SlideShare uma empresa Scribd logo
1 de 9
Baixar para ler offline
AO4914
30V Dual N-Channel MOSFET with Schottky Diode
General Description Product Summary
Q1(N-Channel) Q2(N-Channel)
VDS= 30V 30V
ID= 8A (VGS=10V) 8A (VGS=10V)
RDS(ON) <20.5m RDS(ON) <20.5m (VGS=10V)
RDS(ON) <28m RDS(ON) <28m (VGS=4.5V)
ESD Protected ESD Protected
100% UIS Tested 100% UIS Tested
100% Rg Tested 100% Rg Tested
SCHOTTKY
VDS = 30V, IF = 3A, VF<0.5V@1A
The AO4914 uses advanced trench technology to provide
excellent RDS(ON) and low gate charge. The two MOSFETs
make a compact and efficient switch and synchronous
rectifier combination for use in DC-DC converters. A
Schottky diode is co-packaged in parallel with the
synchronous MOSFET to boost efficiency further.
SOIC-8
Top View Bottom View
G2
S2
G1
S1/A
D2
D2
D1/K
D1/K
Top View
G2
D2
S2
G1
D1
S1
K
A
Symbol
VDS
VGS
IDM
IAS, IAR
EAS, EAR
TJ, TSTG
Symbol
VDS
IFM
TJ, TSTG
°C
A
mJAvalanche energy L=0.1mH C
-55 to 150
TA=70°C
18
Junction and Storage Temperature Range
Power Dissipation B
2
1.3
PD
TA=25°C
1.3
18
2
30
8
A
±20
V
6.5
40
19
W
V±20
Absolute Maximum Ratings TA=25°C unless otherwise noted
Max Q1
Drain-Source Voltage 30
Max Q2
Gate-Source Voltage
UnitsParameter
Pulsed Drain Current C
Continuous Drain
Current
Avalanche Current C
8
ID
TA=25°C
TA=70°C 6.5
40
19
Parameter Units
Reverse Voltage V
Max Schottky
30
ATA=70°C
Pulsed Diode Forward Current C
3
2.2
20
Continuous Forward
Current
TA=25°C
IF
W
TA=70°C
Junction and Storage Temperature Range -55 to 150 °C
2
1.28Power Dissipation B
TA=25°C
PD
SOIC-8
Top View Bottom View
Pin1
G2
S2
G1
S1/A
D2
D2
D1/K
D1/K
Top View
G2
D2
S2
G1
D1
S1
K
A
Rev 11: Mar. 2011 www.aosmd.com Page 1 of 9
AO4914
Symbol
t ≤ 10s
Steady-State
Steady-State RθJL
Symbol
t ≤ 10s
Steady-State
Steady-State RθJL
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
°C/W
Parameter Typ Max Units
Maximum Junction-to-Ambient A
RθJA
48 62.5 °C/W
Maximum Junction-to-Ambient A D
74 90
40
74 90
RθJA
Maximum Junction-to-Lead 32 40
°C/W
48
Thermal Characteristics - MOSFET
Parameter Typ Max Units
Maximum Junction-to-Ambient A
62.5 °C/W
Thermal Characteristics - Schottky
Maximum Junction-to-Lead °C/W
°C/WMaximum Junction-to-Ambient A D
32
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
value in any given application depends on the user's specific board design.
B. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep
initialTJ=25°C.
D. The RθJA is the sum of the thermal impedence from junction to lead RθJL and lead to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in2 FR-4 board with
2oz. Copper, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
Rev 11: Mar. 2011 www.aosmd.com Page 2 of 9
AO4914
Symbol Min Typ Max Units
BVDSS 30 V
VR=30V 0.05
VR=30V, TJ=125°C 10
VR=30V, TJ=150°C 20
IGSS 10 µA
VGS(th) Gate Threshold Voltage 1.2 1.8 2.4 V
ID(ON) 40 A
17 20.5
TJ=125°C 23.5 29
20.5 28 mΩ
gFS 30 S
VSD 0.45 0.5 V
IS 3 A
Ciss 575 730 865 pF
Coss 115 165 215 pF
Crss 50 82 120 pF
Rg 0.5 1.1 1.7 Ω
Qg(10V) 12 15 18 nC
Qg(4.5V) 6 7.5 9 nC
Qgs 2.5 nC
Qgd 3 nC
tD(on) 5 nsTurn-On DelayTime
SWITCHING PARAMETERS
Gate resistance VGS=0V, VDS=0V, f=1MHz
Output Capacitance
VDS=0V,VGS=±16V
VDS=VGS ID=250µA
Input Capacitance
