SlideShare uma empresa Scribd logo
Operações Inversas Adição  Subtração Multiplicação Divisão
Adição  Subtração Observe como se relacionam as operações adição e subtração nos exemplos abaixo: 12 + 4 = 16 12 é a primeira parcela. 4 é a segunda parcela. 16 é a soma.
Adição  Subtração Observe como se relacionam as operações adição e subtração nos exemplos abaixo: 16 – 4 = 12 O número da soma anterior menos a segunda parcela dá uma diferença que é igual à primeira parcela da adição anterior.  Em 16 – 12 = 4, a diferença é igual ao número da segunda parcela da adição anterior.
Adição  Subtração Uma aplicação prática: um número subtraído de 3 dá uma diferença de 4. Qual é esse número? ? - 3 = 4, logo ? = 4 + 3 = 7. Embora o enunciado do problema tenha dado os valores do minuendo e da diferença, precisei recorrer à adição do minuendo pela diferença.
Adição  Subtração Outra aplicação prática: A soma de dois números é igual a 37, sendo um deles igual a 27. Qual é a outra parcela? Pelo enunciado temos: ? + 27 = 37, logo ? = 37 – 27. Subtraio da soma a segunda parcela para determinar a primeira parcela.
Adição  Subtração Procure ter em mente um esquema como o apresentado abaixo: 12 + 4 = 16, então: a) 16 – 4 = 12 b) 16 – 12 = 4 4 – 3 = 1, então: a) 4 = 1 + 3 b) 4 – 1 = 3 (O minuendo menos a diferença é igual ao valor do subtraendo)
Multiplicação  Divisão Observe o esquema abaixo: 4 x 3 = 12 12 : 4 = 3 12 : 3 = 4 4 é o primeiro fator. 3 é o segundo fator. 12 é o produto. a) O produto dividido pelo primeiro fator tem o segundo fator por quociente. b) O produto dividido pelo segundo fator tem o primeiro fator por quociente.
Multiplicação  Divisão Observe o próximo esquema abaixo: 2 x 3 x 5 = 30 30 : 2 = 3 x 5 = 15 30 : 3 = 2 x 5 = 10 30 : 5 = 2 x 3 = 6 O produto tem divisões exatas com cada fator que o compõe. Em outras palavras, 30 é divisível pelos fatores 2, 3 e 5, além de ser divisível pelos produtos dos fatores tomados dois a dois até o produto dos três fatores (30 : (2 x 3 x 5) = 1).
Multiplicação  Divisão Usando o que vimos no contexto de fatoração:
Multiplicação  Divisão Usando o que vimos no contexto de adição de frações heterogêneas:
O que tentamos aqui foi mostrar alguns modos de se usar o princípio das operações inversas.  Este princípio é útil tanto para expressões numéricas como para expressões algébricas, sendo de suma importância no caso de resoluções de equações.  Tal princípio se estende para os casos de potenciação e radiciação, algo que deverá ser tratado em outra apresentação.
Créditos Júnior (SME – RJ) José Ximbika

Mais conteúdo relacionado

Mais procurados

Ii lista de exercícios 6º ano pdf
Ii lista de exercícios   6º ano pdfIi lista de exercícios   6º ano pdf
Ii lista de exercícios 6º ano pdf
jonihson
 

Mais procurados (20)

Ii lista de exercícios 6º ano pdf
Ii lista de exercícios   6º ano pdfIi lista de exercícios   6º ano pdf
Ii lista de exercícios 6º ano pdf
 
Apostila de matemática apostila 4° ano
Apostila de matemática apostila 4° anoApostila de matemática apostila 4° ano
Apostila de matemática apostila 4° ano
 
6ano graficos tabelas
6ano graficos tabelas6ano graficos tabelas
6ano graficos tabelas
 
Caça números
Caça números Caça números
Caça números
 
Cruzadinha divisão
Cruzadinha divisão Cruzadinha divisão
Cruzadinha divisão
 
Multiplicação - Calcular preços
Multiplicação - Calcular preços Multiplicação - Calcular preços
Multiplicação - Calcular preços
 
Loteria - Expressões numéricas com multiplicação e divsão.pdf
Loteria - Expressões numéricas com multiplicação e divsão.pdfLoteria - Expressões numéricas com multiplicação e divsão.pdf
Loteria - Expressões numéricas com multiplicação e divsão.pdf
 
Simulado de Matemática 5º ano
Simulado de Matemática 5º ano Simulado de Matemática 5º ano
Simulado de Matemática 5º ano
 
Caça-palavras Leitura e escrita dos números.pdf
Caça-palavras    Leitura e escrita dos números.pdfCaça-palavras    Leitura e escrita dos números.pdf
Caça-palavras Leitura e escrita dos números.pdf
 
D20 (5º ano mat.)
D20  (5º ano   mat.)D20  (5º ano   mat.)
D20 (5º ano mat.)
 
