O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

www.AulasDeMatematicaApoio.com - Matemática - Frações

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
O que você
                precisa saber
 As quatro operações básicas (soma, subtração,
  multiplicação e divisão)

 Múl...

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

O que é fr ação?
    Fração é um número que representa
 partes de um inteiro, ou seja, uma divisão
 de alguma coisa.

Ex.:

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

Carregando em…3
×

Confira estes a seguir

1 de 120 Anúncio

Mais Conteúdo rRelacionado

Anúncio

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Frações (20)

Mais de Aulas De Matemática Apoio (20)

Anúncio

Mais recentes (20)

www.AulasDeMatematicaApoio.com - Matemática - Frações

  1. 1. O que você precisa saber  As quatro operações básicas (soma, subtração, multiplicação e divisão)  Múltiplos de um número  Mínimo mútiplo comum (mmc)  Potência
  2. 2. O que é fr ação? Fração é um número que representa partes de um inteiro, ou seja, uma divisão de alguma coisa. Ex.:
  3. 3. Resumindo O que é divisão Fração
  4. 4. Como funciona?  Temos uma circunferência repartida em três partes.  Cada parte representa 1/3 dessa circunferência, assim, somando as três, temos 3/3, ou 1 inteira. 1 1 1 3 =1 3 3 3 3
  5. 5. Ter mos de uma fr ação O numerador e o denominador são os termos da fração.
  6. 6. Resumindo O que é divisão numerador termos denominador Fração
  7. 7. Repr esentando as fr ações Quando construímos numerador frações colocamos um traço de divisão. 5 traço de divisão 7 denominador Abaixo do traço colocamos um número que indica em numerador quantas partes a unidade foi 2 traço de divisão dividida, que é o denominador. 8 denominador Acima do traço colocamos numerador um número que indica quantas 3 partes da unidade foram traço de divisão tomadas, que é o numerador. 4 denominador
  8. 8. Tente fazer so zinho 1- Observe a figura.  Em quantas partes o retângulo foi dividido?  Cada uma dessas partes representa que fração do retângulo?  A parte pintada representa que fração do retângulo?
  9. 9. Tente fazer so zinho 1- Observe a figura.  Em quantas partes o retângulo foi dividido?  Cada uma dessas partes representa que fração do retângulo?  A parte pintada representa que fração do retângulo?
  10. 10. Tente fazer so zinho 1- Observe a figura.  Em quantas partes o retângulo foi dividido? R: 8 partes.  Cada uma dessas partes representa que fração do retângulo? R: 1/8.  A parte pintada representa que fração do retângulo? R: 5/8.
  11. 11. Tente fazer so zinho 2- Diga qual a fração que representa cada bandeira.
  12. 12. Tente fazer so zinho 2- Diga qual a fração que representa cada bandeira.
  13. 13. Tente fazer so zinho 2- Diga qual a fração que representa cada bandeira.  Resposta a) 1/8 c) 4/8 e) 2/3 b) 2/6 d) 1/8 f) 1/4
  14. 14. Tente fazer so zinho 3- José, João e Celina representam 1/4 do total de empregados do sítio de seu Gustavo. Quantos são os empregados desse sítio?
  15. 15. Tente fazer so zinho 3- José, João e Celina representam 1/4 do total de empregados do sítio de seu Gustavo. Quantos são os empregados desse sítio?
