SlideShare uma empresa Scribd logo
1 de 45
Unidad I
Matemáticas aplicadas a la Ingeniería
Química I
Mtro. Octavio Flores Siordia
Ilse Alejandra Gutiérrez Salvador
28/04/2014
UNIVERSIDAD DE GUADALAJARA
CENTRO UNIVERSITARIO DE LA CIÉNEGA
Derivadas Parciales
 Dependen de más de una variable independiente
𝑓′(𝑥) = lim
∆𝑥 → 0
𝑓( 𝑥 + ∆𝑥 )– 𝑓(𝑥)
∆𝑥
Pendiente de una recta tangente a la función.
Variables que se encuentran en una dirección y/o en otra.
𝑓(𝑥, 𝑦) = 𝑥3
+ 𝑥2
𝑦3
− 2𝑦2
𝜕𝑓
𝜕𝑥
= 𝑓𝑥 (𝑥, 𝑦) =
𝜕
𝜕𝑥
(𝑥3
+ 𝑥2
𝑦3
− 2𝑦2) =
𝜕
𝜕𝑥
𝑥3
+
𝜕
𝜕𝑥
𝑥2
𝑦3
−
𝜕
𝜕𝑥
2𝑦2
= 3𝑥2
+ 2𝑥𝑦3
𝜕
𝜕𝑥
|1,2 = 3(1)2
+ 2(1)(2)3
= 3 + 16
= 19
𝜕𝑓
𝜕𝑦
= 𝑓𝑦 (𝑥, 𝑦) =
𝜕
𝜕𝑦
(𝑥3
+ 𝑥2
𝑦3
− 2𝑦2) =
𝜕
𝜕𝑦
𝑥3
+
𝜕
𝜕𝑦
𝑥2
𝑦3
−
𝜕
𝜕𝑦
2𝑦2
= 3𝑥2
𝑦2
− 4𝑦
𝜕
𝜕𝑦
|3,4 = 3(3)2
(4)2
− 4(4) = 432 − 16
= 416
f(x,y) = 4-x2-2y2
𝜕𝑓
𝜕𝑥
|1,1 =
𝜕
𝜕𝑥
(4 − 𝑥2
− 2𝑦2)|1,1 = −2𝑥 |1,1 = −2(1) = −2
𝜕𝑓
𝜕𝑦
|1,1
=
𝜕
𝜕𝑦
(4 − 𝑥2
− 2𝑦2)|1,1
= −4𝑦|1,1
= −4(1) = −4
f(x,y) = sin(𝑥2
𝑦)
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
sin(𝑥2
𝑦) = cos(𝑥2
𝑦)
𝜕
𝜕𝑥
𝑥2
𝑦 =
2𝑥𝑦 cos(𝑥2
𝑦)
𝜕𝑓
𝜕𝑦
=
𝜕
𝜕𝑦
sin(𝑥2
𝑦) = cos(𝑥2
𝑦)
𝜕
𝜕𝑥
𝑥2
𝑦 =
𝑥2
cos(𝑥2
𝑦)
f(x,y) = cos (
𝑥
1+𝑦
)
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
sin (
𝑥
1 + 𝑦
) = cos (
𝑥
1 + 𝑦
)
𝜕
𝜕𝑥
(
𝑥
1 + 𝑦
) =
(
1
1 + 𝑦
) cos (
𝑥
1 + 𝑦
)
𝜕𝑓
𝜕𝑦
=
𝜕
𝜕𝑦
sin (
𝑥
1 + 𝑦
) = cos (
𝑥
1 + 𝑦
)
𝜕
𝜕𝑦
(
𝑥
1 + 𝑦
) =
(
𝑥
(1 + 𝑦)2
) cos (
𝑥
(1 + 𝑦)
)
f(x,y) =
1
√𝑥2+ 𝑦2
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
1
√𝑥2 + 𝑦2
= −
1
2
(𝑥2
+ 𝑦2)−
3
2
𝜕
𝜕𝑥
(𝑥2
+ 𝑦2) =
−𝑥
(𝑥2 𝑦2)3/2
𝜕𝑓
𝜕𝑦
=
𝜕
𝜕𝑦
1
√𝑥2 + 𝑦2
= −
1
2
(𝑥2
+ 𝑦2)−
3
2
𝜕
𝜕𝑦
(𝑥2
+ 𝑦2) =
−𝑦
(𝑥2 𝑦2)3/2
f(x,y) = Arctan (x,y)
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
tan−1(𝑥𝑦) =
1
𝑥2 𝑦2 + 1
𝜕
𝜕𝑥
(𝑥𝑦) =
𝑦
𝑥2 𝑦2 + 1
𝜕𝑓
𝜕𝑦
=
𝜕
𝜕𝑦
tan−1(𝑥𝑦) =
1
𝑥2 𝑦2 + 1
𝜕
𝜕𝑥
(𝑥𝑦) =
𝑥
𝑥2 𝑦2 + 1
f(x,y) = ln (x+3y)
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
ln(𝑥 + 3𝑦) =
1
𝑥 + 3𝑦
𝜕
𝜕𝑥
(𝑥 + 3𝑦) =
1
𝑥 + 3𝑦
f(x,y,z) = ℮ 𝑥𝑦
ln 𝑧
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
℮ 𝑥𝑦
ln 𝑧 = ln 𝑧
𝜕
𝜕𝑥
℮ 𝑥𝑦
= ln 𝑧 ℮ 𝑥𝑦
𝜕
𝜕𝑥
(𝑥𝑦) =
𝑦 ln 𝑧 ℮ 𝑥𝑦
𝜕𝑓
𝜕𝑦
=
𝜕
𝜕𝑦
℮ 𝑥𝑦
ln 𝑧 = ln 𝑧
𝜕
𝜕𝑦
℮ 𝑥𝑦
= ln 𝑧 ℮ 𝑥𝑦
𝜕
𝜕𝑦
(𝑥𝑦) =
𝑥 ln 𝑧 ℮ 𝑥𝑦
𝜕𝑓
𝜕𝑧
=
𝜕
𝜕𝑧
℮ 𝑥𝑦
ln 𝑧 = ℮ 𝑥𝑦
𝜕
𝜕𝑧
ln 𝑧 =
℮ 𝑥𝑦
𝑧
f(x,y) = x cos(𝑥𝑦)
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
x cos(𝑥𝑦) = 𝑥
𝜕
𝜕𝑥
cos(𝑥𝑦) + cos(𝑥𝑦)
𝜕
𝜕𝑥
𝑥 = −𝑥 sin(𝑥𝑦)
𝜕
𝜕𝑥
(𝑥𝑦)
+ cos( 𝑥𝑦) =
−𝑥𝑦 sin(𝑥𝑦) + cos(𝑥𝑦)
f(x,y) = ln(𝑥 + 3𝑦)
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
ln(𝑥 + 3𝑦) =
1
𝑥 + 3𝑦
𝜕
𝜕𝑥
(𝑥 + 3𝑦) =
1
𝑥 + 3𝑦
𝜕𝑓
𝜕𝑦
=
𝜕
𝜕𝑦
ln(𝑥 + 3𝑦) =
1
𝑥 + 3𝑦
𝜕
𝜕𝑦
(𝑥 + 3𝑦) =
3
𝑥 + 3𝑦
f(x) = 𝑥 𝑥
𝜕
𝜕𝑥
𝑥 𝑥
= → 𝑦 = 𝑥 𝑥
ln 𝑦 = ln 𝑥 𝑥
= 𝑥 ln 𝑥
𝜕
𝜕𝑥
ln 𝑦 =
𝜕
𝜕𝑥
𝑥 ln 𝑥 = 𝑥
𝜕
𝜕𝑥
ln 𝑥 + ln 𝑥
𝜕
𝜕𝑥
𝑥
1
𝑦
𝜕𝑦
𝜕𝑥
= 1 + ln 𝑥
𝜕𝑦
𝜕𝑥
= 𝑦(1 + ln 𝑥)
𝜕
𝜕𝑥
𝑥 𝑥
= 𝑥 𝑥
(1 + ln 𝑥)
f(x,y) = 𝑥 𝑦
𝜕
𝜕𝑥
𝑥 𝑦
=
𝑦𝑥 𝑦−1
𝜕
𝜕𝑦
𝑥 𝑦
𝑧 = 𝑥 𝑦
ln 𝑧 = ln 𝑥 𝑦
= 𝑦 ln 𝑥
𝜕
𝜕𝑦
ln 𝑧 = ln 𝑥
𝜕
𝜕𝑦
𝑦
1
𝑧
𝜕
𝜕𝑦
= ln 𝑥
𝜕
𝜕𝑦
𝑧 = 𝑧 ln 𝑥
𝜕
𝜕𝑦
𝑥 𝑦
= 𝑥 𝑦
ln 𝑥
W =
℮ 𝑣
𝑢+𝑣2
𝜕
𝜕𝑣
℮ 𝑣
𝑢 + 𝑣2
=
( 𝑢 + 𝑣2)
𝜕
𝜕𝑣
℮ 𝑣
− ℮ 𝑣 𝜕
𝜕𝑣
( 𝑢 + 𝑣2)
(𝑢 + 𝑣2)
2
=
( 𝑢 + 𝑣2) ℮ 𝑣
− 2𝑣 ℮ 𝑣
(𝑢 + 𝑣2)2
𝜕
𝜕𝑢
℮ 𝑣
𝑢 + 𝑣2
= ℮ 𝑣 𝜕
𝜕𝑢
( 𝑢 + 𝑣2)
−1
=
−℮ 𝑣
(𝑢 + 𝑣2)2
R(p,q) = tan−1
(𝑝𝑞2
)
𝜕
𝜕𝑝
tan−1
( 𝑝𝑞2) =
1
𝑝2 𝑞4 + 1
𝜕
𝜕𝑝
𝑝𝑞2 =
𝑞2
𝑝2 𝑞4 + 1
𝜕
𝜕𝑞
tan−1
( 𝑝𝑞2) =
1
𝑝2 𝑞4 + 1
𝜕
𝜕𝑞
𝑝𝑞2 =
2𝑝𝑞
𝑝2 𝑞4 + 1
U(r, ) = sin(𝑟 cos 𝜃)
𝜕𝑈
𝜕𝑟
=
𝜕
𝜕𝑟
sin(𝑟 cos 𝜃) = cos(𝑟 cos 𝜃)
𝜕
𝜕𝑟
𝑟 cos 𝜃 =
cos(𝑟 cos 𝜃) cos 𝜃
𝜕
𝜕𝑟
𝑟 =
cos 𝜃 cos(𝑟 cos 𝜃)
𝜕𝑈
𝜕
=
𝜕
𝜕
sin(𝑟 cos 𝜃) = cos(𝑟 cos 𝜃)
𝜕
𝜕𝑟
𝑟 cos 𝜃 =
cos(𝑟 cos 𝜃) 𝑟
𝜕
𝜕𝜃
cos 𝜃
−rsin 𝜃 cos(𝑟 cos 𝜃)
Segundas Derivadas
f(x,y)
(1)
𝜕2
𝑓
𝜕𝑥2
=
𝜕
𝜕𝑥
(
𝜕𝑓
𝜕𝑥
)
(2)
𝜕2
𝑓
𝜕𝑦2
=
𝜕
𝜕𝑦
(
𝜕𝑓
𝜕𝑦
)
(3)
𝜕2
𝑓
𝜕𝑥𝜕𝑦
=
𝜕
𝜕𝑥
(
𝜕𝑓
𝜕𝑦
)
(4)
𝜕2
𝑓
𝜕𝑦𝜕𝑥
=
𝜕
𝜕𝑦
(
𝜕𝑓
𝜕𝑥
)
(3) y (4) siempre dan el mismo resultado.
f(x,y) = 𝑥3
+ 𝑥2
𝑦3
− 2𝑦2
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
(𝑥3
+ 𝑥2
𝑦3
− 2𝑦2)
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
𝑥3
+ 𝑦3
𝜕
𝜕𝑥
𝑥2
− 2
𝜕
𝜕𝑥
𝑦2
𝜕𝑓
𝜕𝑥
= 3𝑥2
+ 2𝑥𝑦3
𝜕𝑓
𝜕𝑦
=
𝜕
𝜕𝑦
(𝑥3
+ 𝑥2
𝑦3
− 2𝑦2)
𝜕𝑓
𝜕𝑦
=
𝜕
𝜕𝑦
𝑥3
+ 𝑥2
𝜕
𝜕𝑦
𝑦3
− 2
𝜕
𝜕𝑦
𝑦2
𝜕𝑓
𝜕𝑦
= 3𝑥2
𝑦2
− 4𝑦
𝜕2
𝑓
𝜕𝑥2
=
𝜕
𝜕𝑥
(
𝜕𝑓
𝜕𝑥
) =
𝜕
𝜕𝑥
