SlideShare a Scribd company logo
1 of 52
Closed-loop Motor Position Control at
arcsecond precision for the ERIS Project
at VLT (Very Large Telescope)
AMR AWAD
STUDENT NUMBER: 840804
8/12/2016
1
Agenda
1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS)
2. Introduction to the Master Thesis Contribution
3. The Project Setup
4. Direct Motor Control
5. Motor Control with the Grating wheel
6. Conclusion
8/12/2016
2
Agenda
1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS)
2. Introduction to the Master Thesis Contribution
3. The Project Setup
4. Direct Motor Control
5. Motor Control with the Grating wheel
6. Conclusion
8/12/2016
3
Max Planck Institute for Extraterrestrial
Physics (MPE)
 MPE research fields and approach
• modern astrophysics and space plasma research
 MPE instruments
• Above the dense Earth (Satellites)
• Ground-based observatories (Telescopes)
 Electronic group
• Structure (developing, engineering and workshop)
• Developing concept  Engineering  Constructing 
Testing  Commissiong
8/12/2016
4
ERIS Project
 ERIS: Enhanced Resolution Infrared Spectrometer
 SPIFFI instrument at VLT
• SPIFFI: SPectrometer for Infrared Faint Field Imaging
• VLT: Very Large Telescope
 About the telescope physical measurement
• Near InfraRed (NIR) Imaging
8/12/2016
5
Agenda
1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS)
2. Introduction to the Master Thesis Contribution
3. The Project Setup
4. Direct Motor Control
5. Motor Control with the Grating wheel
6. Conclusion
8/12/2016
6
Grating Wheel
 holds four gratings for the different wavelength
bands (J, H, K, High Resolution J/H/K)
 Accuracy of 2 arcsec
 Setup notes:
• First functional tests of the Grating-Wheel mechanism
without Gratings have been done.
• Turns ration is not precisely defined
• Test setup does not have Indyctosyn
Motor+
Resolver
Inductosyn Gear
Gratings
8/12/2016
7
Agenda
1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS)
2. Introduction to the Master Thesis Contribution
3. The Project Setup
4. Direct Motor Control
5. Motor Control with the Grating wheel
6. Conclusion
8/12/2016
8
Project Block diagram
8/12/2016
9
Agenda
1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS)
2. Introduction to the Master Thesis Contribution
3. The Project Setup
4. Direct Motor Control
5. Motor Control with the Grating wheel
6. Conclusion
8/12/2016
10
Problem definition
Motor Control Problem
Rated Torque
Micro-stepping
(512 micro-steps
test)
Open loop Closed loop
Position control
Resolver feedback
Resolver and
Autocollimator
feedback 8/12/2016
11
Test setups (1)
1. Motor axis slot to fix the lever to the motor
2. Lever
3. Weight
8/12/2016
12
 Translation motion
 Reflected light position changes in Y AND Z with the
mirror motion
 Moving light focus in an arc
 Theoretically covers 610 Micro-steps
 Practically  Moving dot (Reflected light)!
4. Mirror carrying structure
5. Mirror’s reflexive surface
Y
Z
Test setups (2)
 Rotation motion
 Reflected light position changes in Z with the mirror
motion
 Moving light focus in a line
 Theoretically covers 9 Micro-steps
 Practically  less degrees of freedom but easier for
control
 Practically  same pattern like the grating wheel
8/12/2016
13
1. Motor axis slot to fix the lever to the motor
2. Lever
3. Weight
4. Mirror carrying structure
5. Mirror’s reflexive surface
Y
Z
Load torque characteristics
8/12/2016
 Aluminium lever:
M [mNm] = 67.836 [mm]* 0.5778 [N]
+m [kg]*9.81*(95 [mm] –a [mm])
 Vanadium lever:
M [mNm] = 56.73 [mm]* 1.0546 [N]
+m [kg]*9.81*(95 [mm] –a [mm])
14
Results for Motor: 42.200.2,5
Lever Weight a [mm] M [mNm] Max_Y Min_Y Range_Y
Al
without N.A 39.1956 104.5 100 4.5
Al
72.01 46.4352148 121.7 111.2 10.5
61.03 49.8928278 -147.3 -156.6 9.3
50.01 53.3630368 -348.9 -370.8 21.9
39.09 56.8017557 -240.7 -251.8 11.1
28 60.2940078 182.8 168.1 14.7
VA
71.99 59.8271891 97.1 66.2 30.9
61.01 69.6722305 260.5 246.7 13.8
50.02 79.5262381 -104.3 -133.2 28.9
39.01 89.3981785
VA
without N.A 59.8275 83.1 77.2 5.9
Al
72 67.070181 151.7 132.5 19.2
55.02 72.4172 3.7 -10.8 14.5
41.5 76.6746615 13.6 7.2 6.4
27 81.240726 34.3 22.6 11.7
8/12/2016
15
Problem definition
Motor Control Problem
Rated Torque
Micro-stepping
(512 micro-steps
test)
Open loop Closed loop
Position control
Resolver feedback
Resolver and
Autocollimator
feedback 8/12/2016
16
512 Micro-stepping test (Open loop)
8/12/2016
 ssd
17
 Load Torque:
40, 50, 60, 65, 70 [mNm]
 Reduced Current:
500, 1000,1500, 2000, 2500
[mA]
 Statistical approach
512 Micro-stepping test (Closed loop)
8/12/2016
 ssd
18
 Load Torque:
40, 50, 60, 65, 70, 80 [mNm]
 Reduced Current:
Minimum reduced current
(Bisection approach in
equation roots finding)
500, 1000,1500, 2000, 2500
[mA]
 Statistical approach
512 Micro-stepping application
8/12/2016
LabVIEW TWINCAT 3 (Tc2_MC2)
19
Sample result: Open loop, 40 [mNm], 2500
[mA] (Current/ Torque)
8/12/2016
 Motor cycles:
• 128 up  256 down  128 up
 Holding Torque Equation:
τℎ𝑜𝑙𝑑 = 𝐾 𝐼 𝑎
2
+ 𝐼 𝑏
2
20
Sample result: Closed loop, 40 [mNm],
1000 [mA] (Current/ Torque)
8/12/2016
21
 Motor cycles:
• 128 up  256 down  128 up
 Holding Torque Equation:
τℎ𝑜𝑙𝑑 = 𝐾 𝐼 𝑎
2
+ 𝐼 𝑏
2
Sample result: Position diagram
Open loop vs. Closed loop
22
8/12/2016
Sample result: Position Error diagram
Open loop vs. Closed loop
23
8/12/2016
8/12/2016
24
RMS Error (Open loop, Motor: 33.200.2,5)
8/12/2016
25
RMS Error (Closed loop, Motor: 33.200.2,5)
Maximum Load Torque Motor: 33.200.2,5
8/12/2016
26
Problem definition
Motor Control Problem
Rated Torque
Micro-stepping
(512 micro-steps
test)
Open loop Closed loop
Position control
Resolver feedback
Resolver and
Autocollimator
feedback 8/12/2016
27
Position control loop
8/12/2016
28
 Setpoint scale:
 10: 350 °
 OPC UA (Realtime problem)
 PLC blocks update
 Enable/ Disable time
Position control loop with two sensors
(fine tuning)
8/12/2016
29
 Setpoint scale:
• 10: 350 °
 Sensors reading normalization
to avoid abrupt control action at
the transition point
Position control loop application
8/12/2016
30
Sample result: Kp= 0.0001,
Enable time = 20 [ms], Disable time= 50 [ms]
8/12/2016
31
Agenda
1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS)
2. Introduction to the Master Thesis Contribution
3. The Project Setup
4. Auxiliary Tools
5. Direct Motor Control
6. Motor Control with the Grating wheel
7. Conclusion
8/12/2016
32
Problem definition
8/12/2016
33
Grating wheel control problem
Homing Gear ratio
Micro-stepping
(512 micro-steps
test)
Open loop Closed loop
Position control
LabVIEW via OPC
UA
PLC control
Motor referencing procedure
8/12/2016
34
1. Initial position
2. Reference switch latch detection
3. Motor stop
4. Travelling backwards
5. Signal synchronization (omitted)
6. Reference switch release detection
7. Stop at Home Position
Motor referencing results
 Mechanical response of the
limit switch
 Central limit theory
 Normal distribution
35
8/12/2016
Problem definition
8/12/2016
36
Grating wheel control problem
Homing Gear ratio
Micro-stepping
(512 micro-steps
test)
Open loop Closed loop
Position control
LabVIEW via OPC
UA
PLC control
Gear ratio estimation
 Homing  one complete  Homing at the new reference
 Counting the number of revolutions made by the motor
(LabVIEW interface with the absolute 16 bit encoder)
 Statistical approach of the gear ratio estimation
 Estimated gear ratio = 2097.142
 Calculated Variance= 0.273731
 Calculate standard deviation = 0.523193
8/12/2016
37
Problem definition
8/12/2016
38
Grating wheel control problem
Homing Gear ratio
Micro-stepping
(512 micro-steps
test)
Open loop Closed loop
Position control
LabVIEW via OPC
UA
PLC control
512 Micro-stepping test (Open loop)
8/12/2016
39
 Load Torque:
Grating Wheel
 Reduced Current:
250, 500, 750, 1000,1500,
2000, 2500 [mA]
512 Micro-stepping test (Closed loop)
8/12/2016
40
 Load Torque:
Grating Wheel
 Reduced Current:
250, 500, 750, 1000,1500,
2000, 2500 [mA]
Sample result: Position diagram at 2500 [mA]
Open loop vs. Closed loop
41
8/12/2016
Sample result: Position Error diagram at
2500 [mA] Open loop vs. Closed loop
42
8/12/2016
Sample result: Resolver vs Autocollimator at
2500 [mA] Open loop vs. Closed loop
43
8/12/2016
Sample result: Resolver vs Autocollimator
Offset- Open loop vs. Closed loop
44
8/12/2016
Problem definition
8/12/2016
45
Grating wheel control problem
Homing Gear ratio
Micro-stepping
(512 micro-steps
test)
Open loop Closed loop
Position control
LabVIEW via OPC
UA
PLC control
Position control loop (LabVIEW via OPC)
8/12/2016
46
Position control loop (PLC)
8/12/2016
47
Sample result: Full path
Error < 0.02 [arcsec] (grating wheel side)
8/12/2016
48
Sample result: Half path
Error < 0.02 [arcsec] (grating wheel side)
8/12/2016
49
Agenda
1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS)
2. Introduction to the Master Thesis Contribution
3. The Project Setup
4. Auxiliary Tools
5. Direct Motor Control
6. Motor Control with the Grating wheel
7. Conclusion
8/12/2016
50
Conclusion
 Control achieved in open and closed loop (2 [arcsec] precision)
 OPC UA real time limitation
 Feedback from the grating wheel side is much better  Inductosyn
 Limit switch changing with better preciseness to be used with the Inductosyn
8/12/2016
51
Thank You!
8/12/2016
52