  16. 16. Tente fazer so zinho 3- José, João e Celina representam 1/4 do total de empregados do sítio de seu Gustavo. Quantos são os empregados desse sítio?  Resposta 1 .x = 3 ¼ do total de empregados = 3 empregados. 4 1.x = 3.4 Faremos a operação inversa. x = 12
  17. 17. Tente fazer so zinho 4- Calcule quanto é: 1 a ) de20 = 4 5 b) de14 7
  18. 18. Tente fazer so zinho 4- Calcule quanto é: 1 a ) de20 = 4 5 b) de14 7
  19. 19. Tente fazer so zinho 4- Calcule quanto é: 1 1 20.1 20 a ) de20 = .20 = = =5 4 4 4 4 5 5 5.14 70 b) de14 .14 = = = 10 7 7 7 7
  20. 20. Tipos de Fr ações  Próprias  Impróprias  Aparentes
  21. 21. Fr ações Próprias  São aquelas em que o numerador é menor que o denominador. 3 2 4 5 3 6
  22. 22. Resumindo O que é divisão numerador termos denominador própria n<d tipos Fração
  23. 23. Fr ações Impróprias  São aquelas em que o numerador é maior que o denominador.
  24. 24. Resumindo O que é divisão numerador termos denominador própria n<d tipos imprópria n>d Fração
  25. 25. Fr ações Aparentes  São aquelas em que o numerador é múltiplo do denominador.
  26. 26. Resumindo O que é divisão numerador termos denominador própria n<d tipos imprópria n>d Fração aparente n:d
  27. 27. Tente fazer so zinho 5- Classifique as frações como próprias, impróprias ou aparentes. 2 9 a) 8 1 g) 8 b) 5 4 f) 1 2 c) 6 e) 9 6 d) 4 5
  28. 28. Tente fazer so zinho 5- Classifique as frações como próprias, impróprias ou aparentes. 2 9 a) 8 1 g) 8 b) 5 4 f) 1 2 c) 6 e) 9 6 d) 4 5
  29. 29. Tente fazer so zinho 5- Classifique as frações como próprias, impróprias ou aparentes. 2 9 a) 8 1 g) 8 b) 5 4 f) 1 2 c) 6 e) 9 6 d) 4 5 Resposta: a) própria b) aparente c) própria d) imprópria e) aparente f) própria g) aparente
  30. 30. Tente fazer so zinho 6- Observe as três figuras: a) Que fração representa as partes coloridas em cada figura? b) Classifique essas frações como próprias, impróprias ou aparentes.
  31. 31. Tente fazer so zinho 6- Observe as três figuras: a) Que fração representa as partes coloridas em cada figura? b) Classifique essas frações como próprias, impróprias ou aparentes.
  32. 32. Tente fazer so zinho 6- Observe as três figuras: a) Que fração representa as partes coloridas em cada figura? R: I. 4/4 ou 1 inteiro, II. 3/4, III. 7/4 b) Classifique essas frações como próprias, impróprias ou aparentes. R: I. aparente, II. própria, III. imprópria
  33. 33. Númer o Misto Representamos um número misto quando há uma parte inteira e outra fracionada.
  34. 34. Resumindo O que é divisão numerador termos denominador própria n<d tipos imprópria n>d Número Misto Fração aparente n:d
  35. 35. Resumindo O que é Parte inteira + fracionada Número Misto
  36. 36. Tente fazer so zinho 7- Dê a representação de cada figura em número misto.
  37. 37. Tente fazer so zinho 7- Dê a representação de cada figura em número misto.
  38. 38. Tente fazer so zinho 7- Dê a representação de cada figura em número misto. Resposta: I. 1 2/8 II. 1 3/4 III. 2 1/3
