Calculo de medicação

84.792 visualizações

Publicada em

AULA QUE DESCREVE AS NOÇOES DE FARMACOLOGIA E EXERCÍCIOS DE CÁLCULOS DE MEDICAÇÃO

Publicada em: Saúde e medicina
  • Foi a melhor aula que encontrei no SlideShare. Bem explicado, e com bastante aplicabilidade. Alguns exercícios estao sem respostas - que poderiam ser adicionados no final dos slides. Obrigada.
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui
  • O tempo pra acabar o soro ta muito confuso
       Responder 
    Tem certeza que deseja  Sim  Não
    Insira sua mensagem aqui

Calculo de medicação

  1. 1. Cálculo de Medicação Conceitos em Farmacologia Enfª Andréa Dantas Especialista em Gestão do Trabalho e Educação na Saúde e Enfermagem Pediátrica Docente Senac
  2. 2. Introdução  É fundamental que o enfermeiro e sua equipe tenham bom conhecimento dos princípios básicos de matemática, uma vez que qualquer erro de cálculo pode ser extremamente prejudicial;  Um erro de cálculo da dose máxima (maior quantidade de medicamento capaz de produzir ação terapêutica sem causar efeito tóxico) pode ser letal;  Saber as fórmulas a serem utilizadas no preparo das doses medicamentosas é condição prioritária para que o cliente receba a dosagem certa e se produza o efeito esperado;
  3. 3. Introdução  Durante a prática de administrar medicamentos, o pessoal de enfermagem deve estar atento ao tempo de infusão, as dosagens adequadas e às reações esperadas.  Atualmente, qualquer programa de computador poderá calcular seguramente o que o cliente deve receber de acordo com a prescrição médica. No entanto, nem todas as instituições são equipadas com essa tecnologia, o que obriga a enfermagem a fazer as contas para ofertar corretamente a dosagem que o cliente deve receber;
  4. 4. Conceitos Importantes  Dose: quantidade de medicamento introduzido no organismo a fim de produzir efeito terapêutico.  Dose máxima: maior quantidade de medicamento capaz de produzir ação terapêutica sem ser acompanhada de sintomas tóxicos.  Dose tóxica: quantidade que ultrapassa a dose máxima e pode causar conseqüências graves; a morte é evitada se a pessoa for socorrida a tempo.  Dose letal: quantidade de medicamento que causa morte.  Dose de manutenção: quantidade que mantém o nível de concentração do medicamento no sangue.
  5. 5.  Devido à variedade de nomenclaturas utilizadas no estudo do cálculo, preparo e administração de fármacos, faz-se necessária a revisão de conceitos básicos:  Solução: mistura homogênea composta de soluto e solvente, sendo o solvente a porção líquida da solução e o soluto a porção sólida;  Concentração: é a relação entre a quantidade de soluto e solvente, ou seja, entre a massa do soluto e o volume do solvente. Ex: g/l, g/cm³;
  6. 6.  Segundo a sua concentração, isto é, sua osmolaridade (número de partículas do soluto dissolvidas no solvente) as soluções podem ser classificadas em : -Isotônica : é uma solução com concentração igual ou mais próxima possível à concentração do sangue. Ex: SF 0,9%, SG 5%, RL ; -Hipertônica : é uma solução com concentração maior que a concentração do sangue. Ex: SG 10%, Manitol 10%; -Hipotônica: é uma solução com concentração menor que a concentração do sangue Ex: Nacl 0,45%;
  7. 7. Conceitos Importantes  Suspensão: formada por dois componentes, mas não é homogênea e sim heterogênea. Isso quer dizer que após a centrifugação ou repouso é possível separar os componentes, o que não ocorre com a solução;  Proporção: é uma forma de expressar a concentração, e consiste na relação entre soluto e solvente expressa em “partes”. Ex: 1:40.000 – 1 g de soluto para 40.000 ml de solvente;  Porcentagem: é uma outra forma de expressar a concentração. O termo por cento (%) significa centésimos. Um percentual é uma fração cujo numerador é expresso e o denominador é 100. Ex: 5%- 5g de soluto em 100 ml de solvente
