Anúncio

P5 - METODE KINEMATIKA.pdf

27 de Mar de 2023
Anúncio

Mais conteúdo relacionado

Anúncio

P5 - METODE KINEMATIKA.pdf

  1. ANALISIS LERENG BATUAN
  2. Metode kinematika • "Kinematic" refers to the motion of bodies without reference to the forces that cause them to move (Goodman, 1989). • Untuk mengetahui potensi jenis longsoran yang mungkin terjadi pada suatu lereng • Data yang digunakan kombinasi orientasi bidang diskontinyu, muka lereng bersama sudut gesek dalam • Analisis dilakukan menggunakan proyeksi stereografis • Asumsi dasarnya kohesi = 0
  3. (a) (b) Rock faces formed by persistent discontinuities: (a) plane failure formed by bedding planes in shale parallel to face with continuous lengths over the full height of the slope on Route 19 near Robbinsville, North Carolina; (b) wedge failure formed by two intersecting planes in sedimentary formation dipping out of the face on Route 60 near Phoenix, Arizona. (Image by C. T. Chen.)
  4. Pengukuran struktur batuan • Kedudukan struktur batuan (sesar, perlapisan, dan kekar) dapat ditentukan dengan menggunakan kompas geologi. • Untuk menyatakan kedudukan struktur batuan, maka harus dilakukan pengukuran tentang jurus (strike), kemiringan (dip), dan arah kemiringan (dip direction). • Kedudukan struktur batuan dapat dinyatakan dengan strike/dip atau dip/dip direction. Strike Dip Direction Dip
  5. Contoh • Misalkan suatu kekar mempunyai strike N 60o E dan dip 40o maka penulisan kedudukannya adalah N60oE/40o. • Jika suatu kekar mempunyai dip 70o dan dip direction nya N30oE maka penulisan kedudukannya adalah 70o/030o. • Penulisan dip direction selalu dalam tiga digit.
  6. Penggambaran bidang diskontinu dan kutub (pole) diskontinu : 12 r. hariyanto
  7. Penggambaran bidang & Kutub • Perhatikan sebuah bidang yang mempunyai kemiringan 50o dan arah kemiringan 130o. • Langkah 1 : Kertas transparan diletakkan di atas Equatorial equal-area stereonet, gambarkan lingkaran jaring dan beri tanda titik utara dan pusat jaring. Ukurkan arah kemiringan 130o searah jarum jam dari titik utara dan beri tanda posisi ini pada lingkaran jaring.
  8. lanjutan • Langkah 2 : Putar tanda arah kemiringan ke arah utara sampai berimpit dengan sumbu W – E. Ukurkan kemiringan 50o dari lingkaran luar ke arah pusat jaring. Dan gambar busur lingkaran besar. • Untuk menggambarkan kutub bidang, ukurkan 50o dari pusat jaring ke arah lingkaran luar jaring dan beri tanda titik, yang merupakan kutub bidang tersebut. • Langkah 3 : Putarkan ke posisi semula sehingga arah utara yang ditandai pada langkah 1 berimpit dengan arah utara jaring. Dengan demikian, bidang dengan orientasi kemiringan 50o dan arah kemiringan 130o telah tergambar.
  9. Penentuan kedudukan umum bidang-bidang diskontinu • Setelah terbentuk garis- garis kontur, maka akan didapat kutub kontur, yaitu daerah yang menggambarkan konsentrasi kutub bidang tertinggi. • Titik pusat kutub kontur merupakan kutub kedudukan umum bidang- bidang diskontinu, • Kedudukan umum bidang- bidang diskontinu adalah kebalikan dari cara penentuan kutub bidang diskontinu.
  10. LATIHAN
  11. Dua bidang mempunyai kemiringan 50o dan 30o dan arah kemiringan 130o dan 250o, yang saling berpotongan, sehingga perlu ditentukan arah (trend) dan penunjaman (plunge) dari garis perpotongannya Langkah 1 : Satu bidang (50o/130o) telah tergambarkan, dan penentuan lingkaran besar bidang kedua ditentukan dengan arah kemiringan 250o diputar sampai berimpit dengan sumbu W – E. Dan gambarkan lingkaran besar menurut kemiringan 30o. 18 05/04/2021 r. hariyanto Penentuan arah dan penunjaman garis perpotongan dua bidang
  12. Langkah 2 : Titik perpotongan dua lingkaran besar diputar sampai berimpit dengan sumbu W – E jaring dan plunge dari garis perpotongan diukur sebesar 20,5o. Langkah 3 : Kemudian gambar tersebut dikembalikan ke kedudukan semula sehingga tanda utara pada gambar berimpit dengan titik utara pada stereonet. Dan arah (trend) dari garis perpotongan didapat sebesar 200,5o. 19 05/04/2021 r. hariyanto
  13. Main types of block failures in slopes, and structural geology conditions likely to cause these failures: (a) plane failure in rock containing persistent joints dipping out of the slope face, and striking parallel to the face; (b) wedge failure on two intersecting discontinuities; (c) toppling failure in strong rock containing discontinuities dipping steeply into the face; and (d) circular failure in rock fill, very weak rock or closely fractured rock with randomly oriented discontinuities.
  14. Figure 2.1: Stereographic projections of the requirements for kinematically possible plane,wedge, and toppling failures (from Hoek and Bray, 1981).
  15. Identification of plane and wedge failures on a stereonet: (a) sliding along the line of intersection of planes A and B (αi) is possible where the plunge of this line is less than the dip of the slope face, measured in the direction of sliding, that is ψi < ψf; (b) wedge failure occurs along the line of intersection (dip direction αi) on slope with dip direction αf because dip directions of planes A and B (αA and αB) lie outside included angle between αi and αf; (c) plane failure occurs on plane A (dip direction αA) on slope with dip direction αf because dip direction of planes A lies inside included angle between αi and αf.