  39. 39. Tr ansfor mando um número Transfor misto em uma fração imprópria 1o Transforme a parte inteira em fração aparente, utilizando o mesmo denominador da parte fracionária. 2 1 3 3 2 + 3 3 2o Ficando as duas partes com denominadores iguais, agora basta somar. 2 3 2 5 1 = + = 3 3 3 3
  40. 40. Resumindo O que é Parte inteira + fracionada Número 1o Transformar parte inteira em misto fração aparente Número  Misto Fração 2o Somar as frações imprópria Transformar
  41. 41. Tente fazer so zinho 8- Tranforme cada número misto para fração imprópria. 2 2 1 1 5 a )1 b) 4 c)2 d )2 e)3 7 7 3 2 11
  42. 42. Tente fazer so zinho 8- Tranforme cada número misto para fração imprópria. 2 2 1 1 5 a )1 b) 4 c)2 d )2 e)3 7 7 3 2 11
  43. 43. Tente fazer so zinho 8- Tranforme cada número misto para fração imprópria. 2 2 1 1 5 a )1 b) 4 c)2 d )2 e)3 7 7 3 2 11 Respostas: 7 2 9 7 2 30 3 1 7 a) + = b ) 4. + = c ) 2. + = 7 7 7 7 7 7 3 3 3 2 1 5 11 5 38 d ) 2. + = e)3. + = 2 2 2 11 11 11
  44. 44. Transfor mando uma fração imprópria em um número misto 1o Dividimos o numerador pelo denominador. 5 5 2 1 2 2 2o O quociente é a parte inteira e o resto passa a ser o numerador da fração. 5 2 1 2 1 2 quociente 2 resto
  45. 45. Resumindo O que é Parte inteira + fracionada Número 1o Transformar parte inteira em misto fração aparente Número  Misto Fração 2o Somar as frações imprópria Transformar Fração 1o Dividir numerador : denominador imprópria  2o Quociente = inteiro, Número Resto = numerador misto
  46. 46. Tente fazer so zinho 9- Tranforme cada número misto para fração imprópria. 18 15 7 23 10 a) b) c) d) e) 7 2 5 3 3
  47. 47. Tente fazer sozinho 9- Tranforme cada número misto para fração imprópria. 18 15 7 23 10 a) b) c) d) e) 7 2 5 3 3
  48. 48. Tente fazer so zinho 9- Tranforme cada número misto para fração imprópria. 18 15 7 23 10 a) b) c) d) e) 7 2 5 3 3 Respostas: 18 7 15 2 7 5 23 3 10 3 4 2 1 7 2 1 2 7 1 3 4 1 2 2 1 a)2 b )7 c )1 d )7 e)3 7 2 5 3 3
  49. 49. Fr ações Equivalentes  Observe as três figuras.  Elas são de mesmo tamanho, porém estão divididas de formas diferentes. 1 2 4 2 4 8  Em todas as três figuras, tomamos a mesma área.  Assim, Frações Equivalentes são frações que representam a mesma parte de uma unidade.
  50. 50. Resumindo O que é divisão numerador termos denominador própria n<d tipos imprópria n>d Número Misto Fração aparente n:d Frações Equivalentes
  51. 51. Resumindo Mesma parte de uma unidade O que é dividida de formas diferentes Frações Equivalentes
  52. 52. Como r econhecer Fr ações Equivalentes?  Precisamos saber se 9/12 e 6/8 são equivalentes. 1o Multiplicamos o numerador da primeira fração pelo denominador da segunda fração. 9 6 12 8 2o Multiplicamos o denominador da primeira fração pelo numerador da segunda fração. 9 6 12 8 3o Comparamos os resultados. Se forem iguais, as frações são equivalentes. 9 x8 = 72 9 6 = 12 x6 = 72 12 8
  53. 53. Resumindo Mesma parte de uma unidade O que é dividida de formas diferentes Numerador 1a fração Denominador 1a fração Reconhecer x = x Denominador 2a fração Numerador 2a fração Frações Equivalentes
  54. 54. Tente fazer so zinho 10- Identifique se são frações equivalentes. 1 3 1 4 3 24 9 36 a) e b) e c) e d) e 2 6 3 9 2 16 5 25