Problemas de adição e subtração
Problemas de adição e subtraçãoProblemas de adição e subtração
Problemas de adição e subtração
 
Sólidos Geométricos 4° e 5° ano.pdf
Sólidos Geométricos 4° e 5° ano.pdfSólidos Geométricos 4° e 5° ano.pdf
Sólidos Geométricos 4° e 5° ano.pdf
 
D28 (mat. 9º ano) resolver problema que envolva porcentagem blog do prof. ...
D28 (mat. 9º ano)    resolver problema que envolva porcentagem blog do prof. ...D28 (mat. 9º ano)    resolver problema que envolva porcentagem blog do prof. ...
D28 (mat. 9º ano) resolver problema que envolva porcentagem blog do prof. ...
 
Caça números - Multiplicação com dois algarismos
Caça números - Multiplicação com dois algarismosCaça números - Multiplicação com dois algarismos
Caça números - Multiplicação com dois algarismos
 
Eletricidade - Texto e atividade de Ciências
Eletricidade   - Texto e atividade de CiênciasEletricidade   - Texto e atividade de Ciências
Eletricidade - Texto e atividade de Ciências
 
Fontes alternativas de energia.
Fontes alternativas de energia.Fontes alternativas de energia.
Fontes alternativas de energia.
 
Múltiplos de um números natural
Múltiplos de um números naturalMúltiplos de um números natural
Múltiplos de um números natural
 
Gabarito: Avaliação de matemática: multiplicação, sequência numérica, horas e...
Gabarito: Avaliação de matemática: multiplicação, sequência numérica, horas e...Gabarito: Avaliação de matemática: multiplicação, sequência numérica, horas e...
Gabarito: Avaliação de matemática: multiplicação, sequência numérica, horas e...
 
Frações e números decimais
Frações e números decimaisFrações e números decimais
Frações e números decimais
 
Exercicios resolvidos (números racionais)
Exercicios resolvidos (números racionais)Exercicios resolvidos (números racionais)
Exercicios resolvidos (números racionais)
 

Semelhante a Operações inversas

1. ordem das operações matemáticas (1)
1. ordem das operações matemáticas (1)1. ordem das operações matemáticas (1)
1. ordem das operações matemáticas (1)
Thasio Santos
 
Apostila de matemática i apostila específica para o concurso da prefeitura ...
Apostila de matemática i   apostila específica para o concurso da prefeitura ...Apostila de matemática i   apostila específica para o concurso da prefeitura ...
Apostila de matemática i apostila específica para o concurso da prefeitura ...
Iracema Vasconcellos
 
Apostila matematica concursos - ensino fundamental
Apostila matematica   concursos - ensino fundamentalApostila matematica   concursos - ensino fundamental
Apostila matematica concursos - ensino fundamental
Ana Almeida
 
Exercicios resolvidos bb matematica
Exercicios resolvidos bb matematicaExercicios resolvidos bb matematica
Exercicios resolvidos bb matematica
trigono_metria
 
Apostila matemática básica 2
Apostila matemática básica 2Apostila matemática básica 2
Apostila matemática básica 2
waynemarques
 
Unprotected apostila-matematica
Unprotected apostila-matematicaUnprotected apostila-matematica
Unprotected apostila-matematica
J M
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
J M
 
Operações básicas da matemática
Operações básicas da matemáticaOperações básicas da matemática
Operações básicas da matemática
Ediclei Oliveira
 

Semelhante a Operações inversas (20)

Mat61a
Mat61aMat61a
Mat61a
 
Apostila revisao de matematica
Apostila    revisao de matematicaApostila    revisao de matematica
Apostila revisao de matematica
 
1. ordem das operações matemáticas (1)
1. ordem das operações matemáticas (1)1. ordem das operações matemáticas (1)
1. ordem das operações matemáticas (1)
 
Apostila de matemática i apostila específica para o concurso da prefeitura ...
Apostila de matemática i   apostila específica para o concurso da prefeitura ...Apostila de matemática i   apostila específica para o concurso da prefeitura ...
Apostila de matemática i apostila específica para o concurso da prefeitura ...
 
