Can someone show me how to prove this in MATLAB? I want to take the inverse Laplace of the function below, and I cannot seem to make the code work. r^3*c^3*s^3*y(s) + 5*r^2*c^2*s^2*y(s) + 6*r*c*s*y(s) +y(s) t3 dt2 d7Cty dt Solution transfer function for the above for the above one is y(s)/x(s) y(s)[(s^3)*(r^3)*(c^3)+5*(s^2)*(c^2)*(r^2)+6*s*r*c+1]=x(s) y(s)/x(s)=1/[(s^3)*(r^3)*(c^3)+5*(s^2)*(c^2)*(r^2)+6*s*r*c+1] let F= 1/[(s^3)*(r^3)*(c^3)+5*(s^2)*(c^2)*(r^2)+6*s*r*c+1] malab code for finding inverse laplace transform i.e, to get x(t).