  55. 55. Tente fazer so zinho 10- Identifique se são frações equivalentes. 1 3 1 4 3 24 9 36 a) e b) e c) e d) e 2 6 3 9 2 16 5 25
  56. 56. Tente fazer sozinho 10- Identifique se são frações equivalentes. 1 3 1 4 3 24 9 36 a) e b) e c) e d) e 2 6 3 9 2 16 5 25 Respostas: a) 1 x 6 = 6 b) 1 x 9 = 9 c) 3 x 16 = 48 d) 9 x 25 = 225 2x3=6 3 x 4 = 12 2 x 24 = 48 5 x 36 = 180 equivalentes não equivalentes não
  57. 57. Como criar Fr ações Equivalentes?  Temos a fração 4/7 e desejamos encontrar frações equivalentes a ela. x3 x4 x2 4 8 12 16 = = = 7 x2 14 21 28 x3 x4  Multiplicamos numerador e denominador pelo mesmo número.
  58. 58. Resumindo Mesma parte de uma unidade O que é dividida de formas diferentes Numerador 1a fração Denominador 1a fração Reconhecer x = x Denominador 2a fração Numerador 2a fração Frações Equivalentes Multiplicar numerador e denominador Criar pelo mesmo número
  59. 59. Tente fazer so zinho 11- Para cada fração, dê duas frações equivalentes. 5 9 5 a) b) c) 2 7 4
  60. 60. Tente fazer so zinho 11- Para cada fração, dê duas frações equivalentes. 5 9 5 a) b) c) 2 7 4
  61. 61. Tente fazer so zinho 11- Para cada fração, dê duas frações equivalentes. 5 9 5 a) b) c) 2 7 4 Respostas: x2 x3 x2 x3 x3 x6 5 10 30 9 18 27 5 15 30 a) x 2 = x3 = b) = x2 = x3 c) = x 3 = x6 2 4 12 7 14 21 4 12 24
  62. 62. Simplificação de Frações  Temos a fração 24/36 e pretendemos simplificá-la. :3 :2 :2 24 12 6 2 = = = Tornou-se irredutível 36: 2 18 9 3 :2 :3  Dividimos numerador e denominador pelo mesmo número.  Quando ela não pode mais ser simplificada (ou reduzida) dizemos que ela é irredutível.
  63. 63. Resumindo Mesma parte de uma unidade O que é dividida de formas diferentes Numerador 1a fração Denominador 1a fração Reconhecer x = x Denominador 2a fração Numerador 2a fração Frações Equivalentes Multiplicar numerador e denominador Criar pelo mesmo número Dividir numerador e denominador Simplificar pelo mesmo número
  64. 64. Tente fazer so zinho 12- Simplifique as frações dadas. 8 24 25 a) b) c) 20 36 60
  65. 65. Tente fazer sozinho 12- Simplifique as frações dadas. 8 24 25 a) b) c) 20 36 60
  66. 66. Tente fazer so zinho 12- Simplifique as frações dadas. 8 24 25 a) b) c) 20 36 60 Respostas: 8:2 4:2 2 24:2 12:2 6:3 2 25:5 5 a ) :2 = :2 = b) :2 = :2 = :3 = c) :5 = 20 10 5 36 18 9 3 60 12
  67. 67. Redução de fr ações ao mesmo denominador Vamos obter frações equivalentes a 2/3, 4/5 e 5/6, de modo que todas tenham o mesmo denominador.  1o Calculamos o denominador comum as três frações e múltiplo dos denominadores 3, 5 e 6 ao mesmo tempo. Assim, estamos procurando o mínimo múltiplo comum, ou seja, o mmc de 3, 5 e 6. 3 5 6 2 3 5 3 3  Obtemos o mmc igual a 30. 1 5 1 5 1 1 1 30
  68. 68. Redução de frações ao mesmo denominador  2o Dividimos o denominador comum pelo denominador de cada fração e multiplicamos pelo numerador.  Assim reduzimos as frações ao mesmo denominador: 2 4 5 , , 3 5 6 20 24 25 , , 30 30 30
  69. 69. Resumindo O que é divisão numerador termos denominador própria n<d tipos imprópria n>d Número Misto Fração aparente n:d Frações Equivalentes Reduzir 1o mmc dos denominadores ao mesmo 2o dividir o mmc pelo denominador denominador e multiplicar pelo numerador