More Related Content

What's hot

Ejercicios resueltos de rc
Ejercicios resueltos de rcEjercicios resueltos de rc
Ejercicios resueltos de rcNiels Estrada
 
Computational and experimental investigation of aerodynamics of flapping aero...
Computational and experimental investigation of aerodynamics of flapping aero...Computational and experimental investigation of aerodynamics of flapping aero...
Computational and experimental investigation of aerodynamics of flapping aero...Lahiru Dilshan
 
How JSR 385 could have Saved the Mars Climate Orbiter - Adopt-a-JSR Day
How JSR 385 could have Saved the Mars Climate Orbiter - Adopt-a-JSR DayHow JSR 385 could have Saved the Mars Climate Orbiter - Adopt-a-JSR Day
How JSR 385 could have Saved the Mars Climate Orbiter - Adopt-a-JSR DayWerner Keil
 
Nonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output ConstraintNonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output ConstraintIJECEIAES
 
Numerical calculation of high-order QED contributions to the electron anomalo...
Numerical calculation of high-order QED contributions to the electron anomalo...Numerical calculation of high-order QED contributions to the electron anomalo...
Numerical calculation of high-order QED contributions to the electron anomalo...SergeyVolkov44
 
The SpaceDrive Project - First Results on EMDrive and Mach-Effect Thrusters
The SpaceDrive Project - First Results on EMDrive and Mach-Effect ThrustersThe SpaceDrive Project - First Results on EMDrive and Mach-Effect Thrusters
The SpaceDrive Project - First Results on EMDrive and Mach-Effect ThrustersSérgio Sacani
 
Laporan Tugas 2 - Astrodinamika Lanjut
Laporan Tugas 2 - Astrodinamika LanjutLaporan Tugas 2 - Astrodinamika Lanjut
Laporan Tugas 2 - Astrodinamika LanjutSayogyo Rahman Doko
 
Ballingham_Levine_FinalProject
Ballingham_Levine_FinalProjectBallingham_Levine_FinalProject
Ballingham_Levine_FinalProjectRyland Ballingham
 
PHM2106-Presentation-Hubbard
PHM2106-Presentation-HubbardPHM2106-Presentation-Hubbard
PHM2106-Presentation-HubbardCharles Hubbard
 
Eclipse Science F2F 2016 - JSR 363
Eclipse Science F2F 2016 - JSR 363Eclipse Science F2F 2016 - JSR 363
Eclipse Science F2F 2016 - JSR 363Werner Keil
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...Toshihiro FUJII
 
Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...
Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...
Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...IRJET Journal
 
LSBB_NOK_bob1
LSBB_NOK_bob1LSBB_NOK_bob1
LSBB_NOK_bob1THWIN BOB
 
Iaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd Iaetsd
 
Control Synthesis for Marine Vessels in Case of Limited Disturbances
Control Synthesis for Marine Vessels in Case of Limited DisturbancesControl Synthesis for Marine Vessels in Case of Limited Disturbances
Control Synthesis for Marine Vessels in Case of Limited DisturbancesTELKOMNIKA JOURNAL
 

What's hot (20)

ControlsLab1
ControlsLab1ControlsLab1
ControlsLab1
 
Ejercicios resueltos de rc
Ejercicios resueltos de rcEjercicios resueltos de rc
Ejercicios resueltos de rc
 
Computational and experimental investigation of aerodynamics of flapping aero...
Computational and experimental investigation of aerodynamics of flapping aero...Computational and experimental investigation of aerodynamics of flapping aero...
Computational and experimental investigation of aerodynamics of flapping aero...
 