Total Gate Charge
VGS=10V, VDS=15V, ID=8A
Gate Source Charge
Gate Drain Charge
Total Gate Charge
Q1 Electrical Characteristics (TJ=25°C unless otherwise noted)
STATIC PARAMETERS
Parameter Conditions
DYNAMIC PARAMETERS
VGS=10V, VDS=5V
VGS=10V, ID=8A
mΩ
VGS=4.5V, ID=4A
RDS(ON) Static Drain-Source On-Resistance
Maximum Body-Diode + Schottky Continuous Current
Drain-Source Breakdown Voltage
On state drain current
IS=1A,VGS=0V
VDS=5V, ID=8A
mAIDSS
Zero Gate Voltage Drain Current (Set
by Schottky leakage)
ID=250uA, VGS=0V
VGS=0V, VDS=15V, f=1MHz
Reverse Transfer Capacitance
Gate-Body leakage current
Forward Transconductance
Diode Forward Voltage
tD(on) 5 ns
tr 3.5 ns
tD(off) 19 ns
tf 3.5 ns
trr 8 ns
Qrr 8 nC
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Body Diode Reverse Recovery Charge IF=8A, dI/dt=500A/µs
Turn-Off Fall Time
Turn-On Rise Time
Turn-Off DelayTime
VGS=10V, VDS=15V, RL=1.8Ω,
RGEN=3Ω
IF=8A, dI/dt=500A/µsBody Diode Reverse Recovery Time
Turn-On DelayTime
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value
in any given application depends on the user's specific board design.
B. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep
initialTJ=25°C.
D. The RθJA is the sum of the thermal impedence from junction to lead RθJL and lead to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in2 FR-4 board with 2oz.
Copper, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
Rev 11: Mar. 2011 www.aosmd.com Page 3 of 9
AO4914
Q1: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
17
5
2
10
0
18
0
5
10
15
20
25
30
1 1.5 2 2.5 3 3.5 4
ID(A)
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
10
15
20
25
30
0 5 10 15 20
RDS(ON)(mΩΩΩΩ)
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
0.8
1
1.2
1.4
1.6
0 25 50 75 100 125 150 175
NormalizedOn-Resistance
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)
VGS=4.5V
ID=4A
VGS=10V
ID=8A
25°C
125°C
VDS=5V
VGS=4.5V
VGS=10V
0
5
10
15
20
25
30
0 1 2 3 4 5
ID(A)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
VGS=2.5V
3V
10V 4V
5V 3.5V
18
40
0
5
10
15
20
25
30
1 1.5 2 2.5 3 3.5 4
ID(A)
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
10
15
20
25
30
0 5 10 15 20
RDS(ON)(mΩΩΩΩ)
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
0.0 0.2 0.4 0.6 0.8 1.0
IS(A)
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
25°C
125°C
0.8
1
1.2
1.4
1.6
0 25 50 75 100 125 150 175
NormalizedOn-Resistance
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)
VGS=4.5V
ID=4A
VGS=10V
ID=8A
10
20
30
40
50
2 4 6 8 10
RDS(ON)(mΩΩΩΩ)
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
25°C
125°C
VDS=5V
VGS=4.5V
VGS=10V
ID=8A
25°C
125°C
0
5
10
15
20
25
30
0 1 2 3 4 5
ID(A)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
VGS=2.5V
3V
10V 4V
5V 3.5V
FET+Schottky
Rev 11: Mar. 2011 www.aosmd.com Page 4 of 9
AO4914
Q1: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
0
2
4
6
8
10
0 3 6 9 12 15
VGS(Volts)
Qg (nC)
Figure 7: Gate-Charge Characteristics
0
300
600
900
1200
1500
0 5 10 15 20 25 30
Capacitance(pF)
VDS (Volts)
Figure 8: Capacitance Characteristics
Ciss
Coss
Crss
VDS=15V
ID=8A
1
10
100
1000
0.00001 0.001 0.1 10 1000
Power(W)
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-
TA=25°C