(3𝑥2
+ 2𝑥𝑦3)
𝜕2
𝑓
𝜕𝑥2
= 3
𝜕
𝜕𝑥
𝑥2
+ 2𝑦3
𝜕
𝜕𝑥
𝑥
𝜕2
𝑓
𝜕𝑥2
= 6𝑥 + 2𝑦3
𝜕2
𝑓
𝜕𝑦2
=
𝜕
𝜕𝑦
(
𝜕𝑓
𝜕𝑦
) =
𝜕
𝜕𝑦
(3𝑥2
𝑦2
− 4𝑦)
𝜕2
𝑓
𝜕𝑦2
= 3𝑥2
𝜕
𝜕𝑦
𝑦2
− 4
𝜕
𝜕𝑦
𝑦
𝜕2
𝑓
𝜕𝑦2
= 6𝑥2
𝑦 − 4
𝜕2
𝑓
𝜕𝑥𝜕𝑦
=
𝜕
𝜕𝑥
(
𝜕𝑓
𝜕𝑦
) =
𝜕
𝜕𝑥
(3𝑥2
𝑦2
− 4𝑦)
𝜕2
𝑓
𝜕𝑥𝜕𝑦
= 6𝑥𝑦2
𝜕2
𝑓
𝜕𝑦𝜕𝑥
=
𝜕
𝜕𝑦
(
𝜕𝑓
𝜕𝑥
) = 3𝑥2
+ 2𝑥𝑦3
𝜕2
𝑓
𝜕𝑦𝜕𝑥
= 6𝑥𝑦2
Z= tan−1
(
𝑥+𝑦
1−𝑥𝑦
)
𝜕𝑧
𝜕𝑥
=
𝜕
𝜕𝑥
tan−1
(
𝑥 + 𝑦
1 − 𝑥𝑦
) =
1
(
𝑥 + 𝑦
1 − 𝑥𝑦
) 2 + 1
𝜕𝑧
𝜕𝑥
=
1
(
𝑥 + 𝑦
1 − 𝑥𝑦
) 2 +
1
1
(
1 − 𝑥𝑦
𝜕
𝜕𝑥
(𝑥 + 𝑦) − (𝑥 + 𝑦)
𝜕
𝜕𝑥
(1 − 𝑥𝑦)
(1 − 𝑥𝑦)2
)
𝜕𝑧
𝜕𝑥
=
(1 − 𝑥𝑦)2
(𝑥 + 𝑦)2 + (1 − 𝑥𝑦)2
(
1 − 𝑥𝑦 + 𝑥𝑦 + 𝑦2
(1 − 𝑥𝑦)2
)
𝜕𝑧
𝜕𝑥
=
1 + 𝑦2
(𝑥 + 𝑦)2 + (1 − 𝑥𝑦)2
f(x,y,z)= ℮ 𝑥𝑦𝑧2
f(x,y,z)=
𝜕3 𝑓
𝜕𝑥𝜕𝑦𝜕𝑧
𝜕
𝜕𝑥
℮ 𝑥𝑦𝑧2 𝜕
𝜕𝑥
(𝑥𝑦𝑧2) =
𝑦𝑧2
℮ 𝑥𝑦𝑧2
𝜕2
𝑓
𝜕𝑦𝜕𝑧
=
𝜕
𝜕𝑦
𝜕
𝜕𝑥
℮ 𝑥𝑦𝑧2
=
𝜕
𝜕𝑦
𝑦𝑧2
℮ 𝑥𝑦𝑧2
= 𝑧2
𝜕
𝜕𝑦
𝑦℮ 𝑥𝑦𝑧2
𝑧2
[𝑦
𝜕
𝜕𝑦
℮ 𝑥𝑦𝑧2
+ ℮ 𝑥𝑦𝑧2 𝜕
𝜕𝑦
𝑦 ] = 𝑧2
[𝑦𝑥𝑧2
℮ 𝑥𝑦𝑧2
+ ℮ 𝑥𝑦𝑧2
] =
= 𝑧2
[𝑦𝑥𝑧2
℮ 𝑥𝑦𝑧2
+ ℮ 𝑥𝑦𝑧2
]
𝜕3
𝑓
𝜕𝑥𝜕𝑦𝜕𝑧
=
𝜕
𝜕𝑧
𝜕2
𝜕𝑦𝜕𝑥
=
𝜕
𝜕𝑧
(𝑧2
[𝑦𝑥𝑧2
℮ 𝑥𝑦𝑧2
+ ℮ 𝑥𝑦𝑧2
])
𝜕3
𝑓
𝜕𝑥𝜕𝑦𝜕𝑧
= 𝑥𝑦
𝜕
𝜕𝑧
𝑧4
℮ 𝑥𝑦𝑧2
+
𝜕
𝜕𝑧
𝑧2
℮ 𝑥𝑦𝑧2
𝜕3
𝑓
𝜕𝑥𝜕𝑦𝜕𝑧
= 𝑥𝑦 [𝑧4
𝜕
𝜕𝑧
℮ 𝑥𝑦𝑧2
+ ℮ 𝑥𝑦𝑧2 𝜕
𝜕𝑧
𝑧4
] + [𝑧2
𝜕
𝜕𝑧
℮ 𝑥𝑦𝑧2
+ ℮ 𝑥𝑦𝑧2 𝜕
𝜕𝑧
𝑧2
]
𝜕3
𝑓
𝜕𝑥𝜕𝑦𝜕𝑧
= 2𝑥2
𝑦2
𝑧5
℮ 𝑥𝑦𝑧2
+ 4𝑥𝑦𝑧3
℮ 𝑥𝑦𝑧2
+ 2𝑥𝑦𝑧3
℮ 𝑥𝑦𝑧2
+ 2𝑧℮ 𝑥𝑦𝑧2
𝜕3
𝑓
𝜕𝑥𝜕𝑦𝜕𝑧
= ( 2𝑥2
𝑦2
𝑧5
+ 6𝑥𝑦𝑧3
+ 2𝑧) ℮ 𝑥𝑦𝑧2
F(x) = a
Y= a
F(x,y) = a
Z=a
y = a
x=a
F(x) = x
y=x
F(x,y)
y=x
z=y
F(x) = x2
Y=x2
F(x,y)
Y = x2
F(x) = sen x
X + 2y + 3z = 6
0 0 z = 2 (0,0,2)
0 y 0 = 3 (0,3,0)
x 0 0 = 6 (6,0,0)
Derivadas Direccionales
Duf = ∇ 𝑓 𝑈
∇ 𝑓 =
𝑑𝑓
𝑑𝑥
| 𝑎𝑏 𝑖 +
𝑑𝑓
𝑑𝑦
| 𝑎𝑏 𝑗
Máxima derivada
∇ 𝑓
Dirección: ∇ 𝑓
Magnitud |∇ 𝑓|
Encontrar la máxima derivada de f(x,y) = x2y3 en el punto (2,3)
∇ 𝑓 =
𝑑𝑓
𝑑𝑥
|2,3 𝑖 +
𝑑𝑓
𝑑𝑦
|2,3 𝑗
∇ 𝑓 = 2𝑥𝑦3
|2,3 𝑖 + 3𝑥2
𝑦2
|2,3 𝑗
∇ 𝑓 = 2(2)(3)3
𝑖 + 3(2)2
(3)2
𝑗
∇ 𝑓 = 108𝑖 + 108𝑗
f(x,y,z) = ℮2𝑥+𝑦+3𝑧
∇ 𝑓 =
𝑑𝑓
𝑑𝑥
|0,0,0 𝑖 +
𝑑𝑓
𝑑𝑦
|0,0,0 𝑗 +
𝑑𝑓
𝑑𝑧
|0,0,0 𝑘
∇ 𝑓 = 2 ℮2𝑥+𝑦+3𝑧
|0,0,0 𝑖 + 1 ℮2𝑥+𝑦+3𝑧
|0,0,0 𝑗 + 3 ℮2𝑥+𝑦+3𝑧
|0,0,0 𝑘
∇ 𝑓 = 2𝑖 + 𝑗 + 3𝑘
Máxima derivada:
Dirección: 2𝑖 + 𝑗 + 3𝑘
Magnitud: √(2)2 + (1)2 + (3)2 = √14 = 3.74
Encontrar la derivada direccional f(x,y,z) = xyz2 en el punto (1,0,1)
Dirección i + j + k
Encontrar su máxima derivada direccional.
∇ 𝑓 =
𝑑𝑓
𝑑𝑥
|1,0,1 𝑖 +
𝑑𝑓
𝑑𝑦
|1,0,1 𝑗 +
𝑑𝑓
𝑑𝑧
|1,0,1 𝑘
∇ 𝑓 = 𝑦𝑧2
|1,0,1 𝑖 + 𝑥𝑧2
|1,0,1 𝑗 + 2𝑥𝑦𝑧 |1,0,1 𝑘
∇ 𝑓 = 0𝑖 + 𝑗 + 𝑘
Máxima derivada:
Dirección: 0𝑖 + 𝑗 + 𝑘
Magnitud: √02 + (1)2 + (0)2 = √1 = 1
Duf = ∇ 𝑓 𝑈
𝑈 = 𝑖 + 𝑗 + 𝑘
|𝑈| = √3
𝑈 =
𝑖
√3
+
𝑗
√3
+
𝑘
√3
Duf = (0𝑖 + 𝑗 + 𝑘) (
𝑖
√3
+
𝑗
√3
+
𝑘
√3
)
Duf =
1
√3
Duf = 0.5773
f(x,y) = x2 y3-4y (2, -1) dirección 2i + 5j
Derivada direccional.
Máxima derivada direccional.
∇ 𝑓 =
𝑑𝑓
𝑑𝑥
|2,−1 𝑖 +
𝑑𝑓
𝑑𝑦
|2,−1 𝑗
∇ 𝑓 = 2𝑥𝑦3
|2,−1 𝑖 + 3𝑥2
𝑦2
− 4|2,−1 𝑗
∇ 𝑓 = 2(2)(−1)3
|2,−1 𝑖 + 3(2)2
(−1)2
− 4|2,−1 𝑗
∇ 𝑓 = −4𝑖 + 8𝑗
Máxima derivada:
Dirección: −4𝑖 + 8𝑗
Magnitud: √(−4)2 + (8)2 = √80 = 8.94
Duf = ∇ 𝑓 𝑈
𝑈 = 2𝑖 + 5𝑗
|𝑈| = √(2)2 + (5)2 = √29
𝑈 =
2𝑖
√29
+
5𝑗
√29
Duf = (−4𝑖 + 8𝑗) (
2𝑖
√29
+
5𝑗
√29
)
Duf =
32
√29
Duf = 5.94
Siempre:
Máxima derivada direccional > Derivada direccional.
Máximos y Mínimos
- Función
Máximo Mínimo
F(c) > f(a) y f(b) F(c) = < f(a) y f(b)
- Primera Derivada
F’(a) F’(b)
+ a - → Máximo - a + → Mínimo
- Segunda derivada
F’(c) =
>, 0 Mínimo
<, 0 Máximo
𝜕𝑓
𝜕𝑥
= 0
𝜕𝑓
𝜕𝑦
= 0
- Resolver sistema
- Encontrar puntos críticos (a,b)
𝐷 =
𝜕2
𝑓
𝜕𝑥2
𝜕2
𝑓
𝜕𝑦2
| 𝑎,𝑏 − (
𝜕2
𝑓
𝜕𝑥𝜕𝑦
)
2
| 𝑎,𝑏
𝐷 > 0 𝑦
𝜕2
𝑓
𝜕𝑥2
> 0 𝑀í𝑛𝑖𝑚𝑜
𝐷 > 0 𝑦
𝜕2
𝑓
𝜕𝑥2
< 0 𝑀á𝑥𝑖𝑚𝑜
F(x,y) = x4+y4-axy +1
Encontrar, máximos, mínimos, puntos silla.
𝜕𝑓
𝜕𝑥
= 0
𝜕𝑓
𝜕𝑥
= 4𝑥3
− 4𝑦 = 0
𝑦 = 𝑥3
𝜕𝑓
𝜕𝑦
= 0
𝜕𝑓
𝜕𝑦
= 4𝑥3
− 4𝑦 = 0
4𝑥3
− 4𝑥 = 0
4(𝑥3
)3
− 4𝑥 = 0
4𝑥9
− 4𝑥 = 0
4𝑥(𝑥8
− 1) = 0
𝑥8
= 1
X= +1
X= -1
Si:
X= 0 y=0
x=1 y=1
X= -1 y=-1
Puntos críticos:
(0,0)
(1,1)
(-1,-1)
𝜕2
𝑓
𝜕𝑥2
= 12𝑥
𝜕2
𝑓
𝜕𝑦2
= 12𝑦2
𝜕2
𝑓
𝜕𝑥𝜕𝑦
= −4
(a,b)
(
𝜕2
𝑓
𝜕𝑥2
) | 𝑎,𝑏 (
𝜕2
𝑓
𝜕𝑦2
) | 𝑎,𝑏 (
𝜕2
𝑓
𝜕𝑥2
) (
𝜕2
𝑓
𝜕𝑦2
) − (
𝜕2
𝑓
𝜕𝑥𝜕𝑦
)
2 Máximos
Mínimos
Puntos Silla
0,0 0 0 -(-4)2 = -16 D= -16 Punto silla
1,1 12 12 (12)(12) -(-4)2 = 128 D= 128 Mínimo
-1,-1 12 12 (12)(12) -(-4)2 = 128 D= 128 Mínimo
a) 𝑥2
+ 3𝑥𝑦 + 𝑦2
b) 𝑥2
+ 2𝑥𝑦 + 𝑦2
c) 𝑥2
+ 𝑥𝑦 + 𝑦2
a) F(x,y) = 𝑥2
+ 3𝑥𝑦 + 𝑦2