  8. 8. Medidas em Farmacologia  O sistema métrico decimal é de muita importância para o cálculo e preparo das drogas e soluções. Ao preparar a medicação é necessário confirmar a unidade de medida;  As unidades de medidas podem ser representadas de modos diferentes, de acordo com o fator de mensuração: peso, volume ou comprimento;  Unidade básica de peso -Kg (quilograma) - Mg (miligrama) -G(grama) -Mcg (micrograma)
  9. 9. 1 Kg = 1000 g= 1.000.000 mg 1g= 1000mg 1mg= 1000 mcg  Unidade básica de volume L (litro) 1l= 1000ml 1ml= 20 gts Ml (mililitro) 1gt=3mcgts EXEMPLOS: 5g= 5000mg 1,5l= 1500ml 5000ml=5l 1500mg=1,5g 200ml=0,2l
  10. 10. Medidas em Farmacologia e sua Equivalência  Centímetro cúbico (cc ou cm³)- é similar ao ml, logo 1cc equivale a 1 ml.  Medidas caseiras 1 colher (café)- 3 ml 1 colher (chá)- 4 ml 1 colher (sobremesa)- 10 ml 1 colher (sopa)- 15 ml 1 xícara de chá- 180 ml 1 copo americano- 250 ml
  11. 11. REGRA DE TRÊS  O cálculo da medicação pode ser resolvido, na maioria das situações, através da utilização da regra de 3. Essa regra nos ajuda a descobrir o valor de uma determinada grandeza que está incógnita;  As grandezas proporcionais de termos devem ser alinhados e o raciocínio lógico deverá ser encaminhado para se descobrir uma incógnita por vez;  A disposição dos elementos deve ser da seguinte forma: 1ª linha- colocar a informação 2ª linha- coloca a pergunta
  12. 12. Exemplo 1:  Em uma ampola de dipirona tenho 2ml de solução. Quantos ml de solução tenho em 3 ampolas? 1 amp---------2ml Informação 3amps---------x Pergunta Multiplique em cruz 1 x x= 2x3 Isole a incógnita x=2x3 x= 6 ml 1
  13. 13. Exemplo 2:  Se 1 ml contem 20 gts, quantas gotas há em um frasco de SF 0,9% de 250 ml? 1ml---------20 gts 250ml------x 1 x x= 250 x 20 x= 250 x 20 1 x= 5000 gts num frasco de 250 ml de SF 0,9%
  14. 14.  Para os cálculos com números decimais e centesimais, sugere-se que trabalhe com aproximações;  Se o valor da casa centesimal for menor que 5, mantem-se o valor decimal. Ex: 3,52= 3,5;  Se o valor da casa centesimal for igual ou maior que 5, acrescenta-se uma unidade ao valor decimal. Ex: 8,47= 8,5.
  15. 15. EXERCÍCIOS  Prescrita Garamicina 25 mg IM. Tenho ampolas de 2ml com 40 mg/ml. Quanto devo administrar?  Prescrito Cloridrato de Vancomicina 90 mg. Tenho frasco-ampola de 500 mg e diluente de 5ml. Quanto devo administrar?  Prescrito Sulfato de Amicacina 150 mg. Tenho frasco-ampola de 500 mg/2ml. Quanto devo administrar?  Se tenho frasco ampola de Cloranfenicol com 1 g, diluente de 10 ml, e foi prescrito 0,75g. Quanto devo administrar?
  16. 16. Transformando soluções  A transformação de soluções deve ser efetuada sempre que a concentração da solução prescrita for diferente da solução disponível na unidade.  Para efetuar o processo de transformação de soluções deve-se considerar: -a quantidade de soluto prescrito; -a quantidade de solvente prescrito; -as opções para se obter o soluto necessário a partir de diferentes apresentações na unidade (ampolas disponíveis); -efetuar o cálculo correto, seguindo o raciocínio lógico e utilizando os princípios da regra de 3 e da equivalência entre unidades de medida;
  17. 17. Transformando soluções  Para as transformações será usado como padrão o frasco de 500 ml de soro. Temos 500 ml de soro glicosado 5 % e a prescrição foi de 500 ml a 10%. Primeiro passo – Verifica-se quanto de glicose há no frasco a 5 %. 100 ml – 5 g 500 ml – x x = 500 x 5 / 100 = 25g 500 ml de soro glicosado a 5% contem 25g de glicose Segundo passo – Verifica-se quanto foi prescrito, isto é, quanto contem um frasco a 10% 100ml – 10g 500 ml – x X = 500 x 10 / 100 = 50g 500 ml de soro glicosado a 10% contem 50g de glicose. Temos 25g e a prescrição foi de 50g; portanto, faltam 25g.
