SlideShare a Scribd company logo
Enviar pesquisa
Carregar
Entrar
Cadastre-se
Database , 8 Query Optimization
Denunciar
Ali Usman
Seguir
Telecom Tech em Trango Pakistan
3 de Apr de 2014
•
0 gostou
•
7,208 visualizações
1
de
53
Database , 8 Query Optimization
3 de Apr de 2014
•
0 gostou
•
7,208 visualizações
Baixar agora
Baixar para ler offline
Denunciar
Tecnologia
Negócios
Ali Usman
Seguir
Telecom Tech em Trango Pakistan
Recomendados
Distributed DBMS - Unit 8 - Distributed Transaction Management & Concurrency ...
Gyanmanjari Institute Of Technology
15.5K visualizações
•
46 slides
Concurrency Control in Distributed Database.
Meghaj Mallick
1.1K visualizações
•
20 slides
Database ,11 Concurrency Control
Ali Usman
3.9K visualizações
•
39 slides
Database , 12 Reliability
Ali Usman
9.1K visualizações
•
61 slides
Lec 7 query processing
Md. Mashiur Rahman
15.3K visualizações
•
48 slides
Query Decomposition and data localization
Hafiz faiz
8.9K visualizações
•
42 slides
Mais conteúdo relacionado
Mais procurados
Distributed design alternatives
Pooja Dixit
4K visualizações
•
11 slides
Ddbms1
pranjal_das
1.2K visualizações
•
19 slides
Database , 4 Data Integration
Ali Usman
4.4K visualizações
•
31 slides
8 queens problem using back tracking
Tech_MX
187.5K visualizações
•
51 slides
Distributed database
ReachLocal Services India
62.9K visualizações
•
27 slides
management of distributed transactions
Nilu Desai
9.4K visualizações
•
30 slides
Mais procurados
(20)
Distributed design alternatives
Pooja Dixit
•
4K visualizações
Ddbms1
pranjal_das
•
1.2K visualizações
Database , 4 Data Integration
Ali Usman
•
4.4K visualizações
8 queens problem using back tracking
Tech_MX
•
187.5K visualizações
Distributed database
ReachLocal Services India
•
62.9K visualizações
management of distributed transactions
Nilu Desai
•
9.4K visualizações
15. Transactions in DBMS
koolkampus
•
79.6K visualizações
Distribution transparency and Distributed transaction
shraddha mane
•
4.4K visualizações
Distributed dbms architectures
Pooja Dixit
•
9.7K visualizações
Distributed DBMS - Unit 1 - Introduction
Gyanmanjari Institute Of Technology
•
11.6K visualizações
Concurrency control
Subhasish Pati
•
9.8K visualizações
Load Balancing in Parallel and Distributed Database
Md. Shamsur Rahim
•
3K visualizações
Distributed concurrency control
Binte fatima
•
7.4K visualizações
Transactions and Concurrency Control
Dilum Bandara
•
4K visualizações
DISTRIBUTED DATABASE WITH RECOVERY TECHNIQUES
AAKANKSHA JAIN
•
3.1K visualizações
distributed shared memory
Ashish Kumar
•
100.1K visualizações
16. Concurrency Control in DBMS
koolkampus
•
39.3K visualizações
Distributed Query Processing
Mythili Kannan
•
14.7K visualizações
Concurrency control
Soumyajit Dutta
•
1.3K visualizações
DDBMS Paper with Solution
Gyanmanjari Institute Of Technology
•
4.8K visualizações
Destaque
Query optimization
dixitdavey
24.1K visualizações
•
24 slides
14. Query Optimization in DBMS
koolkampus
27.9K visualizações
•
70 slides
13. Query Processing in DBMS
koolkampus
43.6K visualizações
•
49 slides
Nitish 007
Nitish sharma
145 visualizações
•
31 slides
Database system-DBMS
ikjsamuel
3K visualizações
•
20 slides
Characteristic of dabase approach
Luina Pani
12.3K visualizações
•
16 slides
Destaque
(20)
Query optimization
dixitdavey
•
24.1K visualizações
14. Query Optimization in DBMS
koolkampus
•
27.9K visualizações
