SlideShare a Scribd company logo
1 of 25
Download to read offline
Data sparse approximation of the
Karhunen-Lo`eve expansion
Alexander Litvinenko,
joint with B. Khoromskij (Leipzig) and H. Matthies(Braunschweig)
Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig,
0531-391-3008, litvinen@tu-bs.de
March 5, 2008
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Stochastic PDE
We consider
− div(κ(x, ω)∇u) = f(x, ω) in D,
u = 0 on ∂D,
with stochastic coefficients κ(x, ω), x ∈ D ⊆ Rd
and ω belongs to the
space of random events Ω.
[Babuˇska, Ghanem, Matthies, Schwab, Vandewalle, ...].
Methods and techniques:
1. Response surface
2. Monte-Carlo
3. Perturbation
4. Stochastic Galerkin
Examples of covariance functions [Novak,(IWS),04]
The random field requires to specify its spatial correl. structure
covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))],
where E is the expectation and µf (x) := E[f(x, ·)].
Let h =
3
i=1 h2
i /ℓ2
i + d2 − d
2
, where hi := xi − yi , i = 1, 2, 3,
ℓi are cov. lengths and d a parameter.
Gaussian cov(h) = σ2
· exp(−h2
),
exponential cov(h) = σ2
· exp(−h),
spherical
cov(h) =
σ2
· 1 − 3
2
h
hr
− 1
2
h3
h3
r
for 0 ≤ h ≤ hr ,
0 for h > hr .
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
KLE
The spectral representation of the cov. function is
Cκ(x, y) = ∞
i=0 λi ki(x)ki (y), where λi and ki(x) are the eigenvalues
and eigenfunctions.
The Karhunen-Lo`eve expansion [Loeve, 1977] is the series
κ(x, ω) = µk (x) +
∞
i=1
λi ki (x)ξi (ω), where
ξi (ω) are uncorrelated random variables and ki are basis functions in
L2
(D).
Eigenpairs λi , ki are the solution of
Tki = λi ki, ki ∈ L2
(D), i ∈ N, where.
T : L2
(D) → L2
(D),
(Tu)(x) := D
covk (x, y)u(y)dy.
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Computation of eigenpairs by FFT
If the cov. function depends on (x − y) then on a uniform tensor grid
the cov. matrix C is (block) Toeplitz.
Then C can be extended to the circulant one and the decomposition
C =
1
n
F H
ΛF (1)
may be computed like follows. Multiply (1) by F becomes
F C = ΛF ,
F C1 = ΛF1.
Since all entries of F1 are unity, obtain
λ = F C1.
F C1 may be computed very efficiently by FFT [Cooley, 1965] in
O(n log n) FLOPS.
C1 may be represented in a matrix or in a tensor format.
Multidimensional FFT
Lemma: The d-dim. FT F (d)
can be represented as following
F (d)
= (F
(1)
1 ⊗ I ⊗ I . . .)(I ⊗ F
(1)
2 ⊗ I . . .) . . . (I ⊗ I . . . ⊗ F
(1)
d ), (2)
and the complexity of F (d)
is O(nd
log n), where n is the number of
dofs in one direction.
Discrete eigenvalue problem
Let
Wij :=
k,m D
bi (x)bk (x)dxCkm
D
bj (y)bm(y)dy,
Mij =
D
bi (x)bj (x)dx.
Then we solve
W fh
ℓ = λℓMfh
ℓ , where W := MCM
Approximate C in
◮ low rank format
◮ the H-matrix format
◮ sparse tensor format
and use the Lanczos method to compute m largest eigenvalues.
Examples of H-matrix approximates of
cov(x, y) = e−2|x−y|
[Hackbusch et al. 99]
25 20
20 20
20 16
20 16
20 20
16 16
20 16
16 16
4 4
20 4 32
4 4
16 4 32
4 20
4 4
4 16
4 4
32 32
20 20
20 20 32
32 32
4 3
4 4 32
20 4
16 4 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
20 16
4 4
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4
20 4 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
4 20
4 4 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
20 20
20 20 32
32 32
4 4
20 4 32
32 32
4 20
4 4 32
32 32
20 20
20 20 32
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
4 4 44 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 4
4 4
4 4
4 4 4
4 4
32 4
32 32 4
4 4
4 4
4 4
4 4 4
4
32 4
32 32
4 4
4 4
4 4
4 4
4 4 4
32 4
32 32
32 4
32 32
32 4
32 32
32 4
32 32
4 4
4 4
4 4
4 4
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
4
4 4
4 4
4 4
4 4
4 4
32 32
4 32 4
4
4 3
4 4
4 4
4 4
4
32 32
4 32
4 4
4
4 4
4 4
4 4
4 4
32 32
4 32
32 32
4 32
32 32
4 32
32 32
4 32
4
4 4
4 4
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