  18. 18. Transformando soluções  Terceiro passo – Encontra-se a diferença procurando supri-la usando ampolas de glicose hipertônica Temos ampola de glicose de 20 ml a 50% 100 ml – 50g 20 ml – x X = 20 x 50 / 100 = 10g Cada ampola de 20 ml a 50 % contem 10g de glicose 20 ml – 10g X – 25g X = 20 x 25 / 10 = 50 ml Será colocado então, 50 ml de glicose a 50%, ou seja, 2 + ½ ampolas de 20 ml no frasco de 500ml a 5%. Ficaremos com 550 ml de soro glicosado.
  19. 19. Exercícios  Temos soro glicosado a 5% e ampolas de glicose a 25% 10 ml. Queremos SG a 10%. Transforme essa solução.  Temos um SG isotônico a 5%. A prescrição foi de SG a 15%. Temos ainda ampola de glicose 20 ml a 50%. Transforme essa solução.  Foi prescrito SG 10% 500ml. Tenho disponível SG 5% 500ml e ampolas de glicose 50% 10 ml.  Temos SG 5% 500ml e SF 0,9% 500 ml. Queremos SGF. Temos ampolas de glicose 10 ml a 25% e Nacl 20% 10 ml;  Transforme 500 ml de SF 0,9% em 500 ml a 2%. Temos ampola de solução cloretada de 10 ml em 20%
  20. 20. Outro modo de resolver.......  Concentração de soluções: Sempre que não existir no mercado determinada solução na concentração desejada, caberá ao profissional de enfermagem prepará-la, recorrendo ao cálculo de concentração; CV= C1V1 +C2V2 ( V1= V-V2); (V2= V-V1); (V3= V1 +V2) C- concentração final desejada; V- volume final desejado C1-menor concentração disponível C2-maior concentração disponível V1 e V2- correspondem aos valores a serem aspirados das soluções disponíveis
  21. 21. Cálculo de gotejamento  Normalmente, os soros são prescritos em tempos que variam de minutos até 24 horas, e volumes que variam de mililitros a litros. A infusão é contínua e controlada através do gotejamento;  Para o cálculo de gotejamento é necessário controlar o volume e o tempo. Na prática, o controle de gotejamento, será feito em gotas/min; mcgts/min  Macrogotas: V em ml ou V x 20 em ml Tx3 em horas T em minutos Microgotas: V em ml T em horas
  22. 22. Exemplos  Calcular o número de gotas na prescrição de SG 5% 500ml de 8/8 horas 1ml--------20 gts x= 10.000 gts 500ml-----x 1h-----60 min x= 480 minutos 10.000= 21 gts/min 8h-----x 480
  23. 23. Exemplos  Foi prescrito SG 5% - 500 ml – 10 gts/min. Quantas horas vão demorar para acabar o soro? 1 ml----20 gts x= 10.000 gts 500 ml---x 1 min----10 gts 10x= 10.000 x= 1000 minutos x---------10.000 gts 1h------60 min x= 16 horas e 40 min x------1000 min
  24. 24. Exercícios: Calcular o gotejamento  Prescrito SF o,9% 90 ml para correr em 30 min;  Prescrito SG 5% 100 ml para correr em 1h e 10 min;  Prescrito SG 5% 125 ml para correr em 35 min;  SG 10% 250 ml EV em 24 hs. Nº de microgotas/min
  25. 25. Cálculo de insulina  Outra questão de cálculo que exige redobrada atenção para sua administração é a Insulina, pois pode haver incompatibilidade entre a concentração do frasco e a seringa disponível;  Quando houver compatibilidade, não há necessidade de efetuar cálculos, bastando apenas aspirar na seringa a quantidade de unidades prescritas pelo médico. A formula é: Insulina = Dose prescrita Seringa X
  26. 26. Exemplo  Temos insulina de 80 U e seringa de 40 U em 1 ml. A dose prescrita foi de 20 U. Quanto deve-se aspirar? 80 = 20 80 x= 800 x= 10 U 40 X
  27. 27. Antibióticos  Muitos antibióticos ainda são padronizados em unidades internacionais, contendo pó liofilizado (solutos) e deverão ser diluídos;  Os medicamentos mais comuns que se apresentam em frasco-ampola tem as seguintes concentrações: -Penicilina G potássica: 5.000.000 UI; 10.000.000 UI; -Benzilpenicilina Benzatina: 600.000 UI; 1.200.000 UI -Benzilpenicilina Procaína: 4.000.000 UI O soluto da Penicilina G Potássica 5.000.000 equivale a 2ml de solução após diluído e o de 10.000.000 a 4 ml de solução
  28. 28. EXEMPLOS  Prescritos 300.000 UI de Benzilpenicilina Benzatina IM, tenho FA de 600.000. Se diluir em 4 ml, quanto devo aspirar?  Prescritos 4.500.000 UI EV de Penicilina G Potássica. Tenho FA de 5.000.000. Em quantos ml devo diluir e quanto devo aspirar?  Prescritos 6.000.000 UI de Penicilina G Potássica. Tenho FA de 10.000.000 UI. Em quanto devo diluir e aplicar?