0.0
0.1
1.0
10.0
100.0
0.01 0.1 1 10 100
ID(Amps)
VDS (Volts)
Figure 9: Maximum Forward Biased
10µs
10s
1ms
DC
RDS(ON)
limited
TJ(Max)=150°C
TA=25°C
100µs
10ms
0
2
4
6
8
10
0 3 6 9 12 15
VGS(Volts)
Qg (nC)
Figure 7: Gate-Charge Characteristics
0
300
600
900
1200
1500
0 5 10 15 20 25 30
Capacitance(pF)
VDS (Volts)
Figure 8: Capacitance Characteristics
Ciss
Coss
Crss
VDS=15V
ID=8A
1
10
100
1000
0.00001 0.001 0.1 10 1000
Power(W)
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-
to-Ambient (Note F)
TA=25°C
0.0
0.1
1.0
10.0
100.0
0.01 0.1 1 10 100
ID(Amps)
VDS (Volts)
Figure 9: Maximum Forward Biased
Safe Operating Area (Note F)
10µs
10s
1ms
DC
RDS(ON)
limited
TJ(Max)=150°C
TA=25°C
100µs
10ms
0.001
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000
ZθθθθJANormalizedTransient
ThermalResistance
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=90°C/W
Ton
T
PD
Single Pulse
Rev 11: Mar. 2011 www.aosmd.com Page 5 of 9
AO4914
Symbol Min Typ Max Units
BVDSS 30 V
VDS=30V, VGS=0V 1
TJ=55°C 5
IGSS 10 µA
VGS(th) Gate Threshold Voltage 1.2 1.8 2.4 V
ID(ON) 40 A
17 20.5
TJ=125°C 23.5 29
20.5 28 mΩ
gFS 30 S
VSD 0.75 1 V
IS 2.5 A
Ciss 600 740 888 pF
Coss 77 110 145 pF
Crss 50 82 115 pF
Rg 0.5 1.1 1.7 Ω
Qg(10V) 12 15 18 nC
Qg(4.5V) 6 7.5 9 nC
Qgs 2.5 nC
Qgd 3 nC
tD(on) 5 ns
tr 3.5 ns
On state drain current
Output Capacitance
Q2 Electrical Characteristics (TJ=25°C unless otherwise noted)
STATIC PARAMETERS
Parameter Conditions
RDS(ON)
IDSS µA
VDS=VGS ID=250µA
VDS=0V, VGS=±16V
Zero Gate Voltage Drain Current
mΩ
VGS=4.5V, ID=4A
Drain-Source Breakdown Voltage ID=250µA, VGS=0V
Static Drain-Source On-Resistance
IS=1A,VGS=0V
Maximum Body-Diode Continuous Current
Input Capacitance
Diode Forward Voltage
DYNAMIC PARAMETERS
VGS=10V, VDS=5V
VGS=10V, ID=8A
Gate-Body leakage current
SWITCHING PARAMETERS
Gate Drain Charge
Total Gate Charge
Reverse Transfer Capacitance
VGS=0V, VDS=0V, f=1MHzGate resistance
Total Gate Charge
VGS=10V, VDS=15V, ID=8A
Gate Source Charge
VDS=5V, ID=8A
VGS=0V, VDS=15V, f=1MHz
Forward Transconductance
Turn-On DelayTime
Turn-On Rise Time VGS=10V, VDS=15V, RL=1.8Ω,tr 3.5 ns
tD(off) 19 ns
tf 3.5 ns
trr 6 8 10 ns
Qrr 14 18 22 nC
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Turn-On Rise Time
Body Diode Reverse Recovery Charge IF=8A, dI/dt=500A/µs
Turn-Off DelayTime
IF=8A, dI/dt=500A/µs
VGS=10V, VDS=15V, RL=1.8Ω,
RGEN=3Ω
Body Diode Reverse Recovery Time
Turn-Off Fall Time
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value
in any given application depends on the user's specific board design.
B. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep
initialTJ=25°C.
D. The RθJA is the sum of the thermal impedence from junction to lead RθJL and lead to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in2 FR-4 board with 2oz.
Copper, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
Rev 11: Mar. 2011 www.aosmd.com Page 6 of 9
AO4914
Q2: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
17
5
2
10
0
18
0
5
10
15
20
25
30
1 1.5 2 2.5 3 3.5 4
ID(A)
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
10
15
20
25
30
0 5 10 15 20
RDS(ON)(mΩΩΩΩ)
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
0.8
1
1.2
1.4
1.6