13. Query Processing in DBMS
koolkampus
•
43.6K visualizações
Nitish 007
Nitish sharma
•
145 visualizações
Database system-DBMS
ikjsamuel
•
3K visualizações
Characteristic of dabase approach
Luina Pani
•
12.3K visualizações
Data model and entity relationship
Knowledge Center Computer
•
1.1K visualizações
physical and logical data independence
apoorva_upadhyay
•
68K visualizações
6 Data Modeling for NoSQL 2/2
Fabio Fumarola
•
12K visualizações
MS Sql Server: Introduction To Database Concepts
DataminingTools Inc
•
10.9K visualizações
Database administrator
Tech_MX
•
38.9K visualizações
Dbms slides
rahulrathore725
•
112K visualizações
Single User v/s Multi User Databases
Raminder Pal Singh
•
59.5K visualizações
Database ,16 P2P
Ali Usman
•
1.5K visualizações
Query Optimization
rohitsalunke
•
1.9K visualizações
Database ,10 Transactions
Ali Usman
•
3.4K visualizações
Database , 13 Replication
Ali Usman
•
4.7K visualizações
Database ,2 Background
Ali Usman
•
1.2K visualizações
Database , 6 Query Introduction
Ali Usman
•
2.1K visualizações
Query processing
Deepak Singh
•
7.8K visualizações
Similar a Database , 8 Query Optimization
6-Query_Intro (5).pdf
JaveriaShoaib4
5 visualizações
•
15 slides
Database ,7 query localization
Ali Usman
5.7K visualizações
•
27 slides
Database, 3 Distribution Design
Ali Usman
7.9K visualizações
•
66 slides
Database ,18 Current Issues
Ali Usman
1.9K visualizações
•
59 slides
Algorithms for Query Processing and Optimization of Spatial Operations
Natasha Mandal
837 visualizações
•
42 slides
The Power of Motif Counting Theory, Algorithms, and Applications for Large Gr...
Nesreen K. Ahmed
987 visualizações
•
72 slides
Similar a Database , 8 Query Optimization
(20)
6-Query_Intro (5).pdf
JaveriaShoaib4
•
5 visualizações
Database ,7 query localization
Ali Usman
•
5.7K visualizações
Database, 3 Distribution Design
Ali Usman
•
7.9K visualizações
Database ,18 Current Issues
Ali Usman
•
1.9K visualizações
Algorithms for Query Processing and Optimization of Spatial Operations
Natasha Mandal
•
837 visualizações
The Power of Motif Counting Theory, Algorithms, and Applications for Large Gr...
Nesreen K. Ahmed
•
987 visualizações
Data structures assignmentweek4b.pdfCI583 Data Structure
OllieShoresna
•
3 visualizações
Parallel kmeans clustering in Erlang
Chinmay Patel
•
179 visualizações
Query Optimization - Brandon Latronica
"FENG "GEORGE"" YU
•
402 visualizações
Efficient Query Processing in Web Search Engines
Simon Lia-Jonassen
•
2K visualizações
Visualizing botnets with t-SNE
muayyad alsadi
•
502 visualizações
IJSETR-VOL-3-ISSUE-12-3358-3363
SHIVA REDDY
•
183 visualizações
MapReduceAlgorithms.ppt
CheeWeiTan10
•
3 visualizações
Planet
Aparv Vadde
•
369 visualizações
Os8
issbp
•
510 visualizações
Distributed Decision Tree Induction
gregoryg
•
1.4K visualizações
Hadoop Map Reduce OS
Vedant Mane
•
20 visualizações
Advanced Non-Relational Schemas For Big Data
Victor Smirnov
•
7K visualizações
Ch13
Welly Dian Astika
•
382 visualizações
Memory unmanglement
Workhorse Computing
•
330 visualizações
Mais de Ali Usman
Cisco Packet Tracer Overview
Ali Usman
22.3K visualizações
•
33 slides
Islamic Arts and Architecture
Ali Usman
4.5K visualizações
•
54 slides
Database , 17 Web
Ali Usman
1.2K visualizações
•
55 slides
Database , 15 Object DBMS
Ali Usman
1.1K visualizações
•
20 slides
Database ,14 Parallel DBMS
Ali Usman
3.1K visualizações