𝜕𝑓
𝜕𝑥
= 0
2𝑥 + 3𝑦 = 0 → 𝑥 = −
3
2
𝑦
𝜕𝑓
𝜕𝑦
= 0
3𝑥 + 2𝑦 = 0
3(−
3
2
𝑦) + 2𝑦 = 0
(−
9
2
+ 2) 𝑦 = 0
𝑦 = 0  𝑥 = 0
Punto crítico:
(0,0)
𝜕2
𝑓
𝜕𝑥2
= 2
𝜕2
𝑓
𝜕𝑦2
= 2
𝜕2
𝑓
𝜕𝑥𝜕𝑦
= 3
D= (2)(2) – (3)2 = 4-9 = -5
D<0 → Punto silla (0,0)
b) 𝑥2
+ 2𝑥𝑦 + 𝑦2
𝜕𝑓
𝜕𝑥
= 0
2𝑥 + 2𝑦 = 0 → 𝑥 = −𝑦
𝜕𝑓
𝜕𝑦
= 0
2𝑥 + 2𝑦 = 0
2(−𝑦) + 2𝑦 = 0
0 = 0
𝜕2
𝑓
𝜕𝑥2
= 2
𝜕2
𝑓
𝜕𝑦2
= 2
𝜕2
𝑓
𝜕𝑥𝜕𝑦
= 2
D= (2)(2) – (2)2 = 0
No existe información para concluirla
c) 𝑥2
+ 𝑥𝑦 + 𝑦2
𝜕𝑓
𝜕𝑥
= 0
2𝑥 + 𝑦 = 0 → 𝑦 = −2𝑥
𝜕𝑓
𝜕𝑦
= 0
2𝑦 + 𝑥 = 0
2(−2𝑥) + 𝑥 = 0
−3𝑥 = 0
𝑥 = 0
𝑦 = 0  𝑥 = 0
Punto crítico:
(0,0)
𝜕2
𝑓
𝜕𝑥2
= 2
𝜕2
𝑓
𝜕𝑦2
= 2
𝜕2
𝑓
𝜕𝑥𝜕𝑦
= 1
D= (2)(2) – (1)2 = 3
D>0
𝜕2
𝑓
𝜕𝑥2
> 0  𝑀í𝑛𝑖𝑚𝑜
F(x,y) = x + y + 1/xy
Encontrar, máximos, mínimos, puntos silla
𝜕𝑓
𝜕𝑥
=
𝜕
𝜕𝑥
𝑥 +
1
𝑦
𝜕
𝜕𝑥
𝑥−1
= 1 −
1
𝑥2 𝑦
= 0
1 =
1
𝑥2 𝑦
𝑦 =
1
𝑥2
Integrales Dobles
 Tipo 1
𝐴 = ∫ ∫ 𝑑𝑦 𝑑𝑥
𝑓(𝑥)
𝑔(𝑥)
𝑏
𝑎
 Tipo 2
𝐴 = ∫ ∫ 𝑑𝑥 𝑑𝑦
𝑓(𝑥)
𝑔(𝑥)
𝑑
𝑐
Encontrar el área entre las parábolas
y= 2x2 y= 1 + x2
2𝑥2
= 1 + 𝑥2
𝑥2
= 1 → 𝑥 = ±1
𝐴 = ∫
𝑥=1
𝑥=−1
𝐴 = ∫ [(1 + 𝑥2) − 2𝑥2] 𝑑𝑥
1
−1
𝐴 = ∫ [(1 + 𝑥2)] 𝑑𝑥
1
−1
= ∫ 𝑑𝑥
1
−1
− ∫ 𝑥2
𝑑𝑥
1
−1
𝐴 = 𝑥|−1
1
−
𝑥3
3
𝑥|−1
1
𝐴 = 1 − (1) −
1
3
+ (−
1
3
) =
4
3
𝑈2
∫ ∫ 𝑑𝑥 𝑑𝑦
√ 𝑦
0
4
0
= ∫ [𝑦2
∫ 𝑥 𝑑𝑥
√ 𝑦
0
]
4
0
𝑑𝑦 = ∫ 𝑦2
𝑥2
2
|0
√ 𝑦
4
0
𝑑𝑦
= ∫ 𝑦2
[
(√ 𝑦)
2
2
−
02
2
]
4
0
𝑑𝑦 = ∫ 𝑦2
[
𝑦
2
]
4
0
=
1
2
∫ 𝑦3
𝑑𝑦
4
0
=
1
2
𝑦4
4
|0
4
=
1
8
[(4)2
− 02
)] =
32
∫ ∫ (𝑥 − 𝑦)𝑑𝑦 𝑑𝑥
2
2𝑥
1
0
= ∫ 𝑥 [∫ 𝑑𝑦 −
2
2𝑥
∫ 𝑦𝑑𝑦
2
2𝑥
]
1
0
𝑑𝑥 = ∫ [𝑥𝑦 |2𝑥
2
1
0
−
𝑦2
2
|2𝑥
2
]𝑑𝑥
∫ [𝑥(2 − 2𝑥) − (
22
2
−
4𝑥2
2
)] 𝑑𝑥
1
0
∫ (2𝑥 − 2𝑥2
− 2 + 2𝑥2)𝑑𝑥
1
0
= −1
∫ ∫ cos(𝑠3
) 𝑑𝑡 𝑑𝑠
𝑠2
0
1
0
= ∫ [cos(𝑠3
) ∫ 𝑑𝑡 ] 𝑑𝑠
𝑠2
0
1
0
= ∫ [cos(𝑠3) (𝑠2
− 0)𝑑𝑠
1
0
= ∫ 𝑠2
cos(𝑠3) 𝑑𝑠
1
0
=
1
3
𝑠𝑒𝑛(𝑠3) |0
1
=
1
3
𝑠𝑒𝑛(1)
∫ ∫
𝑦
𝑥5 + 1
𝑑𝑦𝑑𝑥
𝑥2
0
1
0
= ∫ [
1
𝑥5 + 1
1
0
𝑦2
2
|0
𝑥2
]𝑑𝑥
=
1
2
∫ [
1
𝑥5 + 1
1
0
(𝑥2)2
]𝑑𝑥 =
1
2
∫ [
𝑥4
𝑥5 + 1
1
0
=
1
10
∫
𝑑𝑢
𝑢
1
0
=
1
10
ln(𝑥5
+ 1) |0
1
=
1
10
ln(2)
∫ ∫ 𝑥 𝑑𝑦𝑑𝑥
𝑠𝑒𝑛(𝑥)
0
П
0
= ∫ [𝑥 ∫ 𝑑𝑦] 𝑑𝑥
𝑠𝑒𝑛(𝑥)
0
П
0
= ∫ 𝑥 (𝑦|0
𝑠𝑒𝑛𝑥)𝑑𝑥
П
0
= ∫ 𝑥 𝑠𝑒𝑛(𝑥) 𝑑𝑥
П
0
−𝑥 cos(𝑥) |0
П
+ 𝑠𝑒𝑛 𝑥|0
П
=
П
∫ ∫ 𝑥3
𝑑𝑦𝑑𝑥
ln 𝑥
0
℮
0
= ∫ ( 𝑥3
℮
0
∫ 𝑑𝑦)
ln 𝑥
0
𝑑𝑥 = ∫ 𝑥3
𝑦|0
ln 𝑥
℮
0
𝑑𝑥 = ∫ 𝑥3
ln 𝑥 𝑑𝑥
℮
0
=
𝑥4
4
ln(𝑥) |0
℮
−
1
16
𝑥4
|0
℮
=
3
16
℮4
Cambio de orden de integración
∫ ∫ 𝑑𝑥𝑑𝑦
𝑥=√ 𝑦
𝑥=0
𝑦=4
𝑦=0
∫ ∫ 𝑑𝑦𝑑𝑥
4
𝑥2
2
0
∫ ∫ 𝑑𝑦𝑑𝑥
𝑦=2
𝑦=2𝑥
𝑥=1
𝑥=0
∫ ∫ 𝑑𝑥𝑑𝑦
𝑥=
𝑦
2
𝑥=0
𝑦=2
𝑦=0
∫ ∫ 𝑑𝑦𝑑𝑥
𝑠𝑒𝑛 𝑥
0
П
0
∫ ∫ 𝑑𝑥𝑑𝑦
П
2
𝐴𝑟𝑐𝑠𝑒𝑛 𝑦
1
0
Dobles Integrales
∬ 𝑦2
𝑑𝐴
𝐷
∫ ∫ 𝑦2
𝑦
−𝑦−2
1
−1
𝑑𝑥𝑑𝑦
D = (x,y) -1<y<1 , -y-2<x<y
∫ ∫ 𝑦2
𝑦
−𝑦−2
1
−1
𝑑𝑥𝑑𝑦 = ∫ (𝑦2
∫ 𝑑𝑥)
𝑦
−𝑦−2
1
−1
𝑑𝑦 = ∫ (𝑦2
1
−1
𝑥|−𝑦−2
𝑦
)𝑑𝑦
∫ (𝑦2)(2𝑦 + 2)
1
−1
𝑑𝑦 = ∫ (2𝑦3
+ 2𝑦2)𝑑𝑦
1
−1
=
4
3
𝑈2
∬
𝑦
𝑥5 + 1
𝑑𝐴
𝐷
D= (x,y) 0<x< П 0<y<x2
∫ ∫
𝑦
𝑥5 + 1
𝑥2
0
𝑑𝑦𝑑𝑥
П
0
∫ ∫
𝑦
𝑥5 + 1
𝑥2
0
𝑑𝑦𝑑𝑥
П
0
= ∫ (
1
𝑥5 + 1
∫ 𝑦
𝑥2
0
𝑑𝑦) 𝑑𝑥
П
0
∫ (
1
𝑥5 + 1
𝑦2
2
|0
𝑥2
) 𝑑𝑥
П
0
=
1
2
∫ (
𝑥4
𝑥5 + 1
) 𝑑𝑥
П
0
=
1
10
∫ (
𝑑𝑢
𝑢
) 𝑑𝑢
П
0
1
10
ln(𝑥5
+ 1)|0
𝑥2
=
0.5726
∫ ∫ 𝑥𝑐𝑜𝑠𝑦
𝑥2
0
𝑑𝑦𝑑𝑥
1
0
= ∫ (𝑥 ∫ 𝑐𝑜𝑠𝑦
𝑥2
0
𝑑𝑦) 𝑑𝑥
1
0
= ∫ (𝑥𝑠𝑒𝑛 𝑦|0
𝑥2
)𝑑𝑥
1
0
= ∫ (𝑥𝑠𝑒𝑛 (𝑥2)
1
0
= −
1
2
cos(𝑥2) |0
1
=
0.2298
∬ 𝑦2
𝑑𝐴
𝐷
D región triangular cuyos vértices son: (0,1), (1,2), (4,1)
𝑚 =
∆𝑥
∆𝑦
=
2 − 1
1 − 0
= 1
𝑦 = 𝑚𝑥 + 𝑏
𝑦 = 1 + 𝑥
𝑚 =
∆𝑥
∆𝑦
=
1 − 2
4 − 1
= −
1
3
𝑦 = −
1
3
𝑥 +
7
3
∫ ∫ 𝑦2
++1
0
𝑑𝑦𝑑𝑥
1
0
+ ∫ ∫ 𝑦2
−
1
3
𝑥+
7
3
1
𝑑𝑦𝑑𝑥
4
1
∫
𝑦3
3
|1
𝑥+1
𝑑𝑥
1
0
+ ∫
𝑦3
3
|1
−
1
3
𝑥+
7
3
𝑑𝑥
4
1
=
1
3
∫ (𝑥3
+ 3𝑥2
+ 3𝑥 + 1 − 1)
1
0
𝑑𝑥 +
1
3
∫ (−
1
27
𝑥3
+
7
9
𝑥2
−
49
9
𝑥 +
343
9
− 1) 𝑑𝑥 =
4
1
11
3
∬(𝑥2
+ 2𝑦)𝑑𝐴
Y = x y = x3 x>= 0
∫ ∫ (𝑥2
+ 2𝑦)𝑑𝑦𝑑𝑥
𝑥
𝑥3
1
0
∬ 𝑥𝑦2
𝑑𝐴
𝐷
D (x=0) 𝑥 = √1 − 𝑦2
∫ ∫ 𝑥𝑦2
𝑑𝑥𝑑𝑦
√1−𝑦2
0
=
1
−1
∫ [𝑦2
( 𝑥 ∫ 𝑑𝑥)]𝑑𝑦
√1−𝑦2
0
1
−1
= ∫ (
𝑦2
2
1
−1
𝑥2
|0
√1−𝑦2
) 𝑑𝑦
∫ (
𝑦2
2
1
−1
) (√1 − 𝑦2)
2
𝑑𝑦 =
1
2
∫ (𝑦2
− 𝑦4
)𝑑𝑦
1
−1
=
1
6
𝑦3
|−1
1
−
1
10
𝑦5
|−1
1
=
2
15
Área:
R = cos 2
𝐴 = ∫ ∫ 𝑟𝑑𝑟𝑑𝜃
𝑟
𝑟
𝜃
𝜃
𝐴 = 8 ∫ ∫ 𝑟𝑑𝑟𝑑𝜃
𝐶𝑜𝑠 2𝜃
0
П
4
0
= ∫
𝑟2
2
П
4
0
|0
𝐶𝑜𝑠 2𝜃
=
8
2
∫ cos2
2
П
4
0
𝑑
= 2𝜃|0
П
4
+
1
2
𝑠𝑒𝑛(4𝜃)|0
П
4
=
П
2
Integrales Polares
∬ 𝑠𝑒𝑛 ()𝑑𝐴
𝑅
R= fuera circulo: r= 2
Dentro cardiode: r= 2+2 cos 
∫ ∫ 𝑟𝑠𝑒𝑛()
𝑟=2+2cos()
𝑟=2
П
2
0
𝑑𝑟𝑑
∫ ∫ 𝑟𝑠𝑒𝑛()
𝑟=2+2cos()
𝑟=2
П
2
0
𝑑𝑟𝑑 = ∫ 𝑠𝑒𝑛() ∫ 𝑟
2+2cos()
2
𝑑𝑟𝑑
П
2
0
=
= ∫ 𝑠𝑒𝑛()[8𝑐𝑜𝑠 + 4 cos2