20 4 32
32 32
32 4
32 32
4 32
32 32
32 4
32 32
4 20
4 4 32
32 32
4 32
32 32
32 32
4 32
32 32
4 32
20 20
20 20 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
4 4
32 32
32 32 4
4 4
32 4
32 32 4
4 4
32 32
4 32 4
4 4
32 32
32 32 4
4
32 32
32 32
4 4
4
32 4
32 32
4 4
4
32 32
4 32
4 4
4
32 32
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 4
32 32
32 4
32 4
32 4
32 32
32 4
32 4
32 32
4 32
32 32
4 32
32 32
4 4
32 32
4 4
32 32
32 32
32 32
32 32
32 32
32 32
32 32
32 32
25 11
11 20 12
13
20 11
9 16
13
13
20 11
11 20 13
13 32
13
13
20 8
10 20 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
20 10
10 20 12
12 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
20 11
11 20 13
13 32 13
13
32 13
13 32
13
13
20 9
9 20 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
13
13
32 13
13 32 13
13
32 13
13 32
Figure: H-matrix approximations ∈ Rn×n
, n = 322
, with standard (left) and
weak (right) admissibility block partitionings. The biggest dense (dark) blocks
∈ Rn×n
, max. rank k = 4 left and k = 13 right.
H - Matrices
Comp. complexity is O(kn log n) and storage O(kn log n).
To assemble low-rank blocks use ACA [Bebendorf, Tyrtyshnikov].
Dependence of the computational time and storage requirements of
CH on the rank k, n = 322
.
k time (sec.) memory (MB) C−CH 2
C 2
2 0.04 2e + 6 3.5e − 5
6 0.1 4e + 6 1.4e − 5
9 0.14 5.4e + 6 1.4e − 5
12 0.17 6.8e + 6 3.1e − 7
17 0.23 9.3e + 6 6.3e − 8
The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8 MB.
H - Matrices
Let h =
2
i=1 h2
i /ℓ2
i + d2 − d
2
, where hi := xi − yi , i = 1, 2, 3,
ℓi are cov. lengths and d = 1.
exponential cov(h) = σ2
· exp(−h),
The cov. matrix C ∈ Rn×n
, n = 652
.
ℓ1 ℓ2
C−CH 2
C 2
0.01 0.02 3e − 2
0.1 0.2 8e − 3
1 2 2.8e − 6
10 20 3.7e − 9
Exponential Singularvalue decay [see also Schwab et
al.]
0 100 200 300 400 500 600 700 800 900 1000
0
100
200
300
400
500
600
700
0 100 200 300 400 500 600 700 800 900 1000
0
1
2
3
4
5
6
7
8
9
10
x 10
4
0 100 200 300 400 500 600 700 800 900 1000
0
200
400
600
800
1000
1200
1400
1600
1800
0 100 200 300 400 500 600 700 800 900 1000
0
0.5
1
1.5
2
2.5
x 10
5
0 100 200 300 400 500 600 700 800 900 1000
0
50
100
150
0 100 200 300 400 500 600 700 800 900 1000
0
0.5
1
1.5
2
2.5
3
3.5
4
x 10
4
Sparse tensor decompositions of kernels
cov(x, y) = cov(x − y)
We want to approximate C ∈ RN×N
, N = nd
by
Cr =
r
k=1 V 1
k ⊗ ... ⊗ V d
k such that C − Cr ≤ ε.
The storage of C is O(N2
) = O(n2d
) and the storage of Cr is O(rdn2
).
To define V i
k use e.g. SVD.
Approximate all V i
k in the H-matrix format and become HKT format.
See basic arithmetics in [Hackbusch, Khoromskij, Tyrtyshnikov].
Assume f(x, y), x = (x1, x2), y = (y1, y2), then the equivalent approx.
problem is f(x1, x2; y1, y2) ≈
r
k=1 Φk (x1, y1)Ψk (x2, y2).
Numerical examples of tensor approximations
Gaussian kernel exp{−|x − y|2
} has the Kroneker rank 1.
The exponen. kernel e{
− |x − y|} can be approximated by a tensor
with low Kroneker rank
r 1 2 3 4 5 6 10
C−Cr ∞
C ∞
11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8
C−Cr 2
C 2
6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Application: covariance of the solution
For SPDE with stochastic RHS the eigenvalue problem and spectral
decom. look like
Cf fℓ = λℓfℓ, Cf = Φf Λf ΦT
f .
If we only want the covariance
Cu = (K ⊗ K)−1
Cf = (K−1
⊗ K−1
)Cf = K−1
Cf K−T
,
one may with the KLE of Cf = Φf Λf ΦT
f reduce this to
Cu = K−1
Cf K−T
= K−1
Φf ΛΦT
f K−T
.
Application: higher order moments
Let operator K be deterministic and
Ku(θ) =
α∈J
Ku(α)
Hα(θ) = ˜f(θ) =
α∈J
f(α)
Hα(θ), with
u(α)
= [u
(α)
1 , ..., u
(α)
N ]T
. Projecting onto each Hα obtain
Ku(α)
= f(α)
.
The KLE of f(θ) is
f(θ) = f +
ℓ
λℓφℓ(θ)fl =
ℓ α
λℓφ
(α)
ℓ Hα(θ)fl
=
α
Hα(θ)f(α)
,
where f(α)
= ℓ
√
λℓφ
(α)
ℓ fl .
Application: higher order moments
The 3-rd moment of u is
M
(3)
u = E