•
48 slides
Database , 5 Semantic
Ali Usman
2K visualizações
•
40 slides
Mais de Ali Usman
(19)
Cisco Packet Tracer Overview
Ali Usman
•
22.3K visualizações
Islamic Arts and Architecture
Ali Usman
•
4.5K visualizações
Database , 17 Web
Ali Usman
•
1.2K visualizações
Database , 15 Object DBMS
Ali Usman
•
1.1K visualizações
Database ,14 Parallel DBMS
Ali Usman
•
3.1K visualizações
Database , 5 Semantic
Ali Usman
•
2K visualizações
Database , 1 Introduction
Ali Usman
•
7K visualizações
Processor Specifications
Ali Usman
•
1.7K visualizações
Fifty Year Of Microprocessor
Ali Usman
•
662 visualizações
Discrete Structures lecture 2
Ali Usman
•
11.1K visualizações
Discrete Structures. Lecture 1
Ali Usman
•
29.5K visualizações
Muslim Contributions in Medicine-Geography-Astronomy
Ali Usman
•
9K visualizações
Muslim Contributions in Geography
Ali Usman
•
26.3K visualizações
Muslim Contributions in Astronomy
Ali Usman
•
6.9K visualizações
Processor Specifications
Ali Usman
•
1.4K visualizações
Ptcl modem (user manual)
Ali Usman
•
68.7K visualizações
Nimat-ul-ALLAH shah wali
Ali Usman
•
1.1K visualizações
Muslim Contributions in Mathematics
Ali Usman
•
27.5K visualizações
Osi protocols
Ali Usman
•
1.6K visualizações
Último
Document Understanding as Cloud APIs and Generative AI Pre-labeling Extractio...
DianaGray10
146 visualizações
•
11 slides
Announcing InfluxDB Clustered
InfluxData
65 visualizações
•
30 slides
Experts Live Europe 2023 - Ensure your compliance in Microsoft Teams with Mic...
Jasper Oosterveld
87 visualizações
•
76 slides
Product Research Presentation-Maidy Veloso.pptx
MaidyVeloso
22 visualizações
•
23 slides
Accelerating Data Science through Feature Platform, Transformers, and GenAI
FeatureByte
170 visualizações
•
46 slides
Google Cloud Study Jams Info Session
GDSCPCCE
64 visualizações
•
13 slides
Último
(20)
Document Understanding as Cloud APIs and Generative AI Pre-labeling Extractio...
DianaGray10
•
146 visualizações
Announcing InfluxDB Clustered
InfluxData
•
65 visualizações
Experts Live Europe 2023 - Ensure your compliance in Microsoft Teams with Mic...
Jasper Oosterveld
•
87 visualizações
Product Research Presentation-Maidy Veloso.pptx
MaidyVeloso
•
22 visualizações
Accelerating Data Science through Feature Platform, Transformers, and GenAI
FeatureByte
•
170 visualizações
Google Cloud Study Jams Info Session
GDSCPCCE
•
64 visualizações
Product Research Presentation-Maidy Veloso.pptx
MaidyVeloso
•
35 visualizações
Netwitness RT - Don’t scratch that patch.pptx
Stefano Maccaglia
•
105 visualizações
Die ultimative Anleitung für HCL Nomad Web Administratoren
panagenda
•
73 visualizações
Product Listing Presentation_Cathy.pptx
CatarinaTorrenuevaMa
•
79 visualizações
GIT AND GITHUB (1).pptx
GDSCCVRGUPoweredbyGo
•
22 visualizações
Getting your enterprise ready for Microsoft 365 Copilot
Vignesh Ganesan I Microsoft MVP
•
167 visualizações
UiPath Tips and Techniques for Debugging - Session 3
DianaGray10
•
38 visualizações
sap.pptx
SAP
•
34 visualizações
GDSC Cloud Lead Presentation.pptx
AbhinavNautiyal8
•
62 visualizações
Need for Speed: Removing speed bumps in API Projects
Łukasz Chruściel
•
103 visualizações
Scaling out with WordPress
Konstantin Kovshenin
•
58 visualizações
Privacy in the era of quantum computers
Speck&Tech
•
86 visualizações
How is AI changing journalism? Strategic considerations for publishers and ne...