How JSR 385 could have Saved the Mars Climate Orbiter - Adopt-a-JSR Day
How JSR 385 could have Saved the Mars Climate Orbiter - Adopt-a-JSR DayHow JSR 385 could have Saved the Mars Climate Orbiter - Adopt-a-JSR Day
How JSR 385 could have Saved the Mars Climate Orbiter - Adopt-a-JSR Day
 
Ballingham_Severance_Lab4
Ballingham_Severance_Lab4Ballingham_Severance_Lab4
Ballingham_Severance_Lab4
 
Nonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output ConstraintNonlinear Control of an Active Magnetic Bearing with Output Constraint
Nonlinear Control of an Active Magnetic Bearing with Output Constraint
 
Numerical calculation of high-order QED contributions to the electron anomalo...
Numerical calculation of high-order QED contributions to the electron anomalo...Numerical calculation of high-order QED contributions to the electron anomalo...
Numerical calculation of high-order QED contributions to the electron anomalo...
 
ControlsLab2
ControlsLab2ControlsLab2
ControlsLab2
 
The SpaceDrive Project - First Results on EMDrive and Mach-Effect Thrusters
The SpaceDrive Project - First Results on EMDrive and Mach-Effect ThrustersThe SpaceDrive Project - First Results on EMDrive and Mach-Effect Thrusters
The SpaceDrive Project - First Results on EMDrive and Mach-Effect Thrusters
 
Laporan Tugas 2 - Astrodinamika Lanjut
Laporan Tugas 2 - Astrodinamika LanjutLaporan Tugas 2 - Astrodinamika Lanjut
Laporan Tugas 2 - Astrodinamika Lanjut
 
Ballingham_Levine_FinalProject
Ballingham_Levine_FinalProjectBallingham_Levine_FinalProject
Ballingham_Levine_FinalProject
 
PHM2106-Presentation-Hubbard
PHM2106-Presentation-HubbardPHM2106-Presentation-Hubbard
PHM2106-Presentation-Hubbard
 
Eclipse Science F2F 2016 - JSR 363
Eclipse Science F2F 2016 - JSR 363Eclipse Science F2F 2016 - JSR 363
Eclipse Science F2F 2016 - JSR 363
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 
Lelt 240 semestre i-2021
Lelt   240 semestre i-2021Lelt   240 semestre i-2021
Lelt 240 semestre i-2021
 
Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...
Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...
Design of Compensators for Speed Control of DC Motor by using Bode Plot Techn...
 
LSBB_NOK_bob1
LSBB_NOK_bob1LSBB_NOK_bob1
LSBB_NOK_bob1
 
Kalman
KalmanKalman
Kalman
 
Iaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pid
 
Control Synthesis for Marine Vessels in Case of Limited Disturbances
Control Synthesis for Marine Vessels in Case of Limited DisturbancesControl Synthesis for Marine Vessels in Case of Limited Disturbances
Control Synthesis for Marine Vessels in Case of Limited Disturbances
 

Viewers also liked

flour milling segment presentation 151204
flour milling segment presentation 151204flour milling segment presentation 151204
flour milling segment presentation 151204Nombre Apellidos
 
Using the restful twitter’s api
Using the restful twitter’s apiUsing the restful twitter’s api
Using the restful twitter’s apiIdriss Neumann
 
приглашение к участию в запросе котировок
приглашение к участию в запросе котировок приглашение к участию в запросе котировок
приглашение к участию в запросе котировок ruskidom
 
Презентация RANEPA
Презентация RANEPAПрезентация RANEPA
Презентация RANEPAruskidom
 
Bbl microservices avec vert.x cdi elastic search
Bbl microservices avec vert.x cdi elastic searchBbl microservices avec vert.x cdi elastic search
Bbl microservices avec vert.x cdi elastic searchIdriss Neumann
 
07. Дзяржаўны лад ВКЛ у сярэдзіне ХІІІ – XIV ст.
07. Дзяржаўны лад ВКЛ у сярэдзіне ХІІІ – XIV ст.07. Дзяржаўны лад ВКЛ у сярэдзіне ХІІІ – XIV ст.
07. Дзяржаўны лад ВКЛ у сярэдзіне ХІІІ – XIV ст.AnastasiyaF
 

Viewers also liked (10)

mah_resume_AUG2016
mah_resume_AUG2016mah_resume_AUG2016
mah_resume_AUG2016
 
flour milling segment presentation 151204
flour milling segment presentation 151204flour milling segment presentation 151204
flour milling segment presentation 151204
 
Concrete jungle
Concrete jungleConcrete jungle
Concrete jungle
 
Using the restful twitter’s api
Using the restful twitter’s apiUsing the restful twitter’s api
Using the restful twitter’s api
 
приглашение к участию в запросе котировок
приглашение к участию в запросе котировок приглашение к участию в запросе котировок
приглашение к участию в запросе котировок
 