α,β,γ
u(α)
⊗ u(β)
⊗ u(γ)
HαHβHγ

 =
α,β,γ
u(α)
⊗u(β)
⊗u(γ)
cα,β,γ,
cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = cα,β · γ!, and cα,β are constants
from the Hermitian algebra.
Using u(α)
= K−1
f(α)
= ℓ
√
λℓφ
(α)
ℓ K−1
fl and uℓ := K−1
fℓ, obtain
M
(3)
u =
p,q,r
tp,q,r up ⊗ uq ⊗ ur , where
tp,q,r := λpλqλr
α,β,γ
φ
(α)
p φ
(β)
q φ
(γ)
r cα,βγ.
Outline
Introduction
KLE
Numerical techniques
FFT
Hierarchical Matrices
Sparse tensor approximation
Application
Conclusion
Conclusion
◮ Covariance matrices allow data sparse low-rank approximations.
◮ With application of H-matrices
◮ we extend the class of covariance functions to work with,
◮ allows non-regular discretisations of the cov. function on large
spatial grids.
◮ Application of sparse tensor product allows computation of k-th
moments.
Plans for Feature
1. Convergence of the Lanczos method with H-matrices
2. Implement sparse tensor vector product for the Lanczos method
3. HKT idea for d ≥ 3 dimensions
Thank you for your attention!
Questions?

More Related Content

What's hot

Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
JamesMa54
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
JamesMa54
 
Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function Maximization
Tasuku Soma
 
Linear cong slide 2
Linear cong slide 2Linear cong slide 2
Linear cong slide 2
Vi Aspe
 
Core–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectorsCore–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectors
Francesco Tudisco
 

What's hot (19)

Lecture note4coordinatedescent
Lecture note4coordinatedescentLecture note4coordinatedescent
Lecture note4coordinatedescent
 
SPSF02 - Graphical Data Representation
SPSF02 - Graphical Data RepresentationSPSF02 - Graphical Data Representation
SPSF02 - Graphical Data Representation
 
Solving the energy problem of helium final report
Solving the energy problem of helium final reportSolving the energy problem of helium final report
Solving the energy problem of helium final report
 
Sec 3 E Maths Notes Coordinate Geometry
Sec 3 E Maths Notes Coordinate GeometrySec 3 E Maths Notes Coordinate Geometry
Sec 3 E Maths Notes Coordinate Geometry
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
 
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient AlgorithmOptimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 
Maximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeMaximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer Lattice
 
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
II PUC (MATHEMATICS) ANNUAL MODEL QUESTION PAPER FOR ALL SCIENCE STUDENTS WHO...
 