Damian Radcliffe
•
94 visualizações
Future of Skills
Alison B. Lowndes
•
65 visualizações
Database , 8 Query Optimization
1.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/1 Outline • Introduction • Background • Distributed Database Design • Database Integration • Semantic Data Control • Distributed Query Processing ➡ Overview ➡ Query decomposition and localization ➡ Distributed query optimization • Multidatabase Query Processing • Distributed Transaction Management • Data Replication • Parallel Database Systems • Distributed Object DBMS • Peer-to-Peer Data Management • Web Data Management • Current Issues
2.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/2 Step 3 – Global Query Optimization Input: Fragment query • Find the best (not necessarily optimal) global schedule ➡ Minimize a cost function ➡ Distributed join processing ✦ Bushy vs. linear trees ✦ Which relation to ship where? ✦ Ship-whole vs ship-as-needed ➡ Decide on the use of semijoins ✦ Semijoin saves on communication at the expense of more local processing. ➡ Join methods ✦ nested loop vs ordered joins (merge join or hash join)
3.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/3 Cost-Based Optimization • Solution space ➡ The set of equivalent algebra expressions (query trees). • Cost function (in terms of time) ➡ I/O cost + CPU cost + communication cost ➡ These might have different weights in different distributed environments (LAN vs WAN). ➡ Can also maximize throughput • Search algorithm ➡ How do we move inside the solution space? ➡ Exhaustive search, heuristic algorithms (iterative improvement, simulated annealing, genetic,…)
4.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/4 Query Optimization Process Search Space Generation Search Strategy Equivalent QEP Input Query Transformation Rules Cost Model Best QEP
5.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/5 Search Space • Search space characterized by alternative execution • Focus on join trees • For N relations, there are O(N!) equivalent join trees that can be obtained by applying commutativity and associativity rules SELECT ENAME,RESP FROM EMP, ASG,PROJ WHERE EMP.ENO=ASG.ENO AND ASG.PNO=PROJ.PNO PROJ ASGEMP PROJ ASG EMP PROJ ASG EMP × ▷◁PNO ▷◁ENO ▷◁PNO ▷◁ENO ▷◁ENO,PNO
6.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/6 Search Space Restrict by means of heuristics Perform unary operations before binary operations … Restrict the shape of the join tree ➡ Consider only linear trees, ignore bushy ones Linear Join Tree Bushy Join Tree R2R1 R3 R4 R2R1 R4R3 ⋈ ⋈ ⋈ ⋈ ⋈ ⋈
7.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/7 Search Strategy How to “move” in the search space. Deterministic Start from base relations and build plans by adding one relation at each step Dynamic programming: breadth-first Greedy: depth-first Randomized Search for optimalities around a particular starting point Trade optimization time for execution time Better when > 10 relations Simulated annealing Iterative improvement
8.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/8 Search Strategies • Deterministic R2R1 R3 R4 R2R1 R2R1 R3 R2R1 R3 R3R1 R2 • Randomized ⋈⋈ ⋈ ⋈ ⋈ ⋈ ⋈ ⋈ ⋈ ⋈
9.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/9 Cost Functions • Total Time (or Total Cost) ➡ Reduce each cost (in terms of time) component individually ➡ Do as little of each cost component as possible ➡ Optimizes the utilization of the resources Increases system throughput • Response Time ➡ Do as many things as possible in parallel ➡ May increase total time because of increased total activity
10.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/10 Total Cost Summation of all cost factors Total cost = CPU cost + I/O cost + communication cost CPU cost = unit instruction cost no.of instructions I/O cost = unit disk I/O cost no. of disk I/Os communication cost = message initiation + transmission
11.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/11 Total Cost Factors • Wide area network ➡ Message initiation and transmission costs high ➡ Local processing cost is low (fast mainframes or minicomputers) ➡ Ratio of communication to I/O costs = 20:1 • Local area networks ➡ Communication and local processing costs are more or less equal ➡ Ratio = 1:1.6