0 25 50 75 100 125 150 175
NormalizedOn-Resistance
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)
VGS=4.5V
ID=4A
VGS=10V
ID=8A
25°C
125°C
VDS=5V
VGS=4.5V
VGS=10V
0
5
10
15
20
25
30
0 1 2 3 4 5
ID(A)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
VGS=2.5V
3V
10V
3.5V
4V
5V
18
40
0
5
10
15
20
25
30
1 1.5 2 2.5 3 3.5 4
ID(A)
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
10
15
20
25
30
0 5 10 15 20
RDS(ON)(mΩΩΩΩ)
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
0.0 0.2 0.4 0.6 0.8 1.0 1.2
-IS(A)
-VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
25°C
125°C
0.8
1
1.2
1.4
1.6
0 25 50 75 100 125 150 175
NormalizedOn-Resistance
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)
VGS=4.5V
ID=4A
VGS=10V
ID=8A
10
15
20
25
30
35
40
2 4 6 8 10
RDS(ON)(mΩΩΩΩ)
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
25°C
125°C
VDS=5V
VGS=4.5V
VGS=10V
ID=8A
25°C
125°C
0
5
10
15
20
25
30
0 1 2 3 4 5
ID(A)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
VGS=2.5V
3V
10V
3.5V
4V
5V
Rev 11: Mar. 2011 www.aosmd.com Page 7 of 9
AO4914
Q2: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
0
2
4
6
8
10
0 3 6 9 12 15
VGS(Volts)
Qg (nC)
Figure 7: Gate-Charge Characteristics
0
200
400
600
800
1000
1200
0 5 10 15 20 25 30
Capacitance(pF)
VDS (Volts)
Figure 8: Capacitance Characteristics
Ciss
Coss
Crss
VDS=15V
ID=8A
1
10
100
1000
0.00001 0.001 0.1 10 1000
Power(W)
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-
TA=25°C
0.0
0.1
1.0
10.0
100.0
0.01 0.1 1 10 100
-ID(Amps)
-VDS (Volts)
Figure 9: Maximum Forward Biased Safe
10µs
10s
1ms
DC
RDS(ON)
TJ(Max)=150°C
TA=25°C
100µs
10ms
0
2
4
6
8
10
0 3 6 9 12 15
VGS(Volts)
Qg (nC)
Figure 7: Gate-Charge Characteristics
0
200
400
600
800
1000
1200
0 5 10 15 20 25 30
Capacitance(pF)
VDS (Volts)
Figure 8: Capacitance Characteristics
Ciss
Coss
Crss
VDS=15V
ID=8A
1
10
100
1000
0.00001 0.001 0.1 10 1000
Power(W)
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-
to-Ambient (Note F)
TA=25°C
0.0
0.1
1.0
10.0
100.0
0.01 0.1 1 10 100
-ID(Amps)
-VDS (Volts)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
10µs
10s
1ms
DC
RDS(ON)
TJ(Max)=150°C
TA=25°C
100µs
10ms
0.001
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000
ZθθθθJANormalizedTransient
ThermalResistance
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=90°C/W
Ton
T
PD
Rev 11: Mar. 2011 www.aosmd.com Page 8 of 9
AO4914
-
+
VDC
Ig
Vds
DUT
-
+
VDC
Vgs
Vgs
10V
Qg
Qgs Qgd
Charge
Gate Charge Test Circuit & Waveform
-
+
VDC
DUT VddVgs
Vds
Vgs
RL
Rg
Vgs
Vds
10%
90%
Resistive Switching Test Circuit & Waveforms
t trd(on)
ton
td(off) tf
toff
Id
L
Vds
BV
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
Vds DSS
2
E = 1/2 LIARAR
-
+
VDC
Ig
Vds
DUT
-
+
VDC
Vgs
Vgs
10V
Qg
Qgs Qgd
Charge
Gate Charge Test Circuit & Waveform
-
+
VDC
DUT VddVgs
Vds
Vgs
RL
Rg
Vgs
Vds
10%
90%
Resistive Switching Test Circuit & Waveforms
t trd(on)
ton
td(off) tf
toff
VddVgs
Id
Vgs
Rg
DUT
-
+
VDC
L
Vgs
Vds
Id
Vgs
BV
I
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
Ig
Vgs
-
+
VDC
DUT
L
Vds
Vgs
Vds
Isd
Isd
Diode Recovery Test Circuit & Waveforms
Vds -
Vds +
I F
AR
DSS
2
E = 1/2 LI
dI/dt
I RM
rr
Vdd
Vdd
Q = - Idt
ARAR
trr
Rev 11: Mar. 2011 www.aosmd.com Page 9 of 9