Regret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function MaximizationRegret Minimization in Multi-objective Submodular Function Maximization
Regret Minimization in Multi-objective Submodular Function Maximization
 
Muchtadi
MuchtadiMuchtadi
Muchtadi
 
Hierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matricesHierarchical matrix approximation of large covariance matrices
Hierarchical matrix approximation of large covariance matrices
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
Low-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problemsLow-rank tensor methods for stochastic forward and inverse problems
Low-rank tensor methods for stochastic forward and inverse problems
 
The low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspaceThe low-rank basis problem for a matrix subspace
The low-rank basis problem for a matrix subspace
 
Linear cong slide 2
Linear cong slide 2Linear cong slide 2
Linear cong slide 2
 
Tutorial no. 1.doc
Tutorial no. 1.docTutorial no. 1.doc
Tutorial no. 1.doc
 
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
On Triplet of Positive Integers Such That the Sum of Any Two of Them is a Per...
 
Core–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectorsCore–periphery detection in networks with nonlinear Perron eigenvectors
Core–periphery detection in networks with nonlinear Perron eigenvectors
 

Similar to Data sparse approximation of Karhunen-Loeve Expansion

On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
BRNSSPublicationHubI
 

Similar to Data sparse approximation of Karhunen-Loeve Expansion (20)

Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...Hierarchical matrices for approximating large covariance matries and computin...
Hierarchical matrices for approximating large covariance matries and computin...
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...Low rank tensor approximation of probability density and characteristic funct...
Low rank tensor approximation of probability density and characteristic funct...
 
Litvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an OverviewLitvinenko, Uncertainty Quantification - an Overview
Litvinenko, Uncertainty Quantification - an Overview
 
A common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert spaceA common random fixed point theorem for rational inequality in hilbert space
A common random fixed point theorem for rational inequality in hilbert space
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...My presentation at University of Nottingham "Fast low-rank methods for solvin...
My presentation at University of Nottingham "Fast low-rank methods for solvin...
 
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
Anomalous Diffusion Through Homopolar Membrane: One-Dimensional Model_ Crimso...
 
Bayesian inference on mixtures
Bayesian inference on mixturesBayesian inference on mixtures
Bayesian inference on mixtures
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structures
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
MODELING OF REDISTRIBUTION OF INFUSED DOPANT IN A MULTILAYER STRUCTURE DOPANT...
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
On Optimization of Manufacturing of Field-effect Transistors to Increase Thei...
 
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...Developing fast  low-rank tensor methods for solving PDEs with uncertain coef...
Developing fast low-rank tensor methods for solving PDEs with uncertain coef...
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
A small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleaguesA small introduction into H-matrices which I gave for my colleagues
A small introduction into H-matrices which I gave for my colleagues
 
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED PARABOLIC C...
 

More from Alexander Litvinenko

Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Alexander Litvinenko
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Alexander Litvinenko
 

More from Alexander Litvinenko (20)

litvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdflitvinenko_Intrusion_Bari_2023.pdf
litvinenko_Intrusion_Bari_2023.pdf
 
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and PermeabilityDensity Driven Groundwater Flow with Uncertain Porosity and Permeability
Density Driven Groundwater Flow with Uncertain Porosity and Permeability
 
litvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdflitvinenko_Gamm2023.pdf
litvinenko_Gamm2023.pdf
 
Litvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdfLitvinenko_Poster_Henry_22May.pdf
Litvinenko_Poster_Henry_22May.pdf
 
Uncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdfUncertain_Henry_problem-poster.pdf
Uncertain_Henry_problem-poster.pdf
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Litv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdfLitv_Denmark_Weak_Supervised_Learning.pdf
Litv_Denmark_Weak_Supervised_Learning.pdf
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...Identification of unknown parameters and prediction of missing values. Compar...
Identification of unknown parameters and prediction of missing values. Compar...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...Identification of unknown parameters and prediction with hierarchical matrice...
Identification of unknown parameters and prediction with hierarchical matrice...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...Application of parallel hierarchical matrices for parameter inference and pre...
Application of parallel hierarchical matrices for parameter inference and pre...
 
Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...Computation of electromagnetic fields scattered from dielectric objects of un...
Computation of electromagnetic fields scattered from dielectric objects of un...
 
Propagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater FlowPropagation of Uncertainties in Density Driven Groundwater Flow
Propagation of Uncertainties in Density Driven Groundwater Flow
 
Simulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flowSimulation of propagation of uncertainties in density-driven groundwater flow
Simulation of propagation of uncertainties in density-driven groundwater flow
 
Approximation of large covariance matrices in statistics
Approximation of large covariance matrices in statisticsApproximation of large covariance matrices in statistics
Approximation of large covariance matrices in statistics
 
Semi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster EnsembleSemi-Supervised Regression using Cluster Ensemble
Semi-Supervised Regression using Cluster Ensemble
 
Talk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in HoustonTalk Alexander Litvinenko on SIAM GS Conference in Houston
Talk Alexander Litvinenko on SIAM GS Conference in Houston
 
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
Efficient Simulations for Contamination of Groundwater Aquifers under Uncerta...
 

Recently uploaded

Recently uploaded (20)

TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 

Data sparse approximation of Karhunen-Loeve Expansion

  • 1. Data sparse approximation of the Karhunen-Lo`eve expansion Alexander Litvinenko, joint with B. Khoromskij (Leipzig) and H. Matthies(Braunschweig) Institut f¨ur Wissenschaftliches Rechnen, Technische Universit¨at Braunschweig, 0531-391-3008, litvinen@tu-bs.de March 5, 2008
  • 4. Stochastic PDE We consider − div(κ(x, ω)∇u) = f(x, ω) in D, u = 0 on ∂D, with stochastic coefficients κ(x, ω), x ∈ D ⊆ Rd and ω belongs to the space of random events Ω. [Babuˇska, Ghanem, Matthies, Schwab, Vandewalle, ...]. Methods and techniques: 1. Response surface 2. Monte-Carlo 3. Perturbation 4. Stochastic Galerkin
  • 5. Examples of covariance functions [Novak,(IWS),04] The random field requires to specify its spatial correl. structure covf (x, y) = E[(f(x, ·) − µf (x))(f(y, ·) − µf (y))], where E is the expectation and µf (x) := E[f(x, ·)]. Let h = 3 i=1 h2 i /ℓ2 i + d2 − d 2 , where hi := xi − yi , i = 1, 2, 3, ℓi are cov. lengths and d a parameter. Gaussian cov(h) = σ2 · exp(−h2 ), exponential cov(h) = σ2 · exp(−h), spherical cov(h) = σ2 · 1 − 3 2 h hr − 1 2 h3 h3 r for 0 ≤ h ≤ hr , 0 for h > hr .
  • 7. KLE The spectral representation of the cov. function is Cκ(x, y) = ∞ i=0 λi ki(x)ki (y), where λi and ki(x) are the eigenvalues and eigenfunctions. The Karhunen-Lo`eve expansion [Loeve, 1977] is the series κ(x, ω) = µk (x) + ∞ i=1 λi ki (x)ξi (ω), where ξi (ω) are uncorrelated random variables and ki are basis functions in L2 (D). Eigenpairs λi , ki are the solution of Tki = λi ki, ki ∈ L2 (D), i ∈ N, where. T : L2 (D) → L2 (D), (Tu)(x) := D covk (x, y)u(y)dy.