П
2
0
]𝑑 = 8 ∫ 𝑠𝑒𝑛()𝑐𝑜𝑠 𝑑 + 4 ∫ 𝑠𝑒𝑛() cos2

П
2
0
П
2
0
𝑑
= 4𝑠𝑒𝑛2
 |0
П
2
−
4
3
cos3
 |0
П
2
=
16
3
𝑥2
+ 𝑦2
+ 𝑧2
= 𝑎2
𝑧 = ±√𝑎2 − 𝑥2 − 𝑦2
𝑉 = 2 ∬ √𝑎2 − 𝑥2 − 𝑦2
𝑅
𝑑𝐴
𝑟2
= 𝑥2
+ 𝑦2

𝑉 = 2 ∫ ∫ √ 𝑎2 − 𝑟2
9
0
П
2
0
𝑟𝑑𝑟𝑑 =
8
3
∫ 𝑎3
𝑑
П
2
0
=
4
3
𝑎3
П
∫ ∫ 𝑟2
𝑟 𝑑𝑟𝑑
1
0
П
2
0
= ∫ ∫ 𝑟3
𝑑𝑟𝑑
1
0
П
2
0
= ∫
𝑟4
4
|0
1
𝑑
П
2
0
=
1
4
∫ 𝑑
П
2
0
=
1
8
П
∫ ∫ 𝑟 𝑑𝑟𝑑
2
0
𝐴𝑟𝑐𝑡𝑔2
0𝐴𝑟𝑐𝑡𝑔
1
3
= ∫
𝑟2
2
𝐴𝑟𝑐𝑡𝑔2
0𝐴𝑟𝑐𝑡𝑔
1
3
|0
2
𝑑 =
1
2
∫ (2)2
𝐴𝑟𝑐𝑡𝑔2
0𝐴𝑟𝑐𝑡𝑔
1
3
𝑑 =
2 ∫ 𝑑 =
𝐴𝑟𝑐𝑡𝑔2
0𝐴𝑟𝑐𝑡𝑔
1
3
1.5707
Encontrar el área de las gráficas polares.
1) R= 3 + 3 sin t
2 ∫ ∫ 𝑟 𝑑𝑟𝑑
3+3𝑠𝑒𝑛()
0
3
2
П
П
2
= ∫ 𝑟2
|0
3+3𝑠𝑒𝑛()
3
2
П
П
2
𝑑 = ∫
3
2
П
П
2
(3 + 3𝑠𝑒𝑛())
2
𝑑 =
∫
3
2
П
П
2
(9 + 18 𝑠𝑒𝑛  + 9 𝑠𝑒𝑛2
 )𝑑 =
9П +
9
2
П
2) R = cos 
2 ∫ ∫ 𝑟 𝑑𝑟𝑑
2+cos
0
П
0
= ∫ 𝑟2
П
0
|0
2+cos
= ∫ (2 + cos )
П
0
2
= ∫ (4 + 4 cos  + cos2
)
П
0
𝑑 =
14.1371
3) R = 2 sen 
2 ∫ ∫ 𝑟 𝑑𝑟𝑑
2 𝑠𝑒𝑛 
0
1
6
П
0
+ 2 ∫ ∫ 𝑟 𝑑𝑟𝑑
1
0
П
2
П
6
=
∫ 𝑟2
1
6
П
0
|0
2 𝑠𝑒𝑛 ()
𝑑 + ∫ 𝑟2
П
2
П
6
|0
1
𝑑
= ∫ (2 𝑠𝑒𝑛 ())2
1
6
П
0
𝑑 + ∫ 𝑑
П
2
П
6
= ∫ 4 𝑠𝑒𝑛2
()
1
6
П
0
𝑑 + |П
6
П
2
=
1.2283
4) R= 5 cos 3
2 ∫ ∫ 4 𝑟 𝑑𝑟𝑑
5 𝑐𝑜𝑠 3
0
1
6
П
0
= 4 ∫ 𝑟2
1
6
П
0
|0
5 cos3
= 4 ∫ (5 cos 3)2
1
6
П
0
=
100 ∫ cos2
3
1
6
П
0
=
26.1799
5) Z = √𝑥2 + 𝑦2
Z= 0
𝑍 = 4 ∫ ∫ √𝑥2 + 𝑦2
5
0
𝑟𝑑𝑟𝑑
П
2
0
= 4 ∫ ∫ √ 𝑟2
5
0
𝑟𝑑𝑟𝑑
П
2
0
= 4 ∫ ∫ 𝑟2
5
0
𝑑𝑟𝑑
П
2
0
=
4
3
∫ 𝑟3
|0
5
𝑑
П
2
0
=
4
3
∫ (5)3
𝑑
П
2
0
=
500
3
∫ 𝑑
П
2
0
=
261.7993
6) 𝑥2
+ 𝑦2
= 4 𝑧 = √9 − 𝑥2 − 𝑦2 𝑧 = 0
𝑟 = 4 ∫ ∫ √9 − 𝑥2 − 𝑦2
2
0
𝑟𝑑𝑟𝑑
П
2
0
= 4 ∫ ∫ √9 − 𝑟2
2
0
𝑟𝑑𝑟𝑑
П
2
0
= −2 ∫ ∫ 𝑢
1
2
2
0
𝑑𝑢𝑑
П
2
0
= −
4
3
∫ 𝑢
3
2|0
2
𝑑
П
2
0
= −
4
3
∫ (9 − 𝑟2)(
3
2
)
|0
2
𝑑
П
2
0
= −23.4153
7) 𝑥2
+ 𝑦2
= 1 𝑧 = √16 − 𝑥2 − 𝑦2
𝑥2
+ 𝑦2
= 9 𝑧 = 0
= 4 ∫ ∫ √16 − 𝑥2 − 𝑦2
3
0
𝑟𝑑𝑟𝑑
П
2
0
= 4 ∫ ∫ √16 − 𝑟2
3
0
𝑟𝑑𝑟𝑑
П
2
0
= −2 ∫ ∫ 𝑢
1
2
3
0
𝑑𝑢𝑑
П
2
0
= −
4
3
∫ 𝑢
3
2|0
3
𝑑
П
2
0
= −
4
3
∫ (16 − 𝑟2)(
3
2
)
|0
3
𝑑
П
2
0
= 82.87
25) 𝑦 = √9 − 𝑥2 𝑦2
= 9 − 𝑥2
𝑥2
+ 𝑦2
= 9
∫ ∫ √𝑥2 + 𝑦2
√9−𝑥2
0
𝑑𝑦𝑑𝑥
3
−3
= 2 ∫ ∫ √ 𝑟2
3
0
𝑟𝑑𝑟𝑑
П
2
0
= 2 ∫ ∫ 𝑟2
3
0
𝑑𝑟𝑑
П
2
−3
=
2
3
∫ 𝑟3
|0
3
𝑑
П
2
0
= 18 ∫ 𝑑
П
2
0
=
9П

Mais conteúdo relacionado

Mais procurados

Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]https://www.facebook.com/garmentspace
 
https://youtu.be/VhLUdtPtIz4
https://youtu.be/VhLUdtPtIz4https://youtu.be/VhLUdtPtIz4
https://youtu.be/VhLUdtPtIz4ssusere0a682
 
4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx
4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx
4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docxJoelEynerTurpoCondor
 
Facultad de ingeniería taller integral seguimiento 1
Facultad de ingeniería taller integral seguimiento 1Facultad de ingeniería taller integral seguimiento 1
Facultad de ingeniería taller integral seguimiento 1Marvin Roldan
 
Latihan soal persamaan dan pertidaksamaan
Latihan soal persamaan dan pertidaksamaanLatihan soal persamaan dan pertidaksamaan
Latihan soal persamaan dan pertidaksamaanRafirda Aini
 
Pertidaksamaan Nilai Mutlak, Irasional, dan Pecahan
Pertidaksamaan Nilai Mutlak, Irasional, dan PecahanPertidaksamaan Nilai Mutlak, Irasional, dan Pecahan
Pertidaksamaan Nilai Mutlak, Irasional, dan Pecahannova147
 
Ejercicios resueltos de ecuaciones diferenciales
Ejercicios resueltos  de  ecuaciones  diferencialesEjercicios resueltos  de  ecuaciones  diferenciales
Ejercicios resueltos de ecuaciones diferenciales973655224
 
Electric nets 20210721 tecnicas de analisis 15.21 16.35
Electric nets 20210721 tecnicas de analisis 15.21 16.35Electric nets 20210721 tecnicas de analisis 15.21 16.35
Electric nets 20210721 tecnicas de analisis 15.21 16.35osvaldoperez63
 
Tugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 ebTugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 ebLara Sati
 
6 problem eigen
6 problem eigen6 problem eigen
6 problem eigenabeerahman
 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 cara_mau2
 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7cara_mau2
 
Tugas Matematika "Kelompok 7"
Tugas Matematika "Kelompok 7"Tugas Matematika "Kelompok 7"
Tugas Matematika "Kelompok 7"sarman21
 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7cara_mau2
 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 cara_mau2
 
Hidetomo Nagai
Hidetomo NagaiHidetomo Nagai
Hidetomo NagaiSuurist
 

Mais procurados (20)

Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
Tuyển tập tích phân luyện thi đại học 2014 [đáp án chi tiết]
 
https://youtu.be/VhLUdtPtIz4
https://youtu.be/VhLUdtPtIz4https://youtu.be/VhLUdtPtIz4
https://youtu.be/VhLUdtPtIz4
 
4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx
4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx
4-CAPITULO-III-T-LAPLACE-Resolucion-de-EDOs-FIAG.docx
 
Facultad de ingeniería taller integral seguimiento 1
Facultad de ingeniería taller integral seguimiento 1Facultad de ingeniería taller integral seguimiento 1
Facultad de ingeniería taller integral seguimiento 1
 
Berkari 6.19
Berkari 6.19  Berkari 6.19
Berkari 6.19
 
Aplikasi analisis
Aplikasi analisisAplikasi analisis
Aplikasi analisis
 
Latihan soal persamaan dan pertidaksamaan
Latihan soal persamaan dan pertidaksamaanLatihan soal persamaan dan pertidaksamaan
Latihan soal persamaan dan pertidaksamaan
 