Mais conteúdo relacionado

Mais de AUTHELECTRONIC

Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International RectifierOriginal N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International RectifierAUTHELECTRONIC
 
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...AUTHELECTRONIC
 
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New ToshibaOriginal Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New ToshibaAUTHELECTRONIC
 
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 NewOriginal High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 NewAUTHELECTRONIC
 
Original Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
Original  Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...Original  Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
Original Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...AUTHELECTRONIC
 
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...AUTHELECTRONIC
 
Original Microcontroller IC R5F104BDA R5F 104BDA 104 New
Original Microcontroller IC R5F104BDA R5F 104BDA 104 NewOriginal Microcontroller IC R5F104BDA R5F 104BDA 104 New
Original Microcontroller IC R5F104BDA R5F 104BDA 104 NewAUTHELECTRONIC
 
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...AUTHELECTRONIC
 
Original Led Driver IC TM1620 1620 New Shenzhen
Original Led Driver IC TM1620 1620 New ShenzhenOriginal Led Driver IC TM1620 1620 New Shenzhen
Original Led Driver IC TM1620 1620 New ShenzhenAUTHELECTRONIC
 
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New ToshibaOriginal Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New ToshibaAUTHELECTRONIC
 
Original Zener Diode 1N5366B 5366B 5366 5W 39V New
Original Zener Diode 1N5366B 5366B 5366 5W 39V NewOriginal Zener Diode 1N5366B 5366B 5366 5W 39V New
Original Zener Diode 1N5366B 5366B 5366 5W 39V NewAUTHELECTRONIC
 
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST MicroelectronicsOriginal Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST MicroelectronicsAUTHELECTRONIC
 
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChildOriginal Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChildAUTHELECTRONIC
 
Original Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
Original  Diode & Rectifier IC BYV26 V26 26 New Vishay SemiconductorsOriginal  Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
Original Diode & Rectifier IC BYV26 V26 26 New Vishay SemiconductorsAUTHELECTRONIC
 
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiOriginal High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiAUTHELECTRONIC
 
Original audio amplifier ic tda7292 7292 new st microelectronics
Original audio amplifier ic tda7292 7292 new st microelectronicsOriginal audio amplifier ic tda7292 7292 new st microelectronics
Original audio amplifier ic tda7292 7292 new st microelectronicsAUTHELECTRONIC
 
Original Opto TLP155E P155E 155E SOP-5 New
Original Opto TLP155E P155E 155E SOP-5 NewOriginal Opto TLP155E P155E 155E SOP-5 New
Original Opto TLP155E P155E 155E SOP-5 NewAUTHELECTRONIC
 
Original Opto MOC3051 DIP-6 New
Original Opto MOC3051 DIP-6 NewOriginal Opto MOC3051 DIP-6 New
Original Opto MOC3051 DIP-6 NewAUTHELECTRONIC
 
Original Opto MOC3021 DIP-6 New
Original Opto MOC3021 DIP-6 NewOriginal Opto MOC3021 DIP-6 New
Original Opto MOC3021 DIP-6 NewAUTHELECTRONIC
 
Original Opto MOC3020M DIP-6 New Fairchild
Original Opto MOC3020M DIP-6 New FairchildOriginal Opto MOC3020M DIP-6 New Fairchild
Original Opto MOC3020M DIP-6 New FairchildAUTHELECTRONIC
 

Mais de AUTHELECTRONIC (20)

Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International RectifierOriginal N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
 
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
 
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New ToshibaOriginal Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
 
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 NewOriginal High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
 
Original Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
Original  Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...Original  Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
Original Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
 
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
 
Original Microcontroller IC R5F104BDA R5F 104BDA 104 New
Original Microcontroller IC R5F104BDA R5F 104BDA 104 NewOriginal Microcontroller IC R5F104BDA R5F 104BDA 104 New
Original Microcontroller IC R5F104BDA R5F 104BDA 104 New
 
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
 
Original Led Driver IC TM1620 1620 New Shenzhen
Original Led Driver IC TM1620 1620 New ShenzhenOriginal Led Driver IC TM1620 1620 New Shenzhen
Original Led Driver IC TM1620 1620 New Shenzhen
 
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New ToshibaOriginal Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
 
Original Zener Diode 1N5366B 5366B 5366 5W 39V New
Original Zener Diode 1N5366B 5366B 5366 5W 39V NewOriginal Zener Diode 1N5366B 5366B 5366 5W 39V New
Original Zener Diode 1N5366B 5366B 5366 5W 39V New
 
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST MicroelectronicsOriginal Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
 
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChildOriginal Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
 
Original Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
Original  Diode & Rectifier IC BYV26 V26 26 New Vishay SemiconductorsOriginal  Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
Original Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
 
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiOriginal High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
 