12.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/12 Response Time Elapsed time between the initiation and the completion of a query Response time = CPU time + I/O time + communication time CPU time = unit instruction time * no. of sequential instructions I/O time = unit I/O time * no. of sequential I/Os communication time = unit msg initiation time * no. of sequential msg + unit transmission time * no. of sequential bytes
13.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/13 Example Assume that only the communication cost is considered Total time = 2 × message initialization time + unit transmission time * (x+y) Response time = max {time to send x from 1 to 3, time to send y from 2 to 3} time to send x from 1 to 3 = message initialization time + unit transmission time * x time to send y from 2 to 3 = message initialization time + unit transmission time * y Site 1 Site 2 x units y units Site 3
14.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/14 Optimization Statistics • Primary cost factor: size of intermediate relations ➡ Need to estimate their sizes • Make them precise more costly to maintain • Simplifying assumption: uniform distribution of attribute values in a relation
15.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/15 Statistics • For each relation R[A1, A2, …, An] fragmented as R1, …, Rr ➡ length of each attribute: length(Ai) ➡ the number of distinct values for each attribute in each fragment: card( Ai Rj) ➡ maximum and minimum values in the domain of each attribute: min(Ai), max(Ai) ➡ the cardinalities of each domain: card(dom[Ai]) • The cardinalities of each fragment: card(Rj) Selectivity factor of each operation for relations ➡For joins SF ⋈ (R,S) = card(R ⋈S) card(R) card(S)
16.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/16 Intermediate Relation Sizes Selection size(R) = card(R) × length(R) card( F(R)) = SF (F) × card(R) where S F (A = value) = card(∏A(R)) 1 S F (A >value) = max(A) – min(A) max(A) – value S F (A <value) = max(A) – min(A) value – max(A) SF (p(Ai) p(Aj)) = SF (p(Ai)) × SF (p(Aj)) SF (p(Ai) p(Aj)) = SF (p(Ai)) + SF (p(Aj)) – (SF (p(Ai)) × SF (p(Aj))) SF (A value}) = SF (A= value) * card({values})
17.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/17 Intermediate Relation Sizes Projection card( A(R))=card(R) Cartesian Product card(R × S) = card(R) * card(S) Union upper bound: card(R S) = card(R) + card(S) lower bound: card(R S) = max{card(R), card(S)} Set Difference upper bound: card(R–S) = card(R) lower bound: 0
18.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/18 Intermediate Relation Size Join ➡ Special case: A is a key of R and B is a foreign key of S card(R ⋈A=B S) = card(S) ➡ More general: card(R ⋈ S) = SF⋈ * card(R) × card(S) Semijoin card(R ⋉A S) = SF⋉(S.A) * card(R) where SF⋉(R ⋉A S)= SF⋉(S.A) = card(∏A(S)) card(dom[A])
19.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/19 Histograms for Selectivity Estimation • For skewed data, the uniform distribution assumption of attribute values yields inaccurate estimations • Use an histogram for each skewed attribute A ➡ Histogram = set of buckets ✦ Each bucket describes a range of values of A, with its average frequency f (number of tuples with A in that range) and number of distinct values d ✦ Buckets can be adjusted to different ranges • Examples ➡ Equality predicate ✦ With (value in Rangei), we have: SF (A = value) = 1/di ➡ Range predicate ✦ Requires identifying relevant buckets and summing up their frequencies
20.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/20 Histogram Example For ASG.DUR=18: we have SF=1/12 so the card of selection is 300/12 = 25 tuples For ASG.DUR≤18: we have min(range3)=12 and max(range3)=24 so the card. of selection is 100+75+(((18−12)/(24 − 12))*50) = 200 tuples
21.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/21 Centralized Query Optimization • Dynamic (Ingres project at UCB) ➡ Interpretive • Static (System R project at IBM) ➡ Exhaustive search • Hybrid (Volcano project at OGI) ➡ Choose node within plan