Veamos ahora
Veamos ahoraVeamos ahora
Veamos ahora
 
Ricardo's CV1 no photo
Ricardo's CV1 no photoRicardo's CV1 no photo
Ricardo's CV1 no photo
 
Презентация RANEPA
Презентация RANEPAПрезентация RANEPA
Презентация RANEPA
 
Bbl microservices avec vert.x cdi elastic search
Bbl microservices avec vert.x cdi elastic searchBbl microservices avec vert.x cdi elastic search
Bbl microservices avec vert.x cdi elastic search
 
07. Дзяржаўны лад ВКЛ у сярэдзіне ХІІІ – XIV ст.
07. Дзяржаўны лад ВКЛ у сярэдзіне ХІІІ – XIV ст.07. Дзяржаўны лад ВКЛ у сярэдзіне ХІІІ – XIV ст.
07. Дзяржаўны лад ВКЛ у сярэдзіне ХІІІ – XIV ст.
 

Similar to Masterarbeit_Verteidigung

AERO390Report_Xiang
AERO390Report_XiangAERO390Report_Xiang
AERO390Report_XiangXIANG Gao
 
Senior Design Project "Space-Based Solar Power System"
Senior Design Project "Space-Based Solar Power System"Senior Design Project "Space-Based Solar Power System"
Senior Design Project "Space-Based Solar Power System"Aliya Burkit
 
Three phase BLDC motor
Three phase BLDC motorThree phase BLDC motor
Three phase BLDC motorAnoop S
 
Evaluation of the extreme and fatigue load measurements at alpha ventus
Evaluation of the extreme and fatigue load measurements at alpha ventusEvaluation of the extreme and fatigue load measurements at alpha ventus
Evaluation of the extreme and fatigue load measurements at alpha ventusRicardo Faerron Guzmán
 
FYP Review 3 Presentation about EV c.pdf
FYP Review 3 Presentation about EV c.pdfFYP Review 3 Presentation about EV c.pdf
FYP Review 3 Presentation about EV c.pdfsauravdesignnedits
 
Presentación máquina de movimiento perpetuo
Presentación máquina de movimiento perpetuo Presentación máquina de movimiento perpetuo
Presentación máquina de movimiento perpetuo ERICAFERNANDATONATOA
 
D. Anagnostakis, J.M. Ritchie and T. Lim explore how Lanner predictive simula...
D. Anagnostakis, J.M. Ritchie and T. Lim explore how Lanner predictive simula...D. Anagnostakis, J.M. Ritchie and T. Lim explore how Lanner predictive simula...
D. Anagnostakis, J.M. Ritchie and T. Lim explore how Lanner predictive simula...Lanner
 
Development of Hill Chart diagram for Francis turbine of Jhimruk Hydropower u...
Development of Hill Chart diagram for Francis turbine of Jhimruk Hydropower u...Development of Hill Chart diagram for Francis turbine of Jhimruk Hydropower u...
Development of Hill Chart diagram for Francis turbine of Jhimruk Hydropower u...Suman Sapkota
 
LCE-UNIT 2 PPT.pdf
LCE-UNIT 2 PPT.pdfLCE-UNIT 2 PPT.pdf
LCE-UNIT 2 PPT.pdfHODECE21
 
Mechatronics students manual 2013 reg updated
Mechatronics students manual 2013 reg updatedMechatronics students manual 2013 reg updated
Mechatronics students manual 2013 reg updatedASHOK KUMAR RAJENDRAN
 
Proyecto final Unidad iii Diseño y construcción de una máquina de movimient...
Proyecto final Unidad iii   Diseño y construcción de una máquina de movimient...Proyecto final Unidad iii   Diseño y construcción de una máquina de movimient...
Proyecto final Unidad iii Diseño y construcción de una máquina de movimient...DennisAlexanderQuinc
 
Attitude Control of Satellite Test Setup Using Reaction Wheels
Attitude Control of Satellite Test Setup Using Reaction WheelsAttitude Control of Satellite Test Setup Using Reaction Wheels
Attitude Control of Satellite Test Setup Using Reaction WheelsA. Bilal Özcan
 
Wavelet bootstrap Multiple linear regression models
Wavelet bootstrap Multiple linear regression modelsWavelet bootstrap Multiple linear regression models
Wavelet bootstrap Multiple linear regression modelsVinit Sehgal
 
Implementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbineImplementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbineRayan Hameed
 
Imperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsImperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsimperix
 

Similar to Masterarbeit_Verteidigung (20)

AERO390Report_Xiang
AERO390Report_XiangAERO390Report_Xiang
AERO390Report_Xiang
 
Senior Design Project "Space-Based Solar Power System"
Senior Design Project "Space-Based Solar Power System"Senior Design Project "Space-Based Solar Power System"
Senior Design Project "Space-Based Solar Power System"
 
CTA - LST - AZIMUTH SYSTEM 20160607
CTA - LST - AZIMUTH SYSTEM 20160607CTA - LST - AZIMUTH SYSTEM 20160607
CTA - LST - AZIMUTH SYSTEM 20160607
 