Original audio amplifier ic tda7292 7292 new st microelectronics
Original audio amplifier ic tda7292 7292 new st microelectronicsOriginal audio amplifier ic tda7292 7292 new st microelectronics
Original audio amplifier ic tda7292 7292 new st microelectronics
 
Original Opto TLP155E P155E 155E SOP-5 New
Original Opto TLP155E P155E 155E SOP-5 NewOriginal Opto TLP155E P155E 155E SOP-5 New
Original Opto TLP155E P155E 155E SOP-5 New
 
Original Opto MOC3051 DIP-6 New
Original Opto MOC3051 DIP-6 NewOriginal Opto MOC3051 DIP-6 New
Original Opto MOC3051 DIP-6 New
 
Original Opto MOC3021 DIP-6 New
Original Opto MOC3021 DIP-6 NewOriginal Opto MOC3021 DIP-6 New
Original Opto MOC3021 DIP-6 New
 
Original Opto MOC3020M DIP-6 New Fairchild
Original Opto MOC3020M DIP-6 New FairchildOriginal Opto MOC3020M DIP-6 New Fairchild
Original Opto MOC3020M DIP-6 New Fairchild
 

Último

THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxVelmuruganTECE
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingBootNeck1
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 

Último (20)

THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONTHE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Internet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptxInternet of things -Arshdeep Bahga .pptx
Internet of things -Arshdeep Bahga .pptx
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
System Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event SchedulingSystem Simulation and Modelling with types and Event Scheduling
System Simulation and Modelling with types and Event Scheduling
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 

