  each  dye  (1).  We  performed  fluorescence  quenching  experiments   with  11  molecules  and  measured  a  C50 value  for  each  compound.  We  determined   preferential  binding  modes  for  these  molecules.  The  values  of  the  likelihood  of  DNA   intercalation  were  correlated  with  the  partition  coefficients  of  the  molecules.  It  was   found  that  netropsin,  berenil,  pyrocatechol violet,  sunset  yellow,  tartrazine,  new   coccine and  amaranth  bind  preferentially  to  DNA  by  minor  groove  binding   mechanism,  while  congo red,  janus green  and  brilliant  blue  do  so  preferentially  by   intercalation.  In  addition,  we  performed  nuclear  magnetic  resonance  (NMR)  studies  of   the  interactions  with  DNA  for  the  three  molecules.  The  results  were  consistent  with   the  fluorescence  method  described  above.  Thus,  we  conclude  that  the  fluorescence   method  we  developed  provides  a  reliable  determination  of  the  likelihoods  of  the  two   different  DNA  binding  modes. References: 1.  Healy,  E.F.,  Quantitative  determination  of  DNA–ligand binding  using  fluorescence   spectroscopy, J.  Chem.  Educ. 84 (2007) 1304–1307. 2.  Liu,  Y.,  Danielsson,  B.,  Fluorometric broad-­range  screening  of  compounds  with  affinity  for   nucleic  acids,  Anal.  Chem.  77  (2005)  2450–2454. 3.  Haugland,  R.P.,  in:  M.T.Z.  Spence  (Ed.),  Handbook  of  Fluorescence  Probes  and  Research   Chemicals,  Molecular  Probes,  Eugene,  OR,  1996,  p.153. 4.  Korobkova,  E.A.,  Ng,  W.,  Vethatratnam,  A.,  Williams,  A.K.,  Nizamova,  M.,  Azar,  N.,  In  vitro   studies  of  DNA  damage  caused  by  tricyclic antidepressants:  a  role  of peroxidase in  side   effects  of  the  drugs,  Chem.  Res.  Toxicol.  23  (2010)  1497–1503.   5.  Williams,  A.K.,  Cheliout Da Silva,  S.,  Bhatta,  A.,  Rawal,  B.,  Liu,  M.,  Korobkova,  E.  A.   Determination  of  the  drug-­DNA  binding  modes  using  fluorescence-­based  asays,  Anal.  Chem.   422  (2012)  66-­73.