  29. 29. Mais Cálculos
  30. 30. CÁLCULO DE GOTEJAMENTO  Fórmulas:  Nº. de gotas/min. = V/Tx3  Nº. de microgotas/min. = V/T Onde, V = volume em ml e T = tempo em horas
  31. 31. CÁLCULO DE GOTEJAMENTO 1. Quantas gotas deverão correr em um minuto para administrar 1.000 ml de SG a 5% de 6/6 horas? Nº. de gotas/min. = V/Tx3 = 1.000/6x3 1.000/18 = 55,5* = 56 gotas/min. * Regra para arredondamento
  32. 32. CÁLCULO DE GOTEJAMENTO 2. Quantas microgotas deverão correr em um minuto para administrar 300ml de SF 0,9% em 4 horas? Nº. de mgts/min. = V/T = 300/4 =75
  33. 33. CÁLCULO DE GOTEJAMENTO  Mas o que fazer quando o tempo prescrito pelo médico vem em minutos? Nova Regra: Nº. de gotas/min. = V x 20/ nº. de minutos 3.Devemos administrar 100 ml de bicarbonato de sódio a 10% em 30 minutos. Quantas gotas deverão correr por minuto? Nº. de gotas/min. = 100 x 20/30 =2.000/30 = 66,6* = 67 gotas/min.
  34. 34. CÁLCULO DE GOTEJAMENTO  Lembrar sempre que 1 gota = 3 microgotas  Portanto nº. de microgotas/min. = nº. de gotas x 3 Vamos praticar? Ex.1 Calcule o nº. de gotas/min. Das seguintes prescrições: a) 1.000 ml de SG 5% EV em 24 horas. b) 500 ml de SG 5% EV de 6/6h. c) 500 ml de SF 0,9% EV em 1 hora. d) 500 ml de SF 0,9% EV de 8/8h. e) 100 ml de SF 0,9% EV em 30 minutos.
  35. 35. CÁLCULO DE GOTEJAMENTO Vamos praticar? Ex.1 Calcule o nº. de microgotas/min. Das seguintes prescrições: a)SF 0,9% 500 ml EV de 6/6h. b) SG 5% 500 ml EV de 8/8h. c) SGF 1.000 ml EV de 12/12h.
  36. 36. CÁLCULOS PARA ADMINISTRAÇÃO  Exemplo 1: Foram prescritos 500 mg VO de Keflex suspensão de 6/6h quantos ml devemos administrar?  O primeiro passo é olhar o frasco e verificar a quantidade do soluto por ml que nesse caso está descrito: 250 mg/5ml, significando que cada 5ml eu tenho 250 mg de soluto.  Agora é só montar a regra de três: 250 mg------- 5 ml 250 x = 2.500 500 mg-------- x x = 2.500/250 x = 10 ml
  37. 37.  Exemplo 2: Devemos administrar 250 mg de Novamin IM de 12/12 h. Temos na clínica ampolas de 2 ml com 500 mg. Quantos ml devo administrar? 500 mg ------- 2 ml 500 x = 500 x = 1 ml 250 mg-------- x x= 500/500
  38. 38.  Exemplo 3: Devemos administrar 200 mg de Cefalin EV de 6/6h. Temos na clínica fr./amp. de 1g. Como proceder?  Primeiro passo, vou diluir o medicamento pois há somente soluto;  Nesse caso vamos utilizar 10 ml de AD;  A quantidade de soluto é de 1g = 1.000 mg; Agora é só montar a regra de três: 1.000 mg ---- 10 ml 1.000 x = 2.000 200 mg ------- x x = 2.000/1.000 x = 2 ml
  39. 39.  Exemplo 4: Foram prescritos 5 mg de Garamicina EV de 12/12 h. diluídos em 20 ml de SG 5%. Temos na clínica apenas ampolas de 1ml com 40 mg/ml.  Como a quantidade prescrita é muito pequena, iremos rediluir, ou seja aspirar toda ampola e acrescentar mais AD, nesse caso adicionaremos 7 ml de AD para facilitar o cálculo.  Portanto eu tenho 1ml da ampola + 7 ml de AD = 8 ml com 40 mg. 40 mg ----- 8 ml 40 x = 40 x = 1 ml 5 mg ------ x x = 40/40 Devemos utilizar 1 ml da solução, colocando-a em 20 ml de SG5% EV.