Pertidaksamaan Nilai Mutlak, Irasional, dan Pecahan
Pertidaksamaan Nilai Mutlak, Irasional, dan PecahanPertidaksamaan Nilai Mutlak, Irasional, dan Pecahan
Pertidaksamaan Nilai Mutlak, Irasional, dan Pecahan
 
Ejercicios resueltos de ecuaciones diferenciales
Ejercicios resueltos  de  ecuaciones  diferencialesEjercicios resueltos  de  ecuaciones  diferenciales
Ejercicios resueltos de ecuaciones diferenciales
 
Electric nets 20210721 tecnicas de analisis 15.21 16.35
Electric nets 20210721 tecnicas de analisis 15.21 16.35Electric nets 20210721 tecnicas de analisis 15.21 16.35
Electric nets 20210721 tecnicas de analisis 15.21 16.35
 
Tugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 ebTugas matematika kelompok 8 kelas 1 eb
Tugas matematika kelompok 8 kelas 1 eb
 
6 problem eigen
6 problem eigen6 problem eigen
6 problem eigen
 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
 
Tugas Matematika "Kelompok 7"
Tugas Matematika "Kelompok 7"Tugas Matematika "Kelompok 7"
Tugas Matematika "Kelompok 7"
 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
 
Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7 Tugas Matematika Kelompok 7
Tugas Matematika Kelompok 7
 
Calculo1
Calculo1Calculo1
Calculo1
 
Matematika 2
Matematika 2Matematika 2
Matematika 2
 
Hidetomo Nagai
Hidetomo NagaiHidetomo Nagai
Hidetomo Nagai
 

Último

Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Eesti Loodusturism
 
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaranFAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaransekolah233
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmibookbahareshariat
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfKhaled Elbattawy
 

Último (9)

Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 4 By SadurshSharia Mufti Amjad Ali Azmi
 
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
Saunanaine_Helen Moppel_JUHENDATUD SAUNATEENUSE JA LOODUSMATKA SÜNERGIA_strat...
 
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 2 By SadurshSharia Mufti Amjad Ali Azmi
 
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 3 By SadurshSharia Mufti Amjad Ali Azmi
 
Energy drink .
Energy drink                           .Energy drink                           .
Energy drink .
 
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaranFAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
FAIL REKOD PENGAJARAN.pptx fail rekod pengajaran
 
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali AzmiBahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
Bahare Shariat Jild 1 By SadurshSharia Mufti Amjad Ali Azmi
 
LAR MARIA MÃE DE ÁFRICA .
LAR MARIA MÃE DE ÁFRICA                 .LAR MARIA MÃE DE ÁFRICA                 .
LAR MARIA MÃE DE ÁFRICA .
 
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdfمحاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
محاضرات الاحصاء التطبيقي لطلاب علوم الرياضة.pdf
 

