O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a navegar o site, você aceita o uso de cookies. Leia nosso Contrato do Usuário e nossa Política de Privacidade.
O SlideShare utiliza cookies para otimizar a funcionalidade e o desempenho do site, assim como para apresentar publicidade mais relevante aos nossos usuários. Se você continuar a utilizar o site, você aceita o uso de cookies. Leia nossa Política de Privacidade e nosso Contrato do Usuário para obter mais detalhes.
Publicada em
In information retrieval there is a long history of learning vector representations for words. In recent times, neural word embeddings have gained significant popularity for many natural language processing tasks, such as word analogy and machine translation. The goal of this talk is to introduce basic intuitions behind these simple but elegant models of text representation. We will start our discussion with classic vector space models and then make our way to recently proposed neural word embeddings. We will see how these models can be useful for analogical reasoning as well applied to many information retrieval tasks.
Parece que você já adicionou este slide ao painel
Entre para ver os comentários