Apostila matematica concursos - ensino fundamental
Apostila matematica   concursos - ensino fundamentalApostila matematica   concursos - ensino fundamental
Apostila matematica concursos - ensino fundamental
 
Exercicios resolvidos bb matematica
Exercicios resolvidos bb matematicaExercicios resolvidos bb matematica
Exercicios resolvidos bb matematica
 
Apostila matemática básica 2
Apostila matemática básica 2Apostila matemática básica 2
Apostila matemática básica 2
 
Unprotected apostila-matematica
Unprotected apostila-matematicaUnprotected apostila-matematica
Unprotected apostila-matematica
 
Apostila matematica
Apostila matematicaApostila matematica
Apostila matematica
 
Prop ad
Prop adProp ad
Prop ad
 
Potenciação.ppt
Potenciação.pptPotenciação.ppt
Potenciação.ppt
 
Apostila matematica concursos_fundamental
Apostila matematica concursos_fundamentalApostila matematica concursos_fundamental
Apostila matematica concursos_fundamental
 
Apostila matematica concursos_fundamental
Apostila matematica concursos_fundamentalApostila matematica concursos_fundamental
Apostila matematica concursos_fundamental
 
Apostila matematica concursos - ensino fundamental
Apostila matematica   concursos - ensino fundamentalApostila matematica   concursos - ensino fundamental
Apostila matematica concursos - ensino fundamental
 
2.pdf
2.pdf2.pdf
2.pdf
 
Operações básicas da matemática
Operações básicas da matemáticaOperações básicas da matemática
Operações básicas da matemática
 
AULA 02 - MULTIPLICAÇÃO.pdf
AULA 02 - MULTIPLICAÇÃO.pdfAULA 02 - MULTIPLICAÇÃO.pdf
AULA 02 - MULTIPLICAÇÃO.pdf
 
Matemetica basica
Matemetica basicaMatemetica basica
Matemetica basica
 
Demonstrativo videoaula Matemática 5º ano - Módulo 5
Demonstrativo videoaula Matemática 5º ano - Módulo 5Demonstrativo videoaula Matemática 5º ano - Módulo 5
Demonstrativo videoaula Matemática 5º ano - Módulo 5
 
622 apostila01 mb
622 apostila01 mb622 apostila01 mb
622 apostila01 mb
 

Mais de Agapito Ribeiro Junior

Mais de Agapito Ribeiro Junior (8)

Números irracionais
Números irracionaisNúmeros irracionais
Números irracionais
 
Noções de geometria plana
Noções de geometria planaNoções de geometria plana
Noções de geometria plana
 
Gráficos de funções de 1° e 2° graus
Gráficos de funções de 1° e 2° grausGráficos de funções de 1° e 2° graus
Gráficos de funções de 1° e 2° graus
 
Equação de 2º grau
Equação de 2º grauEquação de 2º grau
Equação de 2º grau
 
Equações de primeiro grau
Equações de primeiro grauEquações de primeiro grau
Equações de primeiro grau
 
Números irracionais
Números irracionaisNúmeros irracionais
Números irracionais
 
MvrMultiplicação por valores relativos
MvrMultiplicação por valores relativosMvrMultiplicação por valores relativos
MvrMultiplicação por valores relativos
 
Adição de frações
Adição de fraçõesAdição de frações
Adição de frações
 

Último

5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
edjailmax
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
rarakey779
 
PPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalPPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 final
carlaOliveira438
 

Último (20)

Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024Semana Interna de Prevenção de Acidentes SIPAT/2024
Semana Interna de Prevenção de Acidentes SIPAT/2024
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
 
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
 
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdfHans Kelsen - Teoria Pura do Direito - Obra completa.pdf
Hans Kelsen - Teoria Pura do Direito - Obra completa.pdf
 
manual-de-direito-civil-flacc81vio-tartuce-2015-11.pdf
manual-de-direito-civil-flacc81vio-tartuce-2015-11.pdfmanual-de-direito-civil-flacc81vio-tartuce-2015-11.pdf
manual-de-direito-civil-flacc81vio-tartuce-2015-11.pdf
 
Os Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco LeiteOs Padres de Assaré - CE. Prof. Francisco Leite
Os Padres de Assaré - CE. Prof. Francisco Leite
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
 
Exercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdfExercícios de Clima no brasil e no mundo.pdf
Exercícios de Clima no brasil e no mundo.pdf
 