Ecuaciones Diferenciales

  • 1. Unidad I Matemáticas aplicadas a la Ingeniería Química I Mtro. Octavio Flores Siordia Ilse Alejandra Gutiérrez Salvador 28/04/2014 UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE LA CIÉNEGA
  • 2.
  • 3. Derivadas Parciales  Dependen de más de una variable independiente 𝑓′(𝑥) = lim ∆𝑥 → 0 𝑓( 𝑥 + ∆𝑥 )– 𝑓(𝑥) ∆𝑥 Pendiente de una recta tangente a la función. Variables que se encuentran en una dirección y/o en otra. 𝑓(𝑥, 𝑦) = 𝑥3 + 𝑥2 𝑦3 − 2𝑦2 𝜕𝑓 𝜕𝑥 = 𝑓𝑥 (𝑥, 𝑦) = 𝜕 𝜕𝑥 (𝑥3 + 𝑥2 𝑦3 − 2𝑦2) = 𝜕 𝜕𝑥 𝑥3 + 𝜕 𝜕𝑥 𝑥2 𝑦3 − 𝜕 𝜕𝑥 2𝑦2 = 3𝑥2 + 2𝑥𝑦3 𝜕 𝜕𝑥 |1,2 = 3(1)2 + 2(1)(2)3 = 3 + 16 = 19 𝜕𝑓 𝜕𝑦 = 𝑓𝑦 (𝑥, 𝑦) = 𝜕 𝜕𝑦 (𝑥3 + 𝑥2 𝑦3 − 2𝑦2) = 𝜕 𝜕𝑦 𝑥3 + 𝜕 𝜕𝑦 𝑥2 𝑦3 − 𝜕 𝜕𝑦 2𝑦2 = 3𝑥2 𝑦2 − 4𝑦 𝜕 𝜕𝑦 |3,4 = 3(3)2 (4)2 − 4(4) = 432 − 16 = 416
  • 4. f(x,y) = 4-x2-2y2 𝜕𝑓 𝜕𝑥 |1,1 = 𝜕 𝜕𝑥 (4 − 𝑥2 − 2𝑦2)|1,1 = −2𝑥 |1,1 = −2(1) = −2 𝜕𝑓 𝜕𝑦 |1,1 = 𝜕 𝜕𝑦 (4 − 𝑥2 − 2𝑦2)|1,1 = −4𝑦|1,1 = −4(1) = −4 f(x,y) = sin(𝑥2 𝑦) 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 sin(𝑥2 𝑦) = cos(𝑥2 𝑦) 𝜕 𝜕𝑥 𝑥2 𝑦 = 2𝑥𝑦 cos(𝑥2 𝑦) 𝜕𝑓 𝜕𝑦 = 𝜕 𝜕𝑦 sin(𝑥2 𝑦) = cos(𝑥2 𝑦) 𝜕 𝜕𝑥 𝑥2 𝑦 = 𝑥2 cos(𝑥2 𝑦) f(x,y) = cos ( 𝑥 1+𝑦 ) 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 sin ( 𝑥 1 + 𝑦 ) = cos ( 𝑥 1 + 𝑦 ) 𝜕 𝜕𝑥 ( 𝑥 1 + 𝑦 ) = ( 1 1 + 𝑦 ) cos ( 𝑥 1 + 𝑦 ) 𝜕𝑓 𝜕𝑦 = 𝜕 𝜕𝑦 sin ( 𝑥 1 + 𝑦 ) = cos ( 𝑥 1 + 𝑦 ) 𝜕 𝜕𝑦 ( 𝑥 1 + 𝑦 ) = ( 𝑥 (1 + 𝑦)2 ) cos ( 𝑥 (1 + 𝑦) )
  • 5. f(x,y) = 1 √𝑥2+ 𝑦2 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 1 √𝑥2 + 𝑦2 = − 1 2 (𝑥2 + 𝑦2)− 3 2 𝜕 𝜕𝑥 (𝑥2 + 𝑦2) = −𝑥 (𝑥2 𝑦2)3/2 𝜕𝑓 𝜕𝑦 = 𝜕 𝜕𝑦 1 √𝑥2 + 𝑦2 = − 1 2 (𝑥2 + 𝑦2)− 3 2 𝜕 𝜕𝑦 (𝑥2 + 𝑦2) = −𝑦 (𝑥2 𝑦2)3/2 f(x,y) = Arctan (x,y) 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 tan−1(𝑥𝑦) = 1 𝑥2 𝑦2 + 1 𝜕 𝜕𝑥 (𝑥𝑦) = 𝑦 𝑥2 𝑦2 + 1 𝜕𝑓 𝜕𝑦 = 𝜕 𝜕𝑦 tan−1(𝑥𝑦) = 1 𝑥2 𝑦2 + 1 𝜕 𝜕𝑥 (𝑥𝑦) = 𝑥 𝑥2 𝑦2 + 1
  • 6. f(x,y) = ln (x+3y) 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 ln(𝑥 + 3𝑦) = 1 𝑥 + 3𝑦 𝜕 𝜕𝑥 (𝑥 + 3𝑦) = 1 𝑥 + 3𝑦 f(x,y,z) = ℮ 𝑥𝑦 ln 𝑧 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 ℮ 𝑥𝑦 ln 𝑧 = ln 𝑧 𝜕 𝜕𝑥 ℮ 𝑥𝑦 = ln 𝑧 ℮ 𝑥𝑦 𝜕 𝜕𝑥 (𝑥𝑦) = 𝑦 ln 𝑧 ℮ 𝑥𝑦 𝜕𝑓 𝜕𝑦 = 𝜕 𝜕𝑦 ℮ 𝑥𝑦 ln 𝑧 = ln 𝑧 𝜕 𝜕𝑦 ℮ 𝑥𝑦 = ln 𝑧 ℮ 𝑥𝑦 𝜕 𝜕𝑦 (𝑥𝑦) = 𝑥 ln 𝑧 ℮ 𝑥𝑦 𝜕𝑓 𝜕𝑧 = 𝜕 𝜕𝑧 ℮ 𝑥𝑦 ln 𝑧 = ℮ 𝑥𝑦 𝜕 𝜕𝑧 ln 𝑧 = ℮ 𝑥𝑦 𝑧
  • 7. f(x,y) = x cos(𝑥𝑦) 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 x cos(𝑥𝑦) = 𝑥 𝜕 𝜕𝑥 cos(𝑥𝑦) + cos(𝑥𝑦) 𝜕 𝜕𝑥 𝑥 = −𝑥 sin(𝑥𝑦) 𝜕 𝜕𝑥 (𝑥𝑦) + cos( 𝑥𝑦) = −𝑥𝑦 sin(𝑥𝑦) + cos(𝑥𝑦) f(x,y) = ln(𝑥 + 3𝑦) 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 ln(𝑥 + 3𝑦) = 1 𝑥 + 3𝑦 𝜕 𝜕𝑥 (𝑥 + 3𝑦) = 1 𝑥 + 3𝑦 𝜕𝑓 𝜕𝑦 = 𝜕 𝜕𝑦 ln(𝑥 + 3𝑦) = 1 𝑥 + 3𝑦 𝜕 𝜕𝑦 (𝑥 + 3𝑦) = 3 𝑥 + 3𝑦 f(x) = 𝑥 𝑥 𝜕 𝜕𝑥 𝑥 𝑥 = → 𝑦 = 𝑥 𝑥 ln 𝑦 = ln 𝑥 𝑥 = 𝑥 ln 𝑥 𝜕 𝜕𝑥 ln 𝑦 = 𝜕 𝜕𝑥 𝑥 ln 𝑥 = 𝑥 𝜕 𝜕𝑥 ln 𝑥 + ln 𝑥 𝜕 𝜕𝑥 𝑥
  • 8. 1 𝑦 𝜕𝑦 𝜕𝑥 = 1 + ln 𝑥 𝜕𝑦 𝜕𝑥 = 𝑦(1 + ln 𝑥) 𝜕 𝜕𝑥 𝑥 𝑥 = 𝑥 𝑥 (1 + ln 𝑥) f(x,y) = 𝑥 𝑦 𝜕 𝜕𝑥 𝑥 𝑦 = 𝑦𝑥 𝑦−1 𝜕 𝜕𝑦 𝑥 𝑦 𝑧 = 𝑥 𝑦 ln 𝑧 = ln 𝑥 𝑦 = 𝑦 ln 𝑥 𝜕 𝜕𝑦 ln 𝑧 = ln 𝑥 𝜕 𝜕𝑦 𝑦 1 𝑧 𝜕 𝜕𝑦 = ln 𝑥 𝜕 𝜕𝑦 𝑧 = 𝑧 ln 𝑥 𝜕 𝜕𝑦 𝑥 𝑦 = 𝑥 𝑦 ln 𝑥
  • 9. W = ℮ 𝑣 𝑢+𝑣2 𝜕 𝜕𝑣 ℮ 𝑣 𝑢 + 𝑣2 = ( 𝑢 + 𝑣2) 𝜕 𝜕𝑣 ℮ 𝑣 − ℮ 𝑣 𝜕 𝜕𝑣 ( 𝑢 + 𝑣2) (𝑢 + 𝑣2) 2 = ( 𝑢 + 𝑣2) ℮ 𝑣 − 2𝑣 ℮ 𝑣 (𝑢 + 𝑣2)2 𝜕 𝜕𝑢 ℮ 𝑣 𝑢 + 𝑣2 = ℮ 𝑣 𝜕 𝜕𝑢 ( 𝑢 + 𝑣2) −1 = −℮ 𝑣 (𝑢 + 𝑣2)2 R(p,q) = tan−1 (𝑝𝑞2 ) 𝜕 𝜕𝑝 tan−1 ( 𝑝𝑞2) = 1 𝑝2 𝑞4 + 1 𝜕 𝜕𝑝 𝑝𝑞2 = 𝑞2 𝑝2 𝑞4 + 1 𝜕 𝜕𝑞 tan−1 ( 𝑝𝑞2) = 1 𝑝2 𝑞4 + 1 𝜕 𝜕𝑞 𝑝𝑞2 = 2𝑝𝑞 𝑝2 𝑞4 + 1
  • 10. U(r, ) = sin(𝑟 cos 𝜃) 𝜕𝑈 𝜕𝑟 = 𝜕 𝜕𝑟 sin(𝑟 cos 𝜃) = cos(𝑟 cos 𝜃) 𝜕 𝜕𝑟 𝑟 cos 𝜃 = cos(𝑟 cos 𝜃) cos 𝜃 𝜕 𝜕𝑟 𝑟 = cos 𝜃 cos(𝑟 cos 𝜃) 𝜕𝑈 𝜕 = 𝜕 𝜕 sin(𝑟 cos 𝜃) = cos(𝑟 cos 𝜃) 𝜕 𝜕𝑟 𝑟 cos 𝜃 = cos(𝑟 cos 𝜃) 𝑟 𝜕 𝜕𝜃 cos 𝜃 −rsin 𝜃 cos(𝑟 cos 𝜃) Segundas Derivadas f(x,y) (1) 𝜕2 𝑓 𝜕𝑥2 = 𝜕 𝜕𝑥 ( 𝜕𝑓 𝜕𝑥 ) (2) 𝜕2 𝑓 𝜕𝑦2 = 𝜕 𝜕𝑦 ( 𝜕𝑓 𝜕𝑦 ) (3) 𝜕2 𝑓 𝜕𝑥𝜕𝑦 = 𝜕 𝜕𝑥 ( 𝜕𝑓 𝜕𝑦 ) (4) 𝜕2 𝑓 𝜕𝑦𝜕𝑥 = 𝜕 𝜕𝑦 ( 𝜕𝑓 𝜕𝑥 )
  • 11. (3) y (4) siempre dan el mismo resultado. f(x,y) = 𝑥3 + 𝑥2 𝑦3 − 2𝑦2 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 (𝑥3 + 𝑥2 𝑦3 − 2𝑦2) 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 𝑥3 + 𝑦3 𝜕 𝜕𝑥 𝑥2 − 2 𝜕 𝜕𝑥 𝑦2 𝜕𝑓 𝜕𝑥 = 3𝑥2 + 2𝑥𝑦3 𝜕𝑓 𝜕𝑦 = 𝜕 𝜕𝑦 (𝑥3 + 𝑥2 𝑦3 − 2𝑦2) 𝜕𝑓 𝜕𝑦 = 𝜕 𝜕𝑦 𝑥3 + 𝑥2 𝜕 𝜕𝑦 𝑦3 − 2 𝜕 𝜕𝑦 𝑦2 𝜕𝑓 𝜕𝑦 = 3𝑥2 𝑦2 − 4𝑦 𝜕2 𝑓 𝜕𝑥2 = 𝜕 𝜕𝑥 ( 𝜕𝑓 𝜕𝑥 ) = 𝜕 𝜕𝑥 (3𝑥2 + 2𝑥𝑦3) 𝜕2 𝑓 𝜕𝑥2 = 3 𝜕 𝜕𝑥 𝑥2 + 2𝑦3 𝜕 𝜕𝑥 𝑥 𝜕2 𝑓 𝜕𝑥2 = 6𝑥 + 2𝑦3 𝜕2 𝑓 𝜕𝑦2 = 𝜕 𝜕𝑦 ( 𝜕𝑓 𝜕𝑦 ) = 𝜕 𝜕𝑦 (3𝑥2 𝑦2 − 4𝑦) 𝜕2 𝑓 𝜕𝑦2 = 3𝑥2 𝜕 𝜕𝑦 𝑦2 − 4 𝜕 𝜕𝑦 𝑦
  • 12. 𝜕2 𝑓 𝜕𝑦2 = 6𝑥2 𝑦 − 4 𝜕2 𝑓 𝜕𝑥𝜕𝑦 = 𝜕 𝜕𝑥 ( 𝜕𝑓 𝜕𝑦 ) = 𝜕 𝜕𝑥 (3𝑥2 𝑦2 − 4𝑦) 𝜕2 𝑓 𝜕𝑥𝜕𝑦 = 6𝑥𝑦2 𝜕2 𝑓 𝜕𝑦𝜕𝑥 = 𝜕 𝜕𝑦 ( 𝜕𝑓 𝜕𝑥 ) = 3𝑥2 + 2𝑥𝑦3 𝜕2 𝑓 𝜕𝑦𝜕𝑥 = 6𝑥𝑦2 Z= tan−1 ( 𝑥+𝑦 1−𝑥𝑦 ) 𝜕𝑧 𝜕𝑥 = 𝜕 𝜕𝑥 tan−1 ( 𝑥 + 𝑦 1 − 𝑥𝑦 ) = 1 ( 𝑥 + 𝑦 1 − 𝑥𝑦 ) 2 + 1 𝜕𝑧 𝜕𝑥 = 1 ( 𝑥 + 𝑦 1 − 𝑥𝑦 ) 2 + 1 1 ( 1 − 𝑥𝑦 𝜕 𝜕𝑥 (𝑥 + 𝑦) − (𝑥 + 𝑦) 𝜕 𝜕𝑥 (1 − 𝑥𝑦) (1 − 𝑥𝑦)2 ) 𝜕𝑧 𝜕𝑥 = (1 − 𝑥𝑦)2 (𝑥 + 𝑦)2 + (1 − 𝑥𝑦)2 ( 1 − 𝑥𝑦 + 𝑥𝑦 + 𝑦2 (1 − 𝑥𝑦)2 ) 𝜕𝑧 𝜕𝑥 = 1 + 𝑦2 (𝑥 + 𝑦)2 + (1 − 𝑥𝑦)2