  70. 70. Tente fazer so zinho 13- Reduza as frações a um mesmo denominador. 1 1 1 1 3 19 3 5 7 a) , e b) , e c) , e 2 3 4 5 7 70 4 6 10
  71. 71. Tente fazer so zinho 13- Reduza as frações a um mesmo denominador. 1 1 1 1 3 19 3 5 7 a) , e b) , e c) , e 2 3 4 5 7 70 4 6 10
  72. 72. Tente fazer sozinho 13- Reduza as frações a um mesmo denominador. 1 1 1 1 3 19 3 5 7 a) , e b) , e c) , e 2 3 4 5 7 70 4 6 10 Respostas: a) mmc (2,3,4) = 12 b) mmc (5,7,70) = 70 c) mmc (4,6,10) = 60 6 4 3 14 30 19 15 50 32 a) , e b) , e c) , e 12 12 12 70 70 70 60 60 60
  73. 73. Compar ação de Frações  Para comparar frações com numeradores e denominadores diferentes, devemos primeiramente reduzi-las ao mesmo denominador.  Vamos comparar 7/8 e 5/6. mmc (8, 6) = 24 5 20 7 21 Então: = = 6 24 8 24 20 21 Agora comparamos: < 24 24 5 7 Portanto: < 6 8
  74. 74. Resumindo O que é divisão numerador termos denominador própria n<d tipos imprópria n>d Número Misto Fração aparente n:d Frações Equivalentes Reduzir 1o mmc dos denominadores ao mesmo 2o dividir o mmc pelo denominador denominador e multiplicar pelo numerador 1o reduzir ao mesmo denominador Comparar 2o localizar o numerador maior
  75. 75. Tente fazer so zinho 14- Faça a comparação entre as frações utilizando >, < e =. 2 2 1 2 2 3 11 4 a ) ___ b) ___ c) ___ d ) ___ 5 7 7 14 9 7 4 3
  76. 76. Tente fazer so zinho 14- Faça a comparação entre as frações utilizando >, < e =. 2 2 1 2 2 3 11 4 a ) ___ b) ___ c) ___ d ) ___ 5 7 7 14 9 7 4 3
  77. 77. Tente fazer so zinho 14- Faça a comparação entre as frações utilizando >, < e =. 2 2 1 2 2 3 11 4 a ) ___ b) ___ c) ___ d ) ___ 5 7 7 14 9 7 4 3 Respostas: a) mmc (5,7) = 35 b) mmc (7,14) = 14 c) mmc (7,9) = 63 d) mmc (3,4) = 12 14 10 2 2 14 27 33 16 a) > b) = c) < d) > 35 35 14 14 63 63 12 12
  78. 78. Oper ações com Fr ações  Soma  Subtração  Multiplicação  Divisão  Potenciação
  79. 79. Resumindo O que é divisão numerador termos denominador própria n<d tipos imprópria n>d Número Misto Fração aparente n:d Frações Equivalentes Reduzir 1o mmc dos denominadores ao mesmo 2o dividir o mmc pelo denominador denominador e multiplicar pelo numerador 1o reduzir ao mesmo denominador Comparar 2o localizar o numerador maior Operações
  80. 80. Oper ações com Fr ações - Soma - Temos 3 copos iguais, com uma graduação dividida em 7 partes. Vamos preencher com água 2/7 do copo 1 e 3/7 do copo 2. O terceiro continuará vazio. Se despejarmos a água dos copos 1 e 2 no copo 3, teremos nesse copo 5/7. Somamos 2 3 5 + = 7 7 7
  81. 81. Oper ações com Fr ações - Subtr ação - Temos um retângulo, vamos dividi-lo em 11 partes iguais e pintar 8 dessas partes. Vamos retirar a cor de 5 partes pintadas. Ainda sobrarão 3 partes coloridas. Subtraímos 8 5 3 − = 11 11 11
  82. 82. E se os denominadores for em difer entes?  Vamos calcular 4 5 + . 9 6  Reduzir as frações ao mesmo denominador. mmc (9,6) = 18 4 8 5 15 = = 9 18 6 18  Agora podemos somar. 4 5 8 15 23 + = + = 9 6 18 18 18  Assim fazemos para soma e subtração de frações.