  • 9. Computation of eigenpairs by FFT If the cov. function depends on (x − y) then on a uniform tensor grid the cov. matrix C is (block) Toeplitz. Then C can be extended to the circulant one and the decomposition C = 1 n F H ΛF (1) may be computed like follows. Multiply (1) by F becomes F C = ΛF , F C1 = ΛF1. Since all entries of F1 are unity, obtain λ = F C1. F C1 may be computed very efficiently by FFT [Cooley, 1965] in O(n log n) FLOPS. C1 may be represented in a matrix or in a tensor format.
  • 10. Multidimensional FFT Lemma: The d-dim. FT F (d) can be represented as following F (d) = (F (1) 1 ⊗ I ⊗ I . . .)(I ⊗ F (1) 2 ⊗ I . . .) . . . (I ⊗ I . . . ⊗ F (1) d ), (2) and the complexity of F (d) is O(nd log n), where n is the number of dofs in one direction.
  • 11. Discrete eigenvalue problem Let Wij := k,m D bi (x)bk (x)dxCkm D bj (y)bm(y)dy, Mij = D bi (x)bj (x)dx. Then we solve W fh ℓ = λℓMfh ℓ , where W := MCM Approximate C in ◮ low rank format ◮ the H-matrix format ◮ sparse tensor format and use the Lanczos method to compute m largest eigenvalues.
  • 12. Examples of H-matrix approximates of cov(x, y) = e−2|x−y| [Hackbusch et al. 99] 25 20 20 20 20 16 20 16 20 20 16 16 20 16 16 16 4 4 20 4 32 4 4 16 4 32 4 20 4 4 4 16 4 4 32 32 20 20 20 20 32 32 32 4 3 4 4 32 20 4 16 4 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 20 16 4 4 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 20 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 4 20 4 4 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 20 20 20 20 32 32 32 4 4 20 4 32 32 32 4 20 4 4 32 32 32 20 20 20 20 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 4 4 44 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 4 4 4 4 4 4 4 4 4 4 4 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 32 4 4 4 4 4 4 4 4 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 4 4 4 3 4 4 4 4 4 4 4 32 32 4 32 4 4 4 4 4 4 4 4 4 4 4 32 32 4 32 32 32 4 32 32 32 4 32 32 32 4 32 4 4 4 4 4 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 20 4 32 32 32 32 4 32 32 4 32 32 32 32 4 32 32 4 20 4 4 32 32 32 4 32 32 32 32 32 4 32 32 32 4 32 20 20 20 20 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 4 4 4 32 4 32 32 4 4 4 32 32 4 32 4 4 4 32 32 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 4 32 32 32 4 32 4 32 4 32 32 32 4 32 4 32 32 4 32 32 32 4 32 32 32 4 4 32 32 4 4 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 25 11 11 20 12 13 20 11 9 16 13 13 20 11 11 20 13 13 32 13 13 20 8 10 20 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 20 10 10 20 12 12 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 20 11 11 20 13 13 32 13 13 32 13 13 32 13 13 20 9 9 20 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 13 13 32 Figure: H-matrix approximations ∈ Rn×n , n = 322 , with standard (left) and weak (right) admissibility block partitionings. The biggest dense (dark) blocks ∈ Rn×n , max. rank k = 4 left and k = 13 right.
  • 13. H - Matrices Comp. complexity is O(kn log n) and storage O(kn log n). To assemble low-rank blocks use ACA [Bebendorf, Tyrtyshnikov]. Dependence of the computational time and storage requirements of CH on the rank k, n = 322 . k time (sec.) memory (MB) C−CH 2 C 2 2 0.04 2e + 6 3.5e − 5 6 0.1 4e + 6 1.4e − 5 9 0.14 5.4e + 6 1.4e − 5 12 0.17 6.8e + 6 3.1e − 7 17 0.23 9.3e + 6 6.3e − 8 The time for dense matrix C is 3.3 sec. and the storage 1.4e + 8 MB.