00Certificado - MBA - Gestão de projetos
00Certificado - MBA - Gestão de projetos00Certificado - MBA - Gestão de projetos
00Certificado - MBA - Gestão de projetos
 
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
5ca0e9_ea0307e5baa1478490e87a15cb4ee530.pdf
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é preciso
 
Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40Atividade português 7 ano página 38 a 40
Atividade português 7 ano página 38 a 40
 
AULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptxAULA Saúde e tradição-3º Bimestre tscqv.pptx
AULA Saúde e tradição-3º Bimestre tscqv.pptx
 
Junho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na IgrejaJunho Violeta - Sugestão de Ações na Igreja
Junho Violeta - Sugestão de Ações na Igreja
 
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptxSlides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
Slides Lição 9, Betel, Ordenança para uma vida de santificação, 2Tr24.pptx
 
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdfGRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
GRAMÁTICA NORMATIVA DA LÍNGUA PORTUGUESA UM GUIA COMPLETO DO IDIOMA.pdf
 
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptxSão Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
São Filipe Neri, fundador da a Congregação do Oratório 1515-1595.pptx
 
Recurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/AcumuladorRecurso da Casa das Ciências: Bateria/Acumulador
Recurso da Casa das Ciências: Bateria/Acumulador
 
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
Slides Lição 8, Central Gospel, Os 144 Mil Que Não Se Curvarão Ao Anticristo....
 
PPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalPPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 final
 

Operações inversas

  • 1. Operações Inversas Adição Subtração Multiplicação Divisão
  • 2. Adição Subtração Observe como se relacionam as operações adição e subtração nos exemplos abaixo: 12 + 4 = 16 12 é a primeira parcela. 4 é a segunda parcela. 16 é a soma.
  • 3. Adição Subtração Observe como se relacionam as operações adição e subtração nos exemplos abaixo: 16 – 4 = 12 O número da soma anterior menos a segunda parcela dá uma diferença que é igual à primeira parcela da adição anterior. Em 16 – 12 = 4, a diferença é igual ao número da segunda parcela da adição anterior.
  • 4. Adição Subtração Uma aplicação prática: um número subtraído de 3 dá uma diferença de 4. Qual é esse número? ? - 3 = 4, logo ? = 4 + 3 = 7. Embora o enunciado do problema tenha dado os valores do minuendo e da diferença, precisei recorrer à adição do minuendo pela diferença.
  • 5. Adição Subtração Outra aplicação prática: A soma de dois números é igual a 37, sendo um deles igual a 27. Qual é a outra parcela? Pelo enunciado temos: ? + 27 = 37, logo ? = 37 – 27. Subtraio da soma a segunda parcela para determinar a primeira parcela.
  • 6. Adição Subtração Procure ter em mente um esquema como o apresentado abaixo: 12 + 4 = 16, então: a) 16 – 4 = 12 b) 16 – 12 = 4 4 – 3 = 1, então: a) 4 = 1 + 3 b) 4 – 1 = 3 (O minuendo menos a diferença é igual ao valor do subtraendo)
  • 7. Multiplicação Divisão Observe o esquema abaixo: 4 x 3 = 12 12 : 4 = 3 12 : 3 = 4 4 é o primeiro fator. 3 é o segundo fator. 12 é o produto. a) O produto dividido pelo primeiro fator tem o segundo fator por quociente. b) O produto dividido pelo segundo fator tem o primeiro fator por quociente.
  • 8. Multiplicação Divisão Observe o próximo esquema abaixo: 2 x 3 x 5 = 30 30 : 2 = 3 x 5 = 15 30 : 3 = 2 x 5 = 10 30 : 5 = 2 x 3 = 6 O produto tem divisões exatas com cada fator que o compõe. Em outras palavras, 30 é divisível pelos fatores 2, 3 e 5, além de ser divisível pelos produtos dos fatores tomados dois a dois até o produto dos três fatores (30 : (2 x 3 x 5) = 1).
  • 9. Multiplicação Divisão Usando o que vimos no contexto de fatoração:
  • 10. Multiplicação Divisão Usando o que vimos no contexto de adição de frações heterogêneas:
  • 11. O que tentamos aqui foi mostrar alguns modos de se usar o princípio das operações inversas. Este princípio é útil tanto para expressões numéricas como para expressões algébricas, sendo de suma importância no caso de resoluções de equações. Tal princípio se estende para os casos de potenciação e radiciação, algo que deverá ser tratado em outra apresentação.
  • 12. Créditos Júnior (SME – RJ) José Ximbika