Three phase BLDC motor
Three phase BLDC motorThree phase BLDC motor
Three phase BLDC motor
 
Converted ansys f
Converted ansys fConverted ansys f
Converted ansys f
 
Evaluation of the extreme and fatigue load measurements at alpha ventus
Evaluation of the extreme and fatigue load measurements at alpha ventusEvaluation of the extreme and fatigue load measurements at alpha ventus
Evaluation of the extreme and fatigue load measurements at alpha ventus
 
FYP Review 3 Presentation about EV c.pdf
FYP Review 3 Presentation about EV c.pdfFYP Review 3 Presentation about EV c.pdf
FYP Review 3 Presentation about EV c.pdf
 
Presentación máquina de movimiento perpetuo
Presentación máquina de movimiento perpetuo Presentación máquina de movimiento perpetuo
Presentación máquina de movimiento perpetuo
 
D. Anagnostakis, J.M. Ritchie and T. Lim explore how Lanner predictive simula...
D. Anagnostakis, J.M. Ritchie and T. Lim explore how Lanner predictive simula...D. Anagnostakis, J.M. Ritchie and T. Lim explore how Lanner predictive simula...
D. Anagnostakis, J.M. Ritchie and T. Lim explore how Lanner predictive simula...
 
Mep pres
Mep presMep pres
Mep pres
 
Development of Hill Chart diagram for Francis turbine of Jhimruk Hydropower u...
Development of Hill Chart diagram for Francis turbine of Jhimruk Hydropower u...Development of Hill Chart diagram for Francis turbine of Jhimruk Hydropower u...
Development of Hill Chart diagram for Francis turbine of Jhimruk Hydropower u...
 
LCE-UNIT 2 PPT.pdf
LCE-UNIT 2 PPT.pdfLCE-UNIT 2 PPT.pdf
LCE-UNIT 2 PPT.pdf
 
Mechatronics students manual 2013 reg updated
Mechatronics students manual 2013 reg updatedMechatronics students manual 2013 reg updated
Mechatronics students manual 2013 reg updated
 
Suspensioncontrollerdesignproject
SuspensioncontrollerdesignprojectSuspensioncontrollerdesignproject
Suspensioncontrollerdesignproject
 
Proyecto final Unidad iii Diseño y construcción de una máquina de movimient...
Proyecto final Unidad iii   Diseño y construcción de una máquina de movimient...Proyecto final Unidad iii   Diseño y construcción de una máquina de movimient...
Proyecto final Unidad iii Diseño y construcción de una máquina de movimient...
 
Attitude Control of Satellite Test Setup Using Reaction Wheels
Attitude Control of Satellite Test Setup Using Reaction WheelsAttitude Control of Satellite Test Setup Using Reaction Wheels
Attitude Control of Satellite Test Setup Using Reaction Wheels
 
Wavelet bootstrap Multiple linear regression models
Wavelet bootstrap Multiple linear regression modelsWavelet bootstrap Multiple linear regression models
Wavelet bootstrap Multiple linear regression models
 
Web design ing
Web design ingWeb design ing
Web design ing
 
Implementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbineImplementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbine
 
Imperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronicsImperix - Rapid control prototyping solutions for power electronics
Imperix - Rapid control prototyping solutions for power electronics
 