  40. 40.  Exemplo 5: Foram prescritos 7 mg de Novamin EV de 12/12 h. Temos na clínica ampolas de 2 ml com 100mg/2ml. Quantos ml devemos administrar?  Observe que aqui também a quantidade prescrita é muito pequena, precisaremos rediluir, nesse caso em 8 ml de AD para facilitar o cálculo.  Portanto, terei 2 ml da ampola + 8 ml de AD = 10 ml com 100 mg. 100 mg ----- 10 ml 100 x = 70 x = 0,7 ml 7 mg ------ x x = 70/100 Devemos aspirar 0,7 ml da medicação e rediluir para aplicação pois a mesma não pode ser administrada diretamente na veia.
  41. 41.  Exemplo 6: Foi prescrito 1/3 da ampola de Plasil EV se necessário. Temos na clínica ampolas de 2 ml. Quantos ml devemos administrar?  A prescrição me pede para dividir a ampola em 3 partes e pegar 1 = 0,66 ml;  Então devemos rediluir aspirando toda ampola + 1ml de AD assim teremos números inteiros. Então 2ml da ampola + 1ml de AD = 3 ml /3 = 1 ml
  42. 42.  Exemplo 7: Foram prescritos 120 mg de Targocid uma vez ao dia EV. Temos na clínica frascos de 200 mg. Quantos ml devemos administrar?  Precisamos diluir o medicamento e nesse caso utilizaremos 5 ml de AD; 200 mg ----- 5 ml 200 x = 600 120 mg ----- x x = 600/200 X = 3 ml
  43. 43.  Exemplo 8: Foi prescrito Vancomicina 16 mg em 10 ml de SG 5% de 6/6 horas.Temos na clínica frascos de 500 mg. Como devemos proceder?  Precisaremos diluir o medicamento (soluto) nesse caso vamos utilizar 5 ml de AD. 500 mg ----- 5 ml 500 x = 500 x = 1 ml 100 mg ----- x x = 500/500 Descobrimos que em 1ml temos 100 mg Pegaremos esse 1ml + 9 ml de AD = 10ml 100 mg ----- 10 ml 100 x = 160 x = 1,6 ml 16 mg ------ x x = 160/100 Devemos então utilizar 1,6 ml da solução colocar em 10 ml de SG 5% e administrar
  44. 44. 1. Calcule quantos ml do medicamento deveremos administrar ao paciente nas seguintes prescrições: a) Tienam 250 mg EV de 6/6h. Temos fr./amp. 500 mg (diluir em 20 ml). b) Cefrom 2g EV de 12/12h. Temos fr./amp. de 1g. (diluir em 10 ml). c) Targocid 80 mg EV de 12/12h. Temos fr./amp. De 400 mg. (diluir em 10 ml). d) Calciferol ¼ de ampola IM. Temos ampolas de 1 ml (15mg/ml). (Rediluir em 1 ml). e) Dramim ¼ de ampola EV. Temos ampolas de 1ml. (rediluir em 3 ml).
  45. 45. CÁLCULO COM PENICILINA CRISTALINA  Nos cálculos anteriores a quantidade de soluto contida em uma solução é indicada em gramas ou miligramas. A penicilina cristalina virá apresentada em unidades podendo ser:  Frasco/amp. com 5.000.000 UI  Frasco/amp. com 10.000.000 Vem em pó e precisa ser diluída.