22.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/22 Dynamic Algorithm Decompose each multi-variable query into a sequence of mono-variable queries with a common variable Process each by a one variable query processor ➡ Choose an initial execution plan (heuristics) ➡ Order the rest by considering intermediate relation sizes No statistical information is maintained
23.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/23 Dynamic Algorithm– Decomposition • Replace an n variable query q by a series of queries q1 q2 … qn where qi uses the result of qi-1. • Detachment ➡ Query q decomposed into q' q" where q' and q" have a common variable which is the result of q' • Tuple substitution ➡ Replace the value of each tuple with actual values and simplify the query q(V1, V2, ... Vn) (q' (t1, V2, V2, ... , Vn), t1 R)
24.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/24 Detachment q: SELECT V2.A2,V3.A3, …,Vn.An FROM R1 V1, …,Rn Vn WHERE P1(V1.A1 ’)AND P2(V1.A1,V2.A2,…, Vn.An) q': SELECT V1.A1 INTO R1' FROM R1 V1 WHERE P1(V1.A1) q": SELECT V2.A2, …,Vn.An FROM R1' V1, R2 V2, …,Rn Vn WHERE P2(V1.A1, V2.A2, …,Vn.An)
25.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/25 Detachment Example Names of employees working on CAD/CAM project q1:SELECT EMP.ENAME FROM EMP, ASG, PROJ WHERE EMP.ENO=ASG.ENO AND ASG.PNO=PROJ.PNO AND PROJ.PNAME="CAD/CAM" q11: SELECT PROJ.PNO INTO JVAR FROM PROJ WHERE PROJ.PNAME="CAD/CAM" q': SELECT EMP.ENAME FROM EMP,ASG,JVAR WHERE EMP.ENO=ASG.ENO AND ASG.PNO=JVAR.PNO
26.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/26 Detachment Example (cont’d) q': SELECT EMP.ENAME FROM EMP,ASG,JVAR WHERE EMP.ENO=ASG.ENO AND ASG.PNO=JVAR.PNO q12: SELECT ASG.ENO INTO GVAR FROM ASG,JVAR WHERE ASG.PNO=JVAR.PNO q13: SELECT EMP.ENAME FROM EMP,GVAR WHERE EMP.ENO=GVAR.ENO
27.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/27 Tuple Substitution q11 is a mono-variable query q12 and q13 is subject to tuple substitution Assume GVAR has two tuples only: 〈E1〉 and 〈E2〉 Then q13 becomes q131: SELECT EMP.ENAME FROM EMP WHERE EMP.ENO="E1" q132: SELECT EMP.ENAME FROM EMP WHERE EMP.ENO="E2"
28.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/28 Static Algorithm Simple (i.e., mono-relation) queries are executed according to the best access path Execute joins ➡ Determine the possible ordering of joins ➡ Determine the cost of each ordering ➡ Choose the join ordering with minimal cost
29.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/29 Static Algorithm For joins, two alternative algorithms : • Nested loops for each tuple of external relation (cardinality n1) for each tuple of internal relation (cardinality n2) join two tuples if the join predicate is true end end ➡ Complexity: n1* n2 • Merge join sort relations merge relations ➡ Complexity: n1+ n2 if relations are previously sorted and equijoin
30.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/30 Static Algorithm – Example Names of employees working on the CAD/CAM project Assume ➡ EMP has an index on ENO, ➡ ASG has an index on PNO, ➡ PROJ has an index on PNO and an index on PNAME PNOENO PROJ ASG EMP
31.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/31 Example (cont’d) Choose the best access paths to each relation ➡ EMP: sequential scan (no selection on EMP) ➡ ASG: sequential scan (no selection on ASG) ➡ PROJ: index on PNAME (there is a selection on PROJ based on PNAME) Determine the best join ordering ➡ EMP ▷◁ASG ▷◁PROJ ➡ ASG ▷◁PROJ ▷◁EMP ➡ PROJ ▷◁ASG ▷◁EMP ➡ ASG ▷◁EMP ▷◁PROJ ➡ EMP × PROJ ▷◁ASG ➡ PRO × JEMP ▷◁ASG ➡ Select the best ordering based on the join costs evaluated according to the two methods
32.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/32 Static Algorithm Best total join order is one of ((ASG ⋈ EMP) ⋈ PROJ) ((PROJ ⋈ ASG) ⋈ EMP) ASGEMP PROJ EMP × PROJ pruned PROJ × EMP pruned Alternatives EMP ⋈ ASG pruned (ASG ⋈ EMP) ⋈ PROJ ASG ⋈ EMP ASG ⋈ PROJ pruned PROJ ⋈ ASG (PROJ ⋈ ASG) ⋈ EMP
33.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/33 Static Algorithm • ((PROJ ⋈ ASG) ⋈ EMP) has a useful index on the select attribute and direct access to the join attributes of ASG and EMP • Therefore, chose it with the following access methods: ➡ select PROJ using index on PNAME ➡ then join with ASG using index on PNO ➡ then join with EMP using index on ENO