Original N-Channel Mosfet AO4914 4914 SOP-8 New Alpha & Omega Semiconductors

  • 1. AO4914 30V Dual N-Channel MOSFET with Schottky Diode General Description Product Summary Q1(N-Channel) Q2(N-Channel) VDS= 30V 30V ID= 8A (VGS=10V) 8A (VGS=10V) RDS(ON) <20.5m RDS(ON) <20.5m (VGS=10V) RDS(ON) <28m RDS(ON) <28m (VGS=4.5V) ESD Protected ESD Protected 100% UIS Tested 100% UIS Tested 100% Rg Tested 100% Rg Tested SCHOTTKY VDS = 30V, IF = 3A, VF<0.5V@1A The AO4914 uses advanced trench technology to provide excellent RDS(ON) and low gate charge. The two MOSFETs make a compact and efficient switch and synchronous rectifier combination for use in DC-DC converters. A Schottky diode is co-packaged in parallel with the synchronous MOSFET to boost efficiency further. SOIC-8 Top View Bottom View G2 S2 G1 S1/A D2 D2 D1/K D1/K Top View G2 D2 S2 G1 D1 S1 K A Symbol VDS VGS IDM IAS, IAR EAS, EAR TJ, TSTG Symbol VDS IFM TJ, TSTG °C A mJAvalanche energy L=0.1mH C -55 to 150 TA=70°C 18 Junction and Storage Temperature Range Power Dissipation B 2 1.3 PD TA=25°C 1.3 18 2 30 8 A ±20 V 6.5 40 19 W V±20 Absolute Maximum Ratings TA=25°C unless otherwise noted Max Q1 Drain-Source Voltage 30 Max Q2 Gate-Source Voltage UnitsParameter Pulsed Drain Current C Continuous Drain Current Avalanche Current C 8 ID TA=25°C TA=70°C 6.5 40 19 Parameter Units Reverse Voltage V Max Schottky 30 ATA=70°C Pulsed Diode Forward Current C 3 2.2 20 Continuous Forward Current TA=25°C IF W TA=70°C Junction and Storage Temperature Range -55 to 150 °C 2 1.28Power Dissipation B TA=25°C PD SOIC-8 Top View Bottom View Pin1 G2 S2 G1 S1/A D2 D2 D1/K D1/K Top View G2 D2 S2 G1 D1 S1 K A Rev 11: Mar. 2011 www.aosmd.com Page 1 of 9
  • 2. AO4914 Symbol t ≤ 10s Steady-State Steady-State RθJL Symbol t ≤ 10s Steady-State Steady-State RθJL THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. °C/W Parameter Typ Max Units Maximum Junction-to-Ambient A RθJA 48 62.5 °C/W Maximum Junction-to-Ambient A D 74 90 40 74 90 RθJA Maximum Junction-to-Lead 32 40 °C/W 48 Thermal Characteristics - MOSFET Parameter Typ Max Units Maximum Junction-to-Ambient A 62.5 °C/W Thermal Characteristics - Schottky Maximum Junction-to-Lead °C/W °C/WMaximum Junction-to-Ambient A D 32 A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value in any given application depends on the user's specific board design. B. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initialTJ=25°C. D. The RθJA is the sum of the thermal impedence from junction to lead RθJL and lead to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. Rev 11: Mar. 2011 www.aosmd.com Page 2 of 9
  • 3. AO4914 Symbol Min Typ Max Units BVDSS 30 V VR=30V 0.05 VR=30V, TJ=125°C 10 VR=30V, TJ=150°C 20 IGSS 10 µA VGS(th) Gate Threshold Voltage 1.2 1.8 2.4 V ID(ON) 40 A 17 20.5 TJ=125°C 23.5 29 20.5 28 mΩ gFS 30 S VSD 0.45 0.5 V IS 3 A Ciss 575 730 865 pF Coss 115 165 215 pF Crss 50 82 120 pF Rg 0.5 1.1 1.7 Ω Qg(10V) 12 15 18 nC Qg(4.5V) 6 7.5 9 nC Qgs 2.5 nC Qgd 3 nC tD(on) 5 nsTurn-On DelayTime SWITCHING PARAMETERS Gate resistance VGS=0V, VDS=0V, f=1MHz Output Capacitance VDS=0V,VGS=±16V VDS=VGS ID=250µA Input Capacitance Total Gate Charge VGS=10V, VDS=15V, ID=8A Gate Source Charge Gate Drain Charge Total Gate Charge Q1 Electrical Characteristics (TJ=25°C unless otherwise noted) STATIC PARAMETERS Parameter Conditions DYNAMIC PARAMETERS VGS=10V, VDS=5V VGS=10V, ID=8A mΩ VGS=4.5V, ID=4A RDS(ON) Static Drain-Source On-Resistance Maximum Body-Diode + Schottky Continuous Current Drain-Source Breakdown Voltage On state drain current IS=1A,VGS=0V VDS=5V, ID=8A mAIDSS Zero Gate Voltage Drain Current (Set by Schottky leakage) ID=250uA, VGS=0V VGS=0V, VDS=15V, f=1MHz Reverse Transfer Capacitance Gate-Body leakage current Forward Transconductance Diode Forward Voltage tD(on) 5 ns tr 3.5 ns tD(off) 19 ns tf 3.5 ns trr 8 ns Qrr 8 nC THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Body Diode Reverse Recovery Charge IF=8A, dI/dt=500A/µs Turn-Off Fall Time Turn-On Rise Time Turn-Off DelayTime VGS=10V, VDS=15V, RL=1.8Ω, RGEN=3Ω IF=8A, dI/dt=500A/µsBody Diode Reverse Recovery Time Turn-On DelayTime A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value in any given application depends on the user's specific board design. B. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initialTJ=25°C. D. The RθJA is the sum of the thermal impedence from junction to lead RθJL and lead to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. Rev 11: Mar. 2011 www.aosmd.com Page 3 of 9