  16. Planar failure In Figure 2.18a, a potentially unstable planar block is formed by plane AA, which dips at a flatter angle than the face (ψA < ψf) and is said to ‘daylight’ on the face. However, sliding is not possible on plane BB which dips steeper than the face (ψB > ψf) and does not daylight. Similarly, discontinuity set CC dips into the face and sliding cannot occur on these planes, although toppling is possible. ψA < ψf
  17. The poles of the slope face and the discontinuity sets (symbol P) are plotted on the stereonet in Figure 2.18b, assuming that all the discontinuities strike parallel to the face. The position of these poles in relation to the slope face shows that the poles of all planes that daylight and are potentially unstable lie inside the pole of the slope face. This area is termed the daylight envelope and can be used to quickly identify potentially unstable blocks. The dip direction of the discontinuity sets will also influence stability. Plane sliding is not possible if the dip direction of the discontinuity differs from the dip direction of the face by more than about 20°. That is, the block of rock formed by the joints will have intact rock at one end that will have sufficient strength to resist instability. On the stereonet, this restriction on the dip direction of the planes is shown by two lines defining dip directions of (αf + 20°) and (αf − 20°). These two lines designate the lateral limits of the daylight envelope in Figure 2.18b.
  18. 27 Example of a plane failure within a slope consisting mostly of sandstone.
  19. Wedge failure Kinematics analysis of wedge failures (Figure 2.16b) can be carried out in a similar manner to that of plane failures. In this case, the pole of the line of intersection of the two discontinuities is plotted on the stereonet and sliding is possible if the pole daylights on the face, that is, (ψI < ψf). The direction of sliding of kinematically permissible wedges is less restrictive than that of plane failures because two planes with a wide range of orientations form release surfaces. A daylighting envelope for the line of intersection, as shown in Figure 2.18b, is wider than the envelope for plane failures. The wedge daylight envelope is the locus of all poles representing lines of intersection whose dip directions lie in the plane of the slope face.
  20. Figure 1.6: Example of a wedge failure in shale bedrock, State Route 2, West Virginia.
  21. 31
  22. 32 05/04/2021 r. hariyanto
  23. Toppling failure For a toppling failure to occur, the dip direction of the discontinuities dipping into the face must be within about 20° of the dip direction of the face so that a series of slabs are formed parallel to the face. Also, the dip of the planes must be steep enough for interlayer slip to occur. If the faces of the layers have a friction angle ϕj, then slip will only occur if the direction of the applied compressive stress is at angle greater than ϕj with the normal to the layers. The direction of the major principal stress is parallel to the slope face (dip angle ψf), so interlayer slip and toppling failure will occur on planes with dip ψp when the following conditions are met (Goodman and Bray, 1976): These conditions on the dip and dip direction of planes that can develop toppling failures are defined in Figure 2.18b. The envelope defining the orientation of these planes lies at the opposite side of the stereonet from the sliding envelopes.
  24. Figure 2.2: (A) Kinematics of toppling failure; (B) stereographic projection of the requirement for toppling failure, indicating that the normals (poles to discontinuities) should plot in the shaded zone (Goodman, 1989). A toppling failure is likely to result when steep discontinuities are parallel to the slope face and dip into it (Hoek and Bray, 1981). According to Goodman (1989), a toppling failure involves inter-layer slip movement. While describing requirements for the occurrence of a toppling failure, Goodman (1989) stated: “If layers have an angle of friction Φj, slip will occur only if the direction of the applied compression makes an angle greater than the friction angle with the normal to the layers. Thus, as shown in Figure 2.2, a pre-condition for inter-layer slip is that the normals be inclined less steeply than a line inclined Φj above the plane of the slope. If the dip of the layers is σ, then toppling failure with a slope inclined α degrees with the horizontal can occur if (90 - σ) + Φj < α”.
  25. Longsoran bidang, baji, guling 37 05/04/2021 r. hariyanto
  26. Longsoran busur
  27. Dalam satu kawasan dapat terbentuk bermacam potensi jenis longsor
  28. summary
  29. TERIMA KASIH
Anúncio