Masterarbeit_Verteidigung

  • 1. Closed-loop Motor Position Control at arcsecond precision for the ERIS Project at VLT (Very Large Telescope) AMR AWAD STUDENT NUMBER: 840804 8/12/2016 1
  • 2. Agenda 1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS) 2. Introduction to the Master Thesis Contribution 3. The Project Setup 4. Direct Motor Control 5. Motor Control with the Grating wheel 6. Conclusion 8/12/2016 2
  • 3. Agenda 1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS) 2. Introduction to the Master Thesis Contribution 3. The Project Setup 4. Direct Motor Control 5. Motor Control with the Grating wheel 6. Conclusion 8/12/2016 3
  • 4. Max Planck Institute for Extraterrestrial Physics (MPE)  MPE research fields and approach • modern astrophysics and space plasma research  MPE instruments • Above the dense Earth (Satellites) • Ground-based observatories (Telescopes)  Electronic group • Structure (developing, engineering and workshop) • Developing concept  Engineering  Constructing  Testing  Commissiong 8/12/2016 4
  • 5. ERIS Project  ERIS: Enhanced Resolution Infrared Spectrometer  SPIFFI instrument at VLT • SPIFFI: SPectrometer for Infrared Faint Field Imaging • VLT: Very Large Telescope  About the telescope physical measurement • Near InfraRed (NIR) Imaging 8/12/2016 5
  • 6. Agenda 1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS) 2. Introduction to the Master Thesis Contribution 3. The Project Setup 4. Direct Motor Control 5. Motor Control with the Grating wheel 6. Conclusion 8/12/2016 6
  • 7. Grating Wheel  holds four gratings for the different wavelength bands (J, H, K, High Resolution J/H/K)  Accuracy of 2 arcsec  Setup notes: • First functional tests of the Grating-Wheel mechanism without Gratings have been done. • Turns ration is not precisely defined • Test setup does not have Indyctosyn Motor+ Resolver Inductosyn Gear Gratings 8/12/2016 7
  • 8. Agenda 1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS) 2. Introduction to the Master Thesis Contribution 3. The Project Setup 4. Direct Motor Control 5. Motor Control with the Grating wheel 6. Conclusion 8/12/2016 8
  • 10. Agenda 1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS) 2. Introduction to the Master Thesis Contribution 3. The Project Setup 4. Direct Motor Control 5. Motor Control with the Grating wheel 6. Conclusion 8/12/2016 10
  • 11. Problem definition Motor Control Problem Rated Torque Micro-stepping (512 micro-steps test) Open loop Closed loop Position control Resolver feedback Resolver and Autocollimator feedback 8/12/2016 11
  • 12. Test setups (1) 1. Motor axis slot to fix the lever to the motor 2. Lever 3. Weight 8/12/2016 12  Translation motion  Reflected light position changes in Y AND Z with the mirror motion  Moving light focus in an arc  Theoretically covers 610 Micro-steps  Practically  Moving dot (Reflected light)! 4. Mirror carrying structure 5. Mirror’s reflexive surface Y Z
  • 13. Test setups (2)  Rotation motion  Reflected light position changes in Z with the mirror motion  Moving light focus in a line  Theoretically covers 9 Micro-steps  Practically  less degrees of freedom but easier for control  Practically  same pattern like the grating wheel 8/12/2016 13 1. Motor axis slot to fix the lever to the motor 2. Lever 3. Weight 4. Mirror carrying structure 5. Mirror’s reflexive surface Y Z
  • 14. Load torque characteristics 8/12/2016  Aluminium lever: M [mNm] = 67.836 [mm]* 0.5778 [N] +m [kg]*9.81*(95 [mm] –a [mm])  Vanadium lever: M [mNm] = 56.73 [mm]* 1.0546 [N] +m [kg]*9.81*(95 [mm] –a [mm]) 14
  • 15. Results for Motor: 42.200.2,5 Lever Weight a [mm] M [mNm] Max_Y Min_Y Range_Y Al without N.A 39.1956 104.5 100 4.5 Al 72.01 46.4352148 121.7 111.2 10.5 61.03 49.8928278 -147.3 -156.6 9.3 50.01 53.3630368 -348.9 -370.8 21.9 39.09 56.8017557 -240.7 -251.8 11.1 28 60.2940078 182.8 168.1 14.7 VA 71.99 59.8271891 97.1 66.2 30.9 61.01 69.6722305 260.5 246.7 13.8 50.02 79.5262381 -104.3 -133.2 28.9 39.01 89.3981785 VA without N.A 59.8275 83.1 77.2 5.9 Al 72 67.070181 151.7 132.5 19.2 55.02 72.4172 3.7 -10.8 14.5 41.5 76.6746615 13.6 7.2 6.4 27 81.240726 34.3 22.6 11.7 8/12/2016 15
  • 16. Problem definition Motor Control Problem Rated Torque Micro-stepping (512 micro-steps test) Open loop Closed loop Position control Resolver feedback Resolver and Autocollimator feedback 8/12/2016 16
  • 17. 512 Micro-stepping test (Open loop) 8/12/2016  ssd 17  Load Torque: 40, 50, 60, 65, 70 [mNm]  Reduced Current: 500, 1000,1500, 2000, 2500 [mA]  Statistical approach
  • 18. 512 Micro-stepping test (Closed loop) 8/12/2016  ssd 18  Load Torque: 40, 50, 60, 65, 70, 80 [mNm]  Reduced Current: Minimum reduced current (Bisection approach in equation roots finding) 500, 1000,1500, 2000, 2500 [mA]  Statistical approach