  • 13. f(x,y,z)= ℮ 𝑥𝑦𝑧2 f(x,y,z)= 𝜕3 𝑓 𝜕𝑥𝜕𝑦𝜕𝑧 𝜕 𝜕𝑥 ℮ 𝑥𝑦𝑧2 𝜕 𝜕𝑥 (𝑥𝑦𝑧2) = 𝑦𝑧2 ℮ 𝑥𝑦𝑧2 𝜕2 𝑓 𝜕𝑦𝜕𝑧 = 𝜕 𝜕𝑦 𝜕 𝜕𝑥 ℮ 𝑥𝑦𝑧2 = 𝜕 𝜕𝑦 𝑦𝑧2 ℮ 𝑥𝑦𝑧2 = 𝑧2 𝜕 𝜕𝑦 𝑦℮ 𝑥𝑦𝑧2 𝑧2 [𝑦 𝜕 𝜕𝑦 ℮ 𝑥𝑦𝑧2 + ℮ 𝑥𝑦𝑧2 𝜕 𝜕𝑦 𝑦 ] = 𝑧2 [𝑦𝑥𝑧2 ℮ 𝑥𝑦𝑧2 + ℮ 𝑥𝑦𝑧2 ] = = 𝑧2 [𝑦𝑥𝑧2 ℮ 𝑥𝑦𝑧2 + ℮ 𝑥𝑦𝑧2 ] 𝜕3 𝑓 𝜕𝑥𝜕𝑦𝜕𝑧 = 𝜕 𝜕𝑧 𝜕2 𝜕𝑦𝜕𝑥 = 𝜕 𝜕𝑧 (𝑧2 [𝑦𝑥𝑧2 ℮ 𝑥𝑦𝑧2 + ℮ 𝑥𝑦𝑧2 ]) 𝜕3 𝑓 𝜕𝑥𝜕𝑦𝜕𝑧 = 𝑥𝑦 𝜕 𝜕𝑧 𝑧4 ℮ 𝑥𝑦𝑧2 + 𝜕 𝜕𝑧 𝑧2 ℮ 𝑥𝑦𝑧2 𝜕3 𝑓 𝜕𝑥𝜕𝑦𝜕𝑧 = 𝑥𝑦 [𝑧4 𝜕 𝜕𝑧 ℮ 𝑥𝑦𝑧2 + ℮ 𝑥𝑦𝑧2 𝜕 𝜕𝑧 𝑧4 ] + [𝑧2 𝜕 𝜕𝑧 ℮ 𝑥𝑦𝑧2 + ℮ 𝑥𝑦𝑧2 𝜕 𝜕𝑧 𝑧2 ] 𝜕3 𝑓 𝜕𝑥𝜕𝑦𝜕𝑧 = 2𝑥2 𝑦2 𝑧5 ℮ 𝑥𝑦𝑧2 + 4𝑥𝑦𝑧3 ℮ 𝑥𝑦𝑧2 + 2𝑥𝑦𝑧3 ℮ 𝑥𝑦𝑧2 + 2𝑧℮ 𝑥𝑦𝑧2
  • 14. 𝜕3 𝑓 𝜕𝑥𝜕𝑦𝜕𝑧 = ( 2𝑥2 𝑦2 𝑧5 + 6𝑥𝑦𝑧3 + 2𝑧) ℮ 𝑥𝑦𝑧2 F(x) = a Y= a F(x,y) = a Z=a
  • 15. y = a x=a F(x) = x y=x F(x,y)
  • 18. X + 2y + 3z = 6 0 0 z = 2 (0,0,2) 0 y 0 = 3 (0,3,0) x 0 0 = 6 (6,0,0) Derivadas Direccionales Duf = ∇ 𝑓 𝑈 ∇ 𝑓 = 𝑑𝑓 𝑑𝑥 | 𝑎𝑏 𝑖 + 𝑑𝑓 𝑑𝑦 | 𝑎𝑏 𝑗 Máxima derivada ∇ 𝑓 Dirección: ∇ 𝑓 Magnitud |∇ 𝑓|
  • 19. Encontrar la máxima derivada de f(x,y) = x2y3 en el punto (2,3) ∇ 𝑓 = 𝑑𝑓 𝑑𝑥 |2,3 𝑖 + 𝑑𝑓 𝑑𝑦 |2,3 𝑗 ∇ 𝑓 = 2𝑥𝑦3 |2,3 𝑖 + 3𝑥2 𝑦2 |2,3 𝑗 ∇ 𝑓 = 2(2)(3)3 𝑖 + 3(2)2 (3)2 𝑗 ∇ 𝑓 = 108𝑖 + 108𝑗 f(x,y,z) = ℮2𝑥+𝑦+3𝑧 ∇ 𝑓 = 𝑑𝑓 𝑑𝑥 |0,0,0 𝑖 + 𝑑𝑓 𝑑𝑦 |0,0,0 𝑗 + 𝑑𝑓 𝑑𝑧 |0,0,0 𝑘 ∇ 𝑓 = 2 ℮2𝑥+𝑦+3𝑧 |0,0,0 𝑖 + 1 ℮2𝑥+𝑦+3𝑧 |0,0,0 𝑗 + 3 ℮2𝑥+𝑦+3𝑧 |0,0,0 𝑘 ∇ 𝑓 = 2𝑖 + 𝑗 + 3𝑘 Máxima derivada: Dirección: 2𝑖 + 𝑗 + 3𝑘 Magnitud: √(2)2 + (1)2 + (3)2 = √14 = 3.74 Encontrar la derivada direccional f(x,y,z) = xyz2 en el punto (1,0,1) Dirección i + j + k Encontrar su máxima derivada direccional.
  • 20. ∇ 𝑓 = 𝑑𝑓 𝑑𝑥 |1,0,1 𝑖 + 𝑑𝑓 𝑑𝑦 |1,0,1 𝑗 + 𝑑𝑓 𝑑𝑧 |1,0,1 𝑘 ∇ 𝑓 = 𝑦𝑧2 |1,0,1 𝑖 + 𝑥𝑧2 |1,0,1 𝑗 + 2𝑥𝑦𝑧 |1,0,1 𝑘 ∇ 𝑓 = 0𝑖 + 𝑗 + 𝑘 Máxima derivada: Dirección: 0𝑖 + 𝑗 + 𝑘 Magnitud: √02 + (1)2 + (0)2 = √1 = 1 Duf = ∇ 𝑓 𝑈 𝑈 = 𝑖 + 𝑗 + 𝑘 |𝑈| = √3 𝑈 = 𝑖 √3 + 𝑗 √3 + 𝑘 √3 Duf = (0𝑖 + 𝑗 + 𝑘) ( 𝑖 √3 + 𝑗 √3 + 𝑘 √3 ) Duf = 1 √3 Duf = 0.5773
  • 21. f(x,y) = x2 y3-4y (2, -1) dirección 2i + 5j Derivada direccional. Máxima derivada direccional. ∇ 𝑓 = 𝑑𝑓 𝑑𝑥 |2,−1 𝑖 + 𝑑𝑓 𝑑𝑦 |2,−1 𝑗 ∇ 𝑓 = 2𝑥𝑦3 |2,−1 𝑖 + 3𝑥2 𝑦2 − 4|2,−1 𝑗 ∇ 𝑓 = 2(2)(−1)3 |2,−1 𝑖 + 3(2)2 (−1)2 − 4|2,−1 𝑗 ∇ 𝑓 = −4𝑖 + 8𝑗 Máxima derivada: Dirección: −4𝑖 + 8𝑗 Magnitud: √(−4)2 + (8)2 = √80 = 8.94 Duf = ∇ 𝑓 𝑈 𝑈 = 2𝑖 + 5𝑗 |𝑈| = √(2)2 + (5)2 = √29
  • 22. 𝑈 = 2𝑖 √29 + 5𝑗 √29 Duf = (−4𝑖 + 8𝑗) ( 2𝑖 √29 + 5𝑗 √29 ) Duf = 32 √29 Duf = 5.94 Siempre: Máxima derivada direccional > Derivada direccional. Máximos y Mínimos - Función Máximo Mínimo F(c) > f(a) y f(b) F(c) = < f(a) y f(b)
  • 23. - Primera Derivada F’(a) F’(b) + a - → Máximo - a + → Mínimo - Segunda derivada F’(c) = >, 0 Mínimo <, 0 Máximo 𝜕𝑓 𝜕𝑥 = 0 𝜕𝑓 𝜕𝑦 = 0 - Resolver sistema - Encontrar puntos críticos (a,b) 𝐷 = 𝜕2 𝑓 𝜕𝑥2 𝜕2 𝑓 𝜕𝑦2 | 𝑎,𝑏 − ( 𝜕2 𝑓 𝜕𝑥𝜕𝑦 ) 2 | 𝑎,𝑏 𝐷 > 0 𝑦 𝜕2 𝑓 𝜕𝑥2 > 0 𝑀í𝑛𝑖𝑚𝑜 𝐷 > 0 𝑦 𝜕2 𝑓 𝜕𝑥2 < 0 𝑀á𝑥𝑖𝑚𝑜
  • 24. F(x,y) = x4+y4-axy +1 Encontrar, máximos, mínimos, puntos silla. 𝜕𝑓 𝜕𝑥 = 0 𝜕𝑓 𝜕𝑥 = 4𝑥3 − 4𝑦 = 0 𝑦 = 𝑥3 𝜕𝑓 𝜕𝑦 = 0 𝜕𝑓 𝜕𝑦 = 4𝑥3 − 4𝑦 = 0 4𝑥3 − 4𝑥 = 0 4(𝑥3 )3 − 4𝑥 = 0 4𝑥9 − 4𝑥 = 0 4𝑥(𝑥8 − 1) = 0 𝑥8 = 1 X= +1 X= -1 Si: X= 0 y=0 x=1 y=1 X= -1 y=-1
  • 25. Puntos críticos: (0,0) (1,1) (-1,-1) 𝜕2 𝑓 𝜕𝑥2 = 12𝑥 𝜕2 𝑓 𝜕𝑦2 = 12𝑦2 𝜕2 𝑓 𝜕𝑥𝜕𝑦 = −4 (a,b) ( 𝜕2 𝑓 𝜕𝑥2 ) | 𝑎,𝑏 ( 𝜕2 𝑓 𝜕𝑦2 ) | 𝑎,𝑏 ( 𝜕2 𝑓 𝜕𝑥2 ) ( 𝜕2 𝑓 𝜕𝑦2 ) − ( 𝜕2 𝑓 𝜕𝑥𝜕𝑦 ) 2 Máximos Mínimos Puntos Silla 0,0 0 0 -(-4)2 = -16 D= -16 Punto silla 1,1 12 12 (12)(12) -(-4)2 = 128 D= 128 Mínimo -1,-1 12 12 (12)(12) -(-4)2 = 128 D= 128 Mínimo a) 𝑥2 + 3𝑥𝑦 + 𝑦2 b) 𝑥2 + 2𝑥𝑦 + 𝑦2 c) 𝑥2 + 𝑥𝑦 + 𝑦2 a) F(x,y) = 𝑥2 + 3𝑥𝑦 + 𝑦2 𝜕𝑓 𝜕𝑥 = 0 2𝑥 + 3𝑦 = 0 → 𝑥 = − 3 2 𝑦 𝜕𝑓 𝜕𝑦 = 0 3𝑥 + 2𝑦 = 0
  • 26. 3(− 3 2 𝑦) + 2𝑦 = 0 (− 9 2 + 2) 𝑦 = 0 𝑦 = 0  𝑥 = 0 Punto crítico: (0,0) 𝜕2 𝑓 𝜕𝑥2 = 2 𝜕2 𝑓 𝜕𝑦2 = 2 𝜕2 𝑓 𝜕𝑥𝜕𝑦 = 3 D= (2)(2) – (3)2 = 4-9 = -5 D<0 → Punto silla (0,0) b) 𝑥2 + 2𝑥𝑦 + 𝑦2 𝜕𝑓 𝜕𝑥 = 0 2𝑥 + 2𝑦 = 0 → 𝑥 = −𝑦 𝜕𝑓 𝜕𝑦 = 0 2𝑥 + 2𝑦 = 0 2(−𝑦) + 2𝑦 = 0
  • 27. 0 = 0 𝜕2 𝑓 𝜕𝑥2 = 2 𝜕2 𝑓 𝜕𝑦2 = 2 𝜕2 𝑓 𝜕𝑥𝜕𝑦 = 2 D= (2)(2) – (2)2 = 0 No existe información para concluirla c) 𝑥2 + 𝑥𝑦 + 𝑦2 𝜕𝑓 𝜕𝑥 = 0 2𝑥 + 𝑦 = 0 → 𝑦 = −2𝑥 𝜕𝑓 𝜕𝑦 = 0 2𝑦 + 𝑥 = 0 2(−2𝑥) + 𝑥 = 0 −3𝑥 = 0 𝑥 = 0 𝑦 = 0  𝑥 = 0 Punto crítico: (0,0)
  • 28. 𝜕2 𝑓 𝜕𝑥2 = 2 𝜕2 𝑓 𝜕𝑦2 = 2 𝜕2 𝑓 𝜕𝑥𝜕𝑦 = 1 D= (2)(2) – (1)2 = 3 D>0 𝜕2 𝑓 𝜕𝑥2 > 0  𝑀í𝑛𝑖𝑚𝑜 F(x,y) = x + y + 1/xy Encontrar, máximos, mínimos, puntos silla 𝜕𝑓 𝜕𝑥 = 𝜕 𝜕𝑥 𝑥 + 1 𝑦 𝜕 𝜕𝑥 𝑥−1 = 1 − 1 𝑥2 𝑦 = 0 1 = 1 𝑥2 𝑦 𝑦 = 1 𝑥2
  • 29. Integrales Dobles  Tipo 1 𝐴 = ∫ ∫ 𝑑𝑦 𝑑𝑥 𝑓(𝑥) 𝑔(𝑥) 𝑏 𝑎  Tipo 2 𝐴 = ∫ ∫ 𝑑𝑥 𝑑𝑦 𝑓(𝑥) 𝑔(𝑥) 𝑑 𝑐
  • 30. Encontrar el área entre las parábolas y= 2x2 y= 1 + x2 2𝑥2 = 1 + 𝑥2 𝑥2 = 1 → 𝑥 = ±1 𝐴 = ∫ 𝑥=1 𝑥=−1 𝐴 = ∫ [(1 + 𝑥2) − 2𝑥2] 𝑑𝑥 1 −1 𝐴 = ∫ [(1 + 𝑥2)] 𝑑𝑥 1 −1 = ∫ 𝑑𝑥 1 −1 − ∫ 𝑥2 𝑑𝑥 1 −1 𝐴 = 𝑥|−1 1 − 𝑥3 3 𝑥|−1 1 𝐴 = 1 − (1) − 1 3 + (− 1 3 ) =