  83. 83. Resumindo soma 1o Igualar denominadores 2o Somar ou Subtrair subtração Operações
  84. 84. Tente fazer so zinho 15- Some as frações de cada lado e descubra quem vai ganhar a guerra da corda. Ganha quem tiver a maior soma.
  85. 85. Tente fazer sozinho 15- Some as frações de cada lado e descubra quem vai ganhar a guerra da corda. Ganha quem tiver a maior soma.
  86. 86. Resposta: 5 5.7 5 35 5 40 5 = + = + = 7 7 7 7 7 7 1 2 1+ + = 2 4.7 2 28 2 30 3 3 4 = + = + = 7 7 7 7 7 7 3 1 2 6 40 30 + + = =2 + +1 = 3 3 3 3 7 7 40 30 7 77 + + = = 11 7 7 7 7
  87. 87. Tente fazer so zinho 16- Carla está lendo um livro. Anteontem ela leu 1/4 do livro e ontem 1/3, mas ainda faltam 30 páginas. Qual é o número de páginas desse livro?
  88. 88. Tente fazer so zinho 16- Carla está lendo um livro. Anteontem ela leu 1/4 do livro e ontem 1/3, mas ainda faltam 30 páginas. Qual é o número de páginas desse livro?
  89. 89. Tente fazer so zinho 16- Carla está lendo um livro. Anteontem ela leu 1/4 do livro e ontem 1/3, mas ainda faltam 30 páginas. Qual é o número de páginas desse livro? Resposta: 1 1 3 4 7 O que ela leu. + = + = 4 3 12 12 12 12 7 5 − = Total do livro – o que ela leu = o que falta ler. 12 12 12 O que falta ler = 30 páginas 5 30 = 12 Buscar uma fração equivalente com numerador 30, x6 então multiplicamos por 6. 5 30 = 12 x 6 72 Encontramos 72 de denominador que é o número total de páginas do livro.
  90. 90. Oper ações com Fr ações - Multiplicação -  2/7 do retângulo é a parte colorida da figura. Quanto é 3 x 2/7 ?  Assim 3 x 2/7 é o triplo dessa parte. Multiplicamos 2 3.2 6 3. = = 7 7 7
  91. 91. E se os dois fator es for em fr ações? 1 1  Vamos calcular x . 3 5  1/5 do retângulo é a parte colorida.  Notamos que 1/3 x 1/5 é 1/3 da parte colorida, que corresponde a 1/15. Multiplicamos 1 1 1.1 1 . = = 3 5 3.5 15
  92. 92. Resumindo soma 1o Igualar denominadores 2o Somar ou Subtrair subtração numerador x numerador Operações multiplicação denominador x denominador
  93. 93. Tente fazer so zinho 17- Que fração representa a parte colorida da figura? Agora calcule:  O dobro dessa fração  O triplo dessa fração  A metade dessa fração  A terça parte dessa fração  2/3 dessa fração  5/8 dessa fração
  94. 94. Tente fazer so zinho 17- Que fração representa a parte colorida da figura? Agora calcule:  O dobro dessa fração  O triplo dessa fração  A metade dessa fração  A terça parte dessa fração  2/3 dessa fração  5/8 dessa fração
  95. 95. Tente fazer so zinho 17- Que fração representa a parte colorida da figura? 1 Agora calcule: Respostas: 5 1 2.1 2  O dobro dessa fração a ) 2. = = 5 5 5 1 3.1 3  O triplo dessa fração b)3. = = 5 5 5 1 1 1.1 1  A metade dessa fração c) . = = 2 5 2.5 10 1 1 1.1 1  d) . = = A terça parte dessa fração 3 5 3.5 15 2 1 2.1 2 e) . = =  2/3 dessa fração 3 5 3.5 15 ÷5 5 1 5.1 5 1  5/8 dessa fração f) . = = = 8 5 8.5 40 ÷5 8
  96. 96. Tente fazer so zinho 18- Resolva a equação: 1 5 2 5 2 1 + . − . −  = 2 4 3 2 5
  97. 97. Tente fazer so zinho 18- Resolva a equação: 1 5 2 5 2 1 + . − . −  = 2 4 3 2 5