  • 20. Sample result: Open loop, 40 [mNm], 2500 [mA] (Current/ Torque) 8/12/2016  Motor cycles: • 128 up  256 down  128 up  Holding Torque Equation: τℎ𝑜𝑙𝑑 = 𝐾 𝐼 𝑎 2 + 𝐼 𝑏 2 20
  • 21. Sample result: Closed loop, 40 [mNm], 1000 [mA] (Current/ Torque) 8/12/2016 21  Motor cycles: • 128 up  256 down  128 up  Holding Torque Equation: τℎ𝑜𝑙𝑑 = 𝐾 𝐼 𝑎 2 + 𝐼 𝑏 2
  • 22. Sample result: Position diagram Open loop vs. Closed loop 22 8/12/2016
  • 23. Sample result: Position Error diagram Open loop vs. Closed loop 23 8/12/2016
  • 24. 8/12/2016 24 RMS Error (Open loop, Motor: 33.200.2,5)
  • 25. 8/12/2016 25 RMS Error (Closed loop, Motor: 33.200.2,5)
  • 26. Maximum Load Torque Motor: 33.200.2,5 8/12/2016 26
  • 27. Problem definition Motor Control Problem Rated Torque Micro-stepping (512 micro-steps test) Open loop Closed loop Position control Resolver feedback Resolver and Autocollimator feedback 8/12/2016 27
  • 28. Position control loop 8/12/2016 28  Setpoint scale:  10: 350 °  OPC UA (Realtime problem)  PLC blocks update  Enable/ Disable time
  • 29. Position control loop with two sensors (fine tuning) 8/12/2016 29  Setpoint scale: • 10: 350 °  Sensors reading normalization to avoid abrupt control action at the transition point
  • 30. Position control loop application 8/12/2016 30
  • 31. Sample result: Kp= 0.0001, Enable time = 20 [ms], Disable time= 50 [ms] 8/12/2016 31
  • 32. Agenda 1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS) 2. Introduction to the Master Thesis Contribution 3. The Project Setup 4. Auxiliary Tools 5. Direct Motor Control 6. Motor Control with the Grating wheel 7. Conclusion 8/12/2016 32
  • 33. Problem definition 8/12/2016 33 Grating wheel control problem Homing Gear ratio Micro-stepping (512 micro-steps test) Open loop Closed loop Position control LabVIEW via OPC UA PLC control
  • 34. Motor referencing procedure 8/12/2016 34 1. Initial position 2. Reference switch latch detection 3. Motor stop 4. Travelling backwards 5. Signal synchronization (omitted) 6. Reference switch release detection 7. Stop at Home Position
  • 35. Motor referencing results  Mechanical response of the limit switch  Central limit theory  Normal distribution 35 8/12/2016
  • 36. Problem definition 8/12/2016 36 Grating wheel control problem Homing Gear ratio Micro-stepping (512 micro-steps test) Open loop Closed loop Position control LabVIEW via OPC UA PLC control
  • 37. Gear ratio estimation  Homing  one complete  Homing at the new reference  Counting the number of revolutions made by the motor (LabVIEW interface with the absolute 16 bit encoder)  Statistical approach of the gear ratio estimation  Estimated gear ratio = 2097.142  Calculated Variance= 0.273731  Calculate standard deviation = 0.523193 8/12/2016 37
  • 38. Problem definition 8/12/2016 38 Grating wheel control problem Homing Gear ratio Micro-stepping (512 micro-steps test) Open loop Closed loop Position control LabVIEW via OPC UA PLC control
  • 39. 512 Micro-stepping test (Open loop) 8/12/2016 39  Load Torque: Grating Wheel  Reduced Current: 250, 500, 750, 1000,1500, 2000, 2500 [mA]
  • 40. 512 Micro-stepping test (Closed loop) 8/12/2016 40  Load Torque: Grating Wheel  Reduced Current: 250, 500, 750, 1000,1500, 2000, 2500 [mA]
  • 41. Sample result: Position diagram at 2500 [mA] Open loop vs. Closed loop 41 8/12/2016
  • 42. Sample result: Position Error diagram at 2500 [mA] Open loop vs. Closed loop 42 8/12/2016
  • 43. Sample result: Resolver vs Autocollimator at 2500 [mA] Open loop vs. Closed loop 43 8/12/2016
  • 44. Sample result: Resolver vs Autocollimator Offset- Open loop vs. Closed loop 44 8/12/2016
  • 45. Problem definition 8/12/2016 45 Grating wheel control problem Homing Gear ratio Micro-stepping (512 micro-steps test) Open loop Closed loop Position control LabVIEW via OPC UA PLC control
  • 46. Position control loop (LabVIEW via OPC) 8/12/2016 46
  • 47. Position control loop (PLC) 8/12/2016 47
  • 48. Sample result: Full path Error < 0.02 [arcsec] (grating wheel side) 8/12/2016 48
  • 49. Sample result: Half path Error < 0.02 [arcsec] (grating wheel side) 8/12/2016 49
  • 50. Agenda 1. About Max Planck Institute for Extraterrestrial Physics and the Project (ERIS) 2. Introduction to the Master Thesis Contribution 3. The Project Setup 4. Auxiliary Tools 5. Direct Motor Control 6. Motor Control with the Grating wheel 7. Conclusion 8/12/2016 50
  • 51. Conclusion  Control achieved in open and closed loop (2 [arcsec] precision)  OPC UA real time limitation  Feedback from the grating wheel side is much better  Inductosyn  Limit switch changing with better preciseness to be used with the Inductosyn 8/12/2016 51

Editor's Notes

  1. http://www.mpe.mpg.de/2617/institute http://www.mpe.mpg.de/148939/Elektronikabteilung
  2. http://www.mpe.mpg.de/ir/ERIS http://www.eso.org/sci/facilities/develop/instruments/eris.html