  • 14. H - Matrices Let h = 2 i=1 h2 i /ℓ2 i + d2 − d 2 , where hi := xi − yi , i = 1, 2, 3, ℓi are cov. lengths and d = 1. exponential cov(h) = σ2 · exp(−h), The cov. matrix C ∈ Rn×n , n = 652 . ℓ1 ℓ2 C−CH 2 C 2 0.01 0.02 3e − 2 0.1 0.2 8e − 3 1 2 2.8e − 6 10 20 3.7e − 9
  • 15. Exponential Singularvalue decay [see also Schwab et al.] 0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 800 900 1000 0 1 2 3 4 5 6 7 8 9 10 x 10 4 0 100 200 300 400 500 600 700 800 900 1000 0 200 400 600 800 1000 1200 1400 1600 1800 0 100 200 300 400 500 600 700 800 900 1000 0 0.5 1 1.5 2 2.5 x 10 5 0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 0 100 200 300 400 500 600 700 800 900 1000 0 0.5 1 1.5 2 2.5 3 3.5 4 x 10 4
  • 16. Sparse tensor decompositions of kernels cov(x, y) = cov(x − y) We want to approximate C ∈ RN×N , N = nd by Cr = r k=1 V 1 k ⊗ ... ⊗ V d k such that C − Cr ≤ ε. The storage of C is O(N2 ) = O(n2d ) and the storage of Cr is O(rdn2 ). To define V i k use e.g. SVD. Approximate all V i k in the H-matrix format and become HKT format. See basic arithmetics in [Hackbusch, Khoromskij, Tyrtyshnikov]. Assume f(x, y), x = (x1, x2), y = (y1, y2), then the equivalent approx. problem is f(x1, x2; y1, y2) ≈ r k=1 Φk (x1, y1)Ψk (x2, y2).
  • 17. Numerical examples of tensor approximations Gaussian kernel exp{−|x − y|2 } has the Kroneker rank 1. The exponen. kernel e{ − |x − y|} can be approximated by a tensor with low Kroneker rank r 1 2 3 4 5 6 10 C−Cr ∞ C ∞ 11.5 1.7 0.4 0.14 0.035 0.007 2.8e − 8 C−Cr 2 C 2 6.7 0.52 0.1 0.03 0.008 0.001 5.3e − 9
  • 19. Application: covariance of the solution For SPDE with stochastic RHS the eigenvalue problem and spectral decom. look like Cf fℓ = λℓfℓ, Cf = Φf Λf ΦT f . If we only want the covariance Cu = (K ⊗ K)−1 Cf = (K−1 ⊗ K−1 )Cf = K−1 Cf K−T , one may with the KLE of Cf = Φf Λf ΦT f reduce this to Cu = K−1 Cf K−T = K−1 Φf ΛΦT f K−T .
  • 20. Application: higher order moments Let operator K be deterministic and Ku(θ) = α∈J Ku(α) Hα(θ) = ˜f(θ) = α∈J f(α) Hα(θ), with u(α) = [u (α) 1 , ..., u (α) N ]T . Projecting onto each Hα obtain Ku(α) = f(α) . The KLE of f(θ) is f(θ) = f + ℓ λℓφℓ(θ)fl = ℓ α λℓφ (α) ℓ Hα(θ)fl = α Hα(θ)f(α) , where f(α) = ℓ √ λℓφ (α) ℓ fl .
  • 21. Application: higher order moments The 3-rd moment of u is M (3) u = E   α,β,γ u(α) ⊗ u(β) ⊗ u(γ) HαHβHγ   = α,β,γ u(α) ⊗u(β) ⊗u(γ) cα,β,γ, cα,β,γ := E (Hα(θ)Hβ(θ)Hγ(θ)) = cα,β · γ!, and cα,β are constants from the Hermitian algebra. Using u(α) = K−1 f(α) = ℓ √ λℓφ (α) ℓ K−1 fl and uℓ := K−1 fℓ, obtain M (3) u = p,q,r tp,q,r up ⊗ uq ⊗ ur , where tp,q,r := λpλqλr α,β,γ φ (α) p φ (β) q φ (γ) r cα,βγ.
  • 23. Conclusion ◮ Covariance matrices allow data sparse low-rank approximations. ◮ With application of H-matrices ◮ we extend the class of covariance functions to work with, ◮ allows non-regular discretisations of the cov. function on large spatial grids. ◮ Application of sparse tensor product allows computation of k-th moments.
  • 24. Plans for Feature 1. Convergence of the Lanczos method with H-matrices 2. Implement sparse tensor vector product for the Lanczos method 3. HKT idea for d ≥ 3 dimensions
  • 25. Thank you for your attention! Questions?