  98. 98. Tente fazer sozinho 18- Resolva a equação: Resposta: 1 5 2 5 2 5 2  25 4  1 + . − . −  = 1 + − . −  = 2 4 3 2 5 8 3  10 10  5 2 21 1+ − . = 8 3 10 5 1 7 1+ − . = 8 1 5 5 7 1+ − = 8 5 40 25 56 9 + − = 40 40 40 40
  99. 99. Oper ações com Fr ações - Divisão -  Desejamos dividir 40 litros de leite em canecas de ½ litro cada uma. Quantas canecas serão necessárias?  Como fazer: Dividimos 1o Repete a 1a fração 1 2 40 ÷ = 40. = 2o Inverter a 2a fração 2 1 40.2 80 3o Multiplicamos = = 80 1 1
  100. 100. E se os dois fator es for em fr ações?  Se quisermos dividir 1/2 litro de leite em 4 copos.  Procedemos da mesma maneira: 1o Repete a 1a fração 2o Inverter a 2a fração 3o Multiplicamos Dividimos 1 1 1 ÷4 = . = 2 2 4 1 .1 1 = 2 .4 8
  101. 101. Resumindo soma 1o Igualar denominadores 2o Somar ou Subtrair subtração numerador x numerador Operações multiplicação denominador x denominador 1o Repete a 1a fração divisão 2o Multiplica pelo inverso da 2a fração
  102. 102. Tente fazer so zinho 19- A divisão dos inversos dos números 3 e 3/7 é igual a :
  103. 103. Tente fazer so zinho 19- A divisão dos inversos dos números 3 e 3/7 é igual a :
  104. 104. Tente fazer so zinho 19- A divisão dos inversos dos números 3 e 3/7 é igual a : Resposta: 1 3− > inverso− > 3 3 7 − > inverso− > 7 3 1 7 1 3 1 ÷ = . = 3 3 3 7 7
  105. 105. Tente fazer so zinho 20- Calcule: 4 2 : 15 3 = 12 3 : 24 8
  106. 106. Tente fazer so zinho Resposta: 20- Calcule: 4 2 4 3 2 1 2 : . . 15 3 = 15 2 = 5 1 = 5 = 2 . 3 = 1 . 3 = 3 12 3 12 8 4 1 4 5 4 5 2 10 : . . 24 8 24 3 3 1 3
  107. 107. Oper ações com Fr ações - Potenciação -  Observe o cálculo de algumas potências: 4 2  24 16  Como fazer:   = 4 = 3  3 81 Elevar numerador 1 e denominador à 2  21 2 mesma potência.   = 1 = 3  3 3 0  2 20 1   = 0 = =1 3  3 1
  108. 108. Resumindo soma 1o Igualar denominadores 2o Somar ou Subtrair subtração numerador x numerador Operações multiplicação denominador x denominador 1o Repete a 1a fração divisão 2o Multiplica pelo inverso da 2a fração Eleva numerador e denominador potenciação à mesma potencia
  109. 109. Tente fazer so zinho 21- Calcule o valor da expressão: 2 3 5 2 2 2   .  :  = 3 3 3
  110. 110. Tente fazer so zinho 21- Calcule o valor da expressão: 2 3 5 2 2 2   .  :  = 3 3 3
  111. 111. Tente fazer so zinho 21- Calcule o valor da expressão: Resposta: 2 3 5 2 2 2  2  2   2  2 3 5   .  :  =  2 . 3  :  5  = 3 3 3  3  3   3       4 8 32 . : = 9 27 243 32 32 : = 243 243 32 243 1 1 . = . =1 243 32 1 1
  112. 112. Tente fazer so zinho 22- Calcule: 3 1 1  −  = 2 6
  113. 113. Tente fazer so zinho 22- Calcule: 3 1 1  −  = 2 6
  114. 114. Tente fazer so zinho 22- Calcule: 3 1 1  −  = 2 6 Resposta: 3 3 1  −  = 6 6 3 3  2   1  13 1   =  = 3 =  6 3 3 27
  115. 115. O que você aprendeu  O que é fração  Tipos de fração  Número misto  Frações equivalentes  Simplificação de frações  Comparação de frações  Operações com frações  Potenciação de frações
  116. 116. Bibliog r afia  Matemática e Realidade – ensino fundamental, 6o ano. IEZZI, Gelson, DOLCE, Osvaldo, MACHADO, Antonio. 2005, São Paulo. Páginas pesquisadas: 152 a 196.  Site: Só Matemática, acessado em 11/12/10 http://www.somatematica.com.br/soexercicios/frac

×