34.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/34 Hybrid optimization • In general, static optimization is more efficient than dynamic optimization ➡ Adopted by all commercial DBMS • But even with a sophisticated cost model (with histograms), accurate cost prediction is difficult • Example ➡ Consider a parametric query with predicate WHERE R.A = $a /* $a is a parameter ➡ The only possible assumption at compile time is uniform distribution of values • Solution: Hybrid optimization ➡ Choose-plan done at runtime, based on the actual parameter binding
35.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/35 Hybrid Optimization Example $a=A $a=A
36.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/36 Join Ordering in Fragment Queries • Ordering joins ➡ Distributed INGRES ➡ System R* ➡ Two-step • Semijoin ordering ➡ SDD-1
37.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/37 Join Ordering • Multiple relations more difficult because too many alternatives. ➡ Compute the cost of all alternatives and select the best one. ✦ Necessary to compute the size of intermediate relations which is difficult. ➡ Use heuristics R if size(R) < size(S) if size(R) > size(S) S • Consider two relations only
38.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/38 Join Ordering – Example Consider PROJ ⋈PNO ASG ⋈ENO EMP Site 2 Site 3Site 1 PNOENO PROJ ASG EMP
39.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/39 Join Ordering – Example Execution alternatives: 1. EMP Site 2 2. ASG Site 1 Site 2 computes EMP'=EMP ⋈ ASG Site 1 computes EMP'=EMP⋈ ASG EMP' Site 3 EMP' Site 3 Site 3 computes EMP' ⋈ PROJ Site 3 computes EMP’ ⋈ PROJ 3. ASG Site 3 4. PROJ Site 2 Site 3 computes ASG'=ASG ⋈ PROJ Site 2 computes PROJ'=PROJ ⋈ ASG ASG' Site 1 PROJ' Site 1 Site 1 computes ASG' ▷◁EMP Site 1 computes PROJ' ⋈ EMP 5. EMP Site 2 PROJ Site 2 Site 2 computes EMP ⋈ PROJ ⋈ ASG
40.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/40 Semijoin Algorithms • Consider the join of two relations: ➡ R[A] (located at site 1) ➡ S[A](located at site 2) • Alternatives: 1. Do the join R ⋈AS 2. Perform one of the semijoin equivalents R⋈AS (R ⋉AS) ⋈AS R ⋈A (S ⋉A R) (R ⋉A S) ⋈A (S ⋉A R)
41.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/41 Semijoin Algorithms • Perform the join ➡ send R to Site 2 ➡ Site 2 computes R ⋈A S • Consider semijoin (R ⋉AS) ⋈AS ➡ S' = A(S) ➡ S' Site 1 ➡ Site 1 computes R' = R ⋉AS' ➡ R' Site 2 ➡ Site 2 computes R' ⋈AS Semijoin is better if size( A(S)) + size(R ⋉AS)) < size(R)
42.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/42 Distributed Dynamic Algorithm 1. Execute all monorelation queries (e.g., selection, projection) 2. Reduce the multirelation query to produce irreducible subqueries q1 q2 … qnsuch that there is only one relation between qi and qi+1 1. Choose qi involving the smallest fragments to execute (call MRQ') 2. Find the best execution strategy for MRQ' a) Determine processing site b) Determine fragments to move 3. Repeat 3 and 4
43.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/43 Static Approach • Cost function includes local processing as well as transmission • Considers only joins • “Exhaustive” search • Compilation • Published papers provide solutions to handling horizontal and vertical fragmentations but the implemented prototype does not
44.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/44 Static Approach – Performing Joins • Ship whole ➡ Larger data transfer ➡ Smaller number of messages ➡ Better if relations are small • Fetch as needed ➡ Number of messages = O(cardinality of external relation) ➡ Data transfer per message is minimal ➡ Better if relations are large and the selectivity is good
45.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/45 Static Approach – Vertical Partitioning & Joins 1. Move outer relation tuples to the site of the inner relation (a) Retrieve outer tuples (b) Send them to the inner relation site (c) Join them as they arrive Total Cost = cost(retrieving qualified outer tuples) + no. of outer tuples fetched * cost(retrieving qualified inner tuples) + msg. cost * (no. outer tuples fetched * avg. outer tuple size)/msg. size