  46. 46. CÁLCULO COM PENICILINA CRISTALINA  Exemplo 1: Temos que administrar 2.000.000 UI de penicilina cristalina EV de 4/4 h. Temos na clínica somente frascos de 5.000.000 UI Quantos ml devemos administrar?  Na diluição da penicilina sempre que injetar-mos o solvente teremos um volume de 2 ml a mais. 5.000.000 UI ------ 8 ml de AD + 2 ml do pó = 10 ml 2.000.000 UI ------- x 5.000.000 x = 20.000.000 UI X = 20.000.000/5.000.000 X = 4 ml
  47. 47.  Exemplo 2: Temos que administrar 100.000 UI de penicilina cristalina EV de 4/4h. Temos na clínica somente frascos de 5.000.000 UI. Quantos ml devemos administrar? (diluir com 8 ml de AD) 5.000.000 UI ------ 10 ml 5.000.000 X = 10.000.000 1.000.000 UI ------ x x = 10.000.000/5.000.000 X = 2 ml Descobrimos que em 2 ml temos 1.000.000 e precisamos de 100.000, teremos que rediluir em + 8 ml de AD, assim: 1.000.000 ------- 10 ml (2 ml de medicamento + 8 ml de AD) 100.000 -------- x 1.000.000 x = 1.000.000 x = 1.000.000/1.000.000 x = 1 ml
  48. 48. 1. Foi prescrito Penicilina cristalina 2.000.000 UI EV de 6/6h. Temos frasco/amp. De 5.000.000 UI. Em quantos ml devo diluir e quantos devo administrar? 2. Temos que administrar 2.000.000 UI de Penicilina cristalina EV de 4/4h. Temos frascos de 5.000.000 UI. Em quantos ml devo diluir e quantos devo administrar?
  49. 49. CÁLCULOS DE INSULINA/HEPARINA  Exemplo 1: Foram prescritos 50 UI de insulina NPH por via SC e não temos seringa própria só de 3 ml. Como devemos proceder? 100 UI ------ 1 ml 100 x = 50 x = 0,5 ml 50 UI ------- x x = 50/100  Exemplo 2: Temos que administrar 2.500 UI de heparina SC de 12/12h. Temos frasco de 5.000 UI em 1ml. Como devemos proceder? 5.000 UI ------ 1 ml 5.000 x = 2.500 x = 0,5 ml 2.500 UI ------ x x = 2.500/5.000
  50. 50. 1. Temos que administrar insulina SC e não temos seringa própria só de 3 ml. Então calcule o ml de cada valor prescrito: a) 60 UI de insulina b) 80 UI de insulina c) 50 UI de insulina
  51. 51. CÁLCULOS DE DIFERENTES PORCENTAGENS  Exemplo 1: Temos na clínica ampolas de glicose a 50% com 20 ml. Quantas gramas de glicose temos nesta ampola? 50 g ------- 100 ml 100 x = 1.000 x = 10 g x -------- 20 ml x = 1.000/100
  52. 52.  Exemplo 2: Temos disponíveis ampolas de Vit. C a 10% com 5 ml. Quantos mg de Vit. C temos na ampola? 10 g ------ 100 ml 100 x = 50 x = 0,5 g x ----- 5 ml x = 50/100 Mas queremos saber em mg 1 g ----- 1.000 mg 1 x = 500 x = 500 mg 0,5 g ---- x x = 500/1
  53. 53. 1. Quanto de soluto encontramos nas seguintes soluções: a) 1 ampola de 20 ml de glicose a 25% b) 1 ampola de 20 ml de NaCl a 30% c) 1 frasco de 500 ml de SG a 5% d) 1 frasco de 1.000 ml de SG a 5%
  54. 54. TRANSFORMANDO O SORO Exemplo 1: Foi prescrito S.G. de 1.000 ml a 10%, temos somente SG de 1.000 ml a 5% e ampolas de glicose 50 % com 10 ml. Como devo proceder para transformar o soro de 5 para 10%?  PASSO 1: descobrir quantas gramas de glicose tem no soro que eu tenho. 5 g ------ 100 ml 100 x = 5.000 X ------- 1.000 ml x = 5.000/100 x = 50 g de glicose
  55. 55.  PASSO 2: descobrir quantas gramas de glicose contém no soro prescrito. 10 g ------- 100 ml 100 x = 10.000 x = 100 g x ------ 1.000 ml x = 10.000/100  Descobri que devo acrescentar 50 gramas de glicose no SG 5% de 1.000 ml.  Tenho ampola de glicose 50% 50 g ---- 100 ml 100 x = 500 x = 5 g X -------- 10 ml x = 500/100  Portanto cada ampola de 10 ml contém 5 g de glicose, assim devo colocar 10 ampolas no frasco de soro = 100 ml.  Entretanto não cabe no frasco, devo então desprezar 100 ml do frasco onde estarei perdendo 5 g de glicose e acrescento + 1 ampola de glicose.  Assim utilizaremos 11 ampolas de glicose 50% para transformar o soro.
  56. 56. 1. Foi prescrito um frasco de SG 10% de 500 ml. Temos frascos de SG 5% 500 ml e ampolas de glicose de 20 ml a 50%. Como devemos proceder para transformar o soro?
  57. 57. Obrigada

×