  • 31. 4 3 𝑈2 ∫ ∫ 𝑑𝑥 𝑑𝑦 √ 𝑦 0 4 0 = ∫ [𝑦2 ∫ 𝑥 𝑑𝑥 √ 𝑦 0 ] 4 0 𝑑𝑦 = ∫ 𝑦2 𝑥2 2 |0 √ 𝑦 4 0 𝑑𝑦 = ∫ 𝑦2 [ (√ 𝑦) 2 2 − 02 2 ] 4 0 𝑑𝑦 = ∫ 𝑦2 [ 𝑦 2 ] 4 0 = 1 2 ∫ 𝑦3 𝑑𝑦 4 0 = 1 2 𝑦4 4 |0 4 = 1 8 [(4)2 − 02 )] = 32 ∫ ∫ (𝑥 − 𝑦)𝑑𝑦 𝑑𝑥 2 2𝑥 1 0 = ∫ 𝑥 [∫ 𝑑𝑦 − 2 2𝑥 ∫ 𝑦𝑑𝑦 2 2𝑥 ] 1 0 𝑑𝑥 = ∫ [𝑥𝑦 |2𝑥 2 1 0 − 𝑦2 2 |2𝑥 2 ]𝑑𝑥 ∫ [𝑥(2 − 2𝑥) − ( 22 2 − 4𝑥2 2 )] 𝑑𝑥 1 0 ∫ (2𝑥 − 2𝑥2 − 2 + 2𝑥2)𝑑𝑥 1 0 = −1 ∫ ∫ cos(𝑠3 ) 𝑑𝑡 𝑑𝑠 𝑠2 0 1 0 = ∫ [cos(𝑠3 ) ∫ 𝑑𝑡 ] 𝑑𝑠 𝑠2 0 1 0 = ∫ [cos(𝑠3) (𝑠2 − 0)𝑑𝑠 1 0 = ∫ 𝑠2 cos(𝑠3) 𝑑𝑠 1 0 = 1 3 𝑠𝑒𝑛(𝑠3) |0 1
  • 32. = 1 3 𝑠𝑒𝑛(1) ∫ ∫ 𝑦 𝑥5 + 1 𝑑𝑦𝑑𝑥 𝑥2 0 1 0 = ∫ [ 1 𝑥5 + 1 1 0 𝑦2 2 |0 𝑥2 ]𝑑𝑥 = 1 2 ∫ [ 1 𝑥5 + 1 1 0 (𝑥2)2 ]𝑑𝑥 = 1 2 ∫ [ 𝑥4 𝑥5 + 1 1 0 = 1 10 ∫ 𝑑𝑢 𝑢 1 0 = 1 10 ln(𝑥5 + 1) |0 1 = 1 10 ln(2) ∫ ∫ 𝑥 𝑑𝑦𝑑𝑥 𝑠𝑒𝑛(𝑥) 0 П 0 = ∫ [𝑥 ∫ 𝑑𝑦] 𝑑𝑥 𝑠𝑒𝑛(𝑥) 0 П 0 = ∫ 𝑥 (𝑦|0 𝑠𝑒𝑛𝑥)𝑑𝑥 П 0 = ∫ 𝑥 𝑠𝑒𝑛(𝑥) 𝑑𝑥 П 0 −𝑥 cos(𝑥) |0 П + 𝑠𝑒𝑛 𝑥|0 П = П ∫ ∫ 𝑥3 𝑑𝑦𝑑𝑥 ln 𝑥 0 ℮ 0 = ∫ ( 𝑥3 ℮ 0 ∫ 𝑑𝑦) ln 𝑥 0 𝑑𝑥 = ∫ 𝑥3 𝑦|0 ln 𝑥 ℮ 0 𝑑𝑥 = ∫ 𝑥3 ln 𝑥 𝑑𝑥 ℮ 0 = 𝑥4 4 ln(𝑥) |0 ℮ − 1 16 𝑥4 |0 ℮ = 3 16 ℮4
  • 33. Cambio de orden de integración ∫ ∫ 𝑑𝑥𝑑𝑦 𝑥=√ 𝑦 𝑥=0 𝑦=4 𝑦=0 ∫ ∫ 𝑑𝑦𝑑𝑥 4 𝑥2 2 0
  • 34. ∫ ∫ 𝑑𝑦𝑑𝑥 𝑦=2 𝑦=2𝑥 𝑥=1 𝑥=0 ∫ ∫ 𝑑𝑥𝑑𝑦 𝑥= 𝑦 2 𝑥=0 𝑦=2 𝑦=0
  • 35. ∫ ∫ 𝑑𝑦𝑑𝑥 𝑠𝑒𝑛 𝑥 0 П 0 ∫ ∫ 𝑑𝑥𝑑𝑦 П 2 𝐴𝑟𝑐𝑠𝑒𝑛 𝑦 1 0
  • 36. Dobles Integrales ∬ 𝑦2 𝑑𝐴 𝐷 ∫ ∫ 𝑦2 𝑦 −𝑦−2 1 −1 𝑑𝑥𝑑𝑦 D = (x,y) -1<y<1 , -y-2<x<y ∫ ∫ 𝑦2 𝑦 −𝑦−2 1 −1 𝑑𝑥𝑑𝑦 = ∫ (𝑦2 ∫ 𝑑𝑥) 𝑦 −𝑦−2 1 −1 𝑑𝑦 = ∫ (𝑦2 1 −1 𝑥|−𝑦−2 𝑦 )𝑑𝑦 ∫ (𝑦2)(2𝑦 + 2) 1 −1 𝑑𝑦 = ∫ (2𝑦3 + 2𝑦2)𝑑𝑦 1 −1 = 4 3 𝑈2 ∬ 𝑦 𝑥5 + 1 𝑑𝐴 𝐷 D= (x,y) 0<x< П 0<y<x2 ∫ ∫ 𝑦 𝑥5 + 1 𝑥2 0 𝑑𝑦𝑑𝑥 П 0 ∫ ∫ 𝑦 𝑥5 + 1 𝑥2 0 𝑑𝑦𝑑𝑥 П 0 = ∫ ( 1 𝑥5 + 1 ∫ 𝑦 𝑥2 0 𝑑𝑦) 𝑑𝑥 П 0
  • 37. ∫ ( 1 𝑥5 + 1 𝑦2 2 |0 𝑥2 ) 𝑑𝑥 П 0 = 1 2 ∫ ( 𝑥4 𝑥5 + 1 ) 𝑑𝑥 П 0 = 1 10 ∫ ( 𝑑𝑢 𝑢 ) 𝑑𝑢 П 0 1 10 ln(𝑥5 + 1)|0 𝑥2 = 0.5726 ∫ ∫ 𝑥𝑐𝑜𝑠𝑦 𝑥2 0 𝑑𝑦𝑑𝑥 1 0 = ∫ (𝑥 ∫ 𝑐𝑜𝑠𝑦 𝑥2 0 𝑑𝑦) 𝑑𝑥 1 0 = ∫ (𝑥𝑠𝑒𝑛 𝑦|0 𝑥2 )𝑑𝑥 1 0 = ∫ (𝑥𝑠𝑒𝑛 (𝑥2) 1 0 = − 1 2 cos(𝑥2) |0 1 = 0.2298 ∬ 𝑦2 𝑑𝐴 𝐷 D región triangular cuyos vértices son: (0,1), (1,2), (4,1) 𝑚 = ∆𝑥 ∆𝑦 = 2 − 1 1 − 0 = 1 𝑦 = 𝑚𝑥 + 𝑏 𝑦 = 1 + 𝑥 𝑚 = ∆𝑥 ∆𝑦 = 1 − 2 4 − 1 = − 1 3
  • 38. 𝑦 = − 1 3 𝑥 + 7 3 ∫ ∫ 𝑦2 ++1 0 𝑑𝑦𝑑𝑥 1 0 + ∫ ∫ 𝑦2 − 1 3 𝑥+ 7 3 1 𝑑𝑦𝑑𝑥 4 1 ∫ 𝑦3 3 |1 𝑥+1 𝑑𝑥 1 0 + ∫ 𝑦3 3 |1 − 1 3 𝑥+ 7 3 𝑑𝑥 4 1 = 1 3 ∫ (𝑥3 + 3𝑥2 + 3𝑥 + 1 − 1) 1 0 𝑑𝑥 + 1 3 ∫ (− 1 27 𝑥3 + 7 9 𝑥2 − 49 9 𝑥 + 343 9 − 1) 𝑑𝑥 = 4 1 11 3 ∬(𝑥2 + 2𝑦)𝑑𝐴 Y = x y = x3 x>= 0 ∫ ∫ (𝑥2 + 2𝑦)𝑑𝑦𝑑𝑥 𝑥 𝑥3 1 0 ∬ 𝑥𝑦2 𝑑𝐴 𝐷 D (x=0) 𝑥 = √1 − 𝑦2
  • 39. ∫ ∫ 𝑥𝑦2 𝑑𝑥𝑑𝑦 √1−𝑦2 0 = 1 −1 ∫ [𝑦2 ( 𝑥 ∫ 𝑑𝑥)]𝑑𝑦 √1−𝑦2 0 1 −1 = ∫ ( 𝑦2 2 1 −1 𝑥2 |0 √1−𝑦2 ) 𝑑𝑦 ∫ ( 𝑦2 2 1 −1 ) (√1 − 𝑦2) 2 𝑑𝑦 = 1 2 ∫ (𝑦2 − 𝑦4 )𝑑𝑦 1 −1 = 1 6 𝑦3 |−1 1 − 1 10 𝑦5 |−1 1 = 2 15 Área: R = cos 2 𝐴 = ∫ ∫ 𝑟𝑑𝑟𝑑𝜃 𝑟 𝑟 𝜃 𝜃 𝐴 = 8 ∫ ∫ 𝑟𝑑𝑟𝑑𝜃 𝐶𝑜𝑠 2𝜃 0 П 4 0 = ∫ 𝑟2 2 П 4 0 |0 𝐶𝑜𝑠 2𝜃 = 8 2 ∫ cos2 2 П 4 0 𝑑 = 2𝜃|0 П 4 + 1 2 𝑠𝑒𝑛(4𝜃)|0 П 4 = П 2
  • 40. Integrales Polares ∬ 𝑠𝑒𝑛 ()𝑑𝐴 𝑅 R= fuera circulo: r= 2 Dentro cardiode: r= 2+2 cos  ∫ ∫ 𝑟𝑠𝑒𝑛() 𝑟=2+2cos() 𝑟=2 П 2 0 𝑑𝑟𝑑 ∫ ∫ 𝑟𝑠𝑒𝑛() 𝑟=2+2cos() 𝑟=2 П 2 0 𝑑𝑟𝑑 = ∫ 𝑠𝑒𝑛() ∫ 𝑟 2+2cos() 2 𝑑𝑟𝑑 П 2 0 = = ∫ 𝑠𝑒𝑛()[8𝑐𝑜𝑠 + 4 cos2  П 2 0 ]𝑑 = 8 ∫ 𝑠𝑒𝑛()𝑐𝑜𝑠 𝑑 + 4 ∫ 𝑠𝑒𝑛() cos2  П 2 0 П 2 0 𝑑 = 4𝑠𝑒𝑛2  |0 П 2 − 4 3 cos3  |0 П 2 = 16 3 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 𝑧 = ±√𝑎2 − 𝑥2 − 𝑦2 𝑉 = 2 ∬ √𝑎2 − 𝑥2 − 𝑦2 𝑅 𝑑𝐴 𝑟2 = 𝑥2 + 𝑦2 
  • 41. 𝑉 = 2 ∫ ∫ √ 𝑎2 − 𝑟2 9 0 П 2 0 𝑟𝑑𝑟𝑑 = 8 3 ∫ 𝑎3 𝑑 П 2 0 = 4 3 𝑎3 П ∫ ∫ 𝑟2 𝑟 𝑑𝑟𝑑 1 0 П 2 0 = ∫ ∫ 𝑟3 𝑑𝑟𝑑 1 0 П 2 0 = ∫ 𝑟4 4 |0 1 𝑑 П 2 0 = 1 4 ∫ 𝑑 П 2 0 = 1 8 П ∫ ∫ 𝑟 𝑑𝑟𝑑 2 0 𝐴𝑟𝑐𝑡𝑔2 0𝐴𝑟𝑐𝑡𝑔 1 3 = ∫ 𝑟2 2 𝐴𝑟𝑐𝑡𝑔2 0𝐴𝑟𝑐𝑡𝑔 1 3 |0 2 𝑑 = 1 2 ∫ (2)2 𝐴𝑟𝑐𝑡𝑔2 0𝐴𝑟𝑐𝑡𝑔 1 3 𝑑 = 2 ∫ 𝑑 = 𝐴𝑟𝑐𝑡𝑔2 0𝐴𝑟𝑐𝑡𝑔 1 3 1.5707 Encontrar el área de las gráficas polares. 1) R= 3 + 3 sin t 2 ∫ ∫ 𝑟 𝑑𝑟𝑑 3+3𝑠𝑒𝑛() 0 3 2 П П 2 = ∫ 𝑟2 |0 3+3𝑠𝑒𝑛() 3 2 П П 2 𝑑 = ∫ 3 2 П П 2 (3 + 3𝑠𝑒𝑛()) 2 𝑑 = ∫ 3 2 П П 2 (9 + 18 𝑠𝑒𝑛  + 9 𝑠𝑒𝑛2  )𝑑 =
  • 42. 9П + 9 2 П 2) R = cos  2 ∫ ∫ 𝑟 𝑑𝑟𝑑 2+cos 0 П 0 = ∫ 𝑟2 П 0 |0 2+cos = ∫ (2 + cos ) П 0 2 = ∫ (4 + 4 cos  + cos2 ) П 0 𝑑 = 14.1371 3) R = 2 sen  2 ∫ ∫ 𝑟 𝑑𝑟𝑑 2 𝑠𝑒𝑛  0 1 6 П 0 + 2 ∫ ∫ 𝑟 𝑑𝑟𝑑 1 0 П 2 П 6 = ∫ 𝑟2 1 6 П 0 |0 2 𝑠𝑒𝑛 () 𝑑 + ∫ 𝑟2 П 2 П 6 |0 1 𝑑 = ∫ (2 𝑠𝑒𝑛 ())2 1 6 П 0 𝑑 + ∫ 𝑑 П 2 П 6 = ∫ 4 𝑠𝑒𝑛2 () 1 6 П 0 𝑑 + |П 6 П 2 = 1.2283
  • 43. 4) R= 5 cos 3 2 ∫ ∫ 4 𝑟 𝑑𝑟𝑑 5 𝑐𝑜𝑠 3 0 1 6 П 0 = 4 ∫ 𝑟2 1 6 П 0 |0 5 cos3 = 4 ∫ (5 cos 3)2 1 6 П 0 = 100 ∫ cos2 3 1 6 П 0 = 26.1799 5) Z = √𝑥2 + 𝑦2 Z= 0 𝑍 = 4 ∫ ∫ √𝑥2 + 𝑦2 5 0 𝑟𝑑𝑟𝑑 П 2 0 = 4 ∫ ∫ √ 𝑟2 5 0 𝑟𝑑𝑟𝑑 П 2 0 = 4 ∫ ∫ 𝑟2 5 0 𝑑𝑟𝑑 П 2 0 = 4 3 ∫ 𝑟3 |0 5 𝑑 П 2 0 = 4 3 ∫ (5)3 𝑑 П 2 0 = 500 3 ∫ 𝑑 П 2 0 = 261.7993
  • 44. 6) 𝑥2 + 𝑦2 = 4 𝑧 = √9 − 𝑥2 − 𝑦2 𝑧 = 0 𝑟 = 4 ∫ ∫ √9 − 𝑥2 − 𝑦2 2 0 𝑟𝑑𝑟𝑑 П 2 0 = 4 ∫ ∫ √9 − 𝑟2 2 0 𝑟𝑑𝑟𝑑 П 2 0 = −2 ∫ ∫ 𝑢 1 2 2 0 𝑑𝑢𝑑 П 2 0 = − 4 3 ∫ 𝑢 3 2|0 2 𝑑 П 2 0 = − 4 3 ∫ (9 − 𝑟2)( 3 2 ) |0 2 𝑑 П 2 0 = −23.4153 7) 𝑥2 + 𝑦2 = 1 𝑧 = √16 − 𝑥2 − 𝑦2 𝑥2 + 𝑦2 = 9 𝑧 = 0 = 4 ∫ ∫ √16 − 𝑥2 − 𝑦2 3 0 𝑟𝑑𝑟𝑑 П 2 0 = 4 ∫ ∫ √16 − 𝑟2 3 0 𝑟𝑑𝑟𝑑 П 2 0 = −2 ∫ ∫ 𝑢 1 2 3 0 𝑑𝑢𝑑 П 2 0 = − 4 3 ∫ 𝑢 3 2|0 3 𝑑 П 2 0 = − 4 3 ∫ (16 − 𝑟2)( 3 2 ) |0 3 𝑑 П 2 0 = 82.87
  • 45. 25) 𝑦 = √9 − 𝑥2 𝑦2 = 9 − 𝑥2 𝑥2 + 𝑦2 = 9 ∫ ∫ √𝑥2 + 𝑦2 √9−𝑥2 0 𝑑𝑦𝑑𝑥 3 −3 = 2 ∫ ∫ √ 𝑟2 3 0 𝑟𝑑𝑟𝑑 П 2 0 = 2 ∫ ∫ 𝑟2 3 0 𝑑𝑟𝑑 П 2 −3 = 2 3 ∫ 𝑟3 |0 3 𝑑 П 2 0 = 18 ∫ 𝑑 П 2 0 = 9П