46.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/46 Static Approach – Vertical Partitioning & Joins 2. Move inner relation to the site of outer relation Cannot join as they arrive; they need to be stored Total cost = cost(retrieving qualified outer tuples) + no. of outer tuples fetched * cost(retrieving matching inner tuples from temporary storage) + cost(retrieving qualified inner tuples) + cost(storing all qualified inner tuples in temporary storage) + msg. cost * no. of inner tuples fetched * avg. inner tuple size/msg. size
47.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/47 Static Approach – Vertical Partitioning & Joins 3. Move both inner and outer relations to another site Total cost = cost(retrieving qualified outer tuples) + cost(retrieving qualified inner tuples) + cost(storing inner tuples in storage) + msg. cost × (no. of outer tuples fetched * avg. outer tuple size)/msg. size + msg. cost * (no. of inner tuples fetched * avg. inner tuple size)/msg. size + no. of outer tuples fetched * cost(retrieving inner tuples from temporary storage)
48.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/48 Static Approach – Vertical Partitioning & Joins 4.Fetch inner tuples as needed (a) Retrieve qualified tuples at outer relation site (b) Send request containing join column value(s) for outer tuples to inner relation site (c) Retrieve matching inner tuples at inner relation site (d)Send the matching inner tuples to outer relation site (e) Join as they arrive Total Cost = cost(retrieving qualified outer tuples) + msg. cost * (no. of outer tuples fetched) + no. of outer tuples fetched * no. of inner tuples fetched * avg. inner tuple size * msg. cost / msg. size) + no. of outer tuples fetched * cost(retrieving matching inner tuples for one outer value)
49.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/49 Dynamic vs. Static vs Semijoin • Semijoin ➡ SDD1 selects only locally optimal schedules • Dynamic and static approaches have the same advantages and drawbacks as in centralized case ➡ But the problems of accurate cost estimation at compile-time are more severe ✦ More variations at runtime ✦ Relations may be replicated, making site and copy selection important • Hybrid optimization ➡ Choose-plan approach can be used ➡ 2-step approach simpler
50.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/50 2-Step Optimization 1. At compile time, generate a static plan with operation ordering and access methods only 2. At startup time, carry out site and copy selection and allocate operations to sites
51.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/51 2-Step – Problem Definition • Given ➡ A set of sites S = {s1, s2, …,sn} with the load of each site ➡ A query Q ={q1, q2, q3, q4} such that each subquery qi is the maximum processing unit that accesses one relation and communicates with its neighboring queries ➡ For each qi in Q, a feasible allocation set of sites Sq={s1, s2, …,sk} where each site stores a copy of the relation in qi • The objective is to find an optimal allocation of Q to S such that ➡ the load unbalance of S is minimized ➡ The total communication cost is minimized
52.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/52 2-Step Algorithm • For each q in Q compute load (Sq) • While Q not empty do 1. Select subquery a with least allocation flexibility 2. Select best site b for a (with least load and best benefit) 3. Remove a from Q and recompute loads if needed
53.
Distributed DBMS ©
M. T. Özsu & P. Valduriez Ch.8/53 2-Step Algorithm Example • Let Q = {q1, q2, q3, q4} where q1 is associated with R1, q2 is associated with R2 joined with the result of q1, etc. • Iteration 1: select q4, allocate to s1, set load(s1)=2 • Iteration 2: select q2, allocate to s2, set load(s2)=3 • Iteration 3: select q3, allocate to s1, set load(s1) =3 • Iteration 4: select q1, allocate to s3 or s4 Note: if in iteration 2, q2, were allocated to s4, this would have produced a better plan. So hybrid optimization can still miss optimal plans