  • 4. AO4914 Q1: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 17 5 2 10 0 18 0 5 10 15 20 25 30 1 1.5 2 2.5 3 3.5 4 ID(A) VGS(Volts) Figure 2: Transfer Characteristics (Note E) 10 15 20 25 30 0 5 10 15 20 RDS(ON)(mΩΩΩΩ) ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 0.8 1 1.2 1.4 1.6 0 25 50 75 100 125 150 175 NormalizedOn-Resistance Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature (Note E) VGS=4.5V ID=4A VGS=10V ID=8A 25°C 125°C VDS=5V VGS=4.5V VGS=10V 0 5 10 15 20 25 30 0 1 2 3 4 5 ID(A) VDS (Volts) Fig 1: On-Region Characteristics (Note E) VGS=2.5V 3V 10V 4V 5V 3.5V 18 40 0 5 10 15 20 25 30 1 1.5 2 2.5 3 3.5 4 ID(A) VGS(Volts) Figure 2: Transfer Characteristics (Note E) 10 15 20 25 30 0 5 10 15 20 RDS(ON)(mΩΩΩΩ) ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 0.0 0.2 0.4 0.6 0.8 1.0 IS(A) VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) 25°C 125°C 0.8 1 1.2 1.4 1.6 0 25 50 75 100 125 150 175 NormalizedOn-Resistance Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature (Note E) VGS=4.5V ID=4A VGS=10V ID=8A 10 20 30 40 50 2 4 6 8 10 RDS(ON)(mΩΩΩΩ) VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) 25°C 125°C VDS=5V VGS=4.5V VGS=10V ID=8A 25°C 125°C 0 5 10 15 20 25 30 0 1 2 3 4 5 ID(A) VDS (Volts) Fig 1: On-Region Characteristics (Note E) VGS=2.5V 3V 10V 4V 5V 3.5V FET+Schottky Rev 11: Mar. 2011 www.aosmd.com Page 4 of 9
  • 5. AO4914 Q1: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 0 2 4 6 8 10 0 3 6 9 12 15 VGS(Volts) Qg (nC) Figure 7: Gate-Charge Characteristics 0 300 600 900 1200 1500 0 5 10 15 20 25 30 Capacitance(pF) VDS (Volts) Figure 8: Capacitance Characteristics Ciss Coss Crss VDS=15V ID=8A 1 10 100 1000 0.00001 0.001 0.1 10 1000 Power(W) Pulse Width (s) Figure 10: Single Pulse Power Rating Junction- TA=25°C 0.0 0.1 1.0 10.0 100.0 0.01 0.1 1 10 100 ID(Amps) VDS (Volts) Figure 9: Maximum Forward Biased 10µs 10s 1ms DC RDS(ON) limited TJ(Max)=150°C TA=25°C 100µs 10ms 0 2 4 6 8 10 0 3 6 9 12 15 VGS(Volts) Qg (nC) Figure 7: Gate-Charge Characteristics 0 300 600 900 1200 1500 0 5 10 15 20 25 30 Capacitance(pF) VDS (Volts) Figure 8: Capacitance Characteristics Ciss Coss Crss VDS=15V ID=8A 1 10 100 1000 0.00001 0.001 0.1 10 1000 Power(W) Pulse Width (s) Figure 10: Single Pulse Power Rating Junction- to-Ambient (Note F) TA=25°C 0.0 0.1 1.0 10.0 100.0 0.01 0.1 1 10 100 ID(Amps) VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 10µs 10s 1ms DC RDS(ON) limited TJ(Max)=150°C TA=25°C 100µs 10ms 0.001 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 ZθθθθJANormalizedTransient ThermalResistance Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA RθJA=90°C/W Ton T PD Single Pulse Rev 11: Mar. 2011 www.aosmd.com Page 5 of 9
  • 6. AO4914 Symbol Min Typ Max Units BVDSS 30 V VDS=30V, VGS=0V 1 TJ=55°C 5 IGSS 10 µA VGS(th) Gate Threshold Voltage 1.2 1.8 2.4 V ID(ON) 40 A 17 20.5 TJ=125°C 23.5 29 20.5 28 mΩ gFS 30 S VSD 0.75 1 V IS 2.5 A Ciss 600 740 888 pF Coss 77 110 145 pF Crss 50 82 115 pF Rg 0.5 1.1 1.7 Ω Qg(10V) 12 15 18 nC Qg(4.5V) 6 7.5 9 nC Qgs 2.5 nC Qgd 3 nC tD(on) 5 ns tr 3.5 ns On state drain current Output Capacitance Q2 Electrical Characteristics (TJ=25°C unless otherwise noted) STATIC PARAMETERS Parameter Conditions RDS(ON) IDSS µA VDS=VGS ID=250µA VDS=0V, VGS=±16V Zero Gate Voltage Drain Current mΩ VGS=4.5V, ID=4A Drain-Source Breakdown Voltage ID=250µA, VGS=0V Static Drain-Source On-Resistance IS=1A,VGS=0V Maximum Body-Diode Continuous Current Input Capacitance Diode Forward Voltage DYNAMIC PARAMETERS VGS=10V, VDS=5V VGS=10V, ID=8A Gate-Body leakage current SWITCHING PARAMETERS Gate Drain Charge Total Gate Charge Reverse Transfer Capacitance VGS=0V, VDS=0V, f=1MHzGate resistance Total Gate Charge VGS=10V, VDS=15V, ID=8A Gate Source Charge VDS=5V, ID=8A VGS=0V, VDS=15V, f=1MHz Forward Transconductance Turn-On DelayTime Turn-On Rise Time VGS=10V, VDS=15V, RL=1.8Ω,tr 3.5 ns tD(off) 19 ns tf 3.5 ns trr 6 8 10 ns Qrr 14 18 22 nC THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Turn-On Rise Time Body Diode Reverse Recovery Charge IF=8A, dI/dt=500A/µs Turn-Off DelayTime IF=8A, dI/dt=500A/µs VGS=10V, VDS=15V, RL=1.8Ω, RGEN=3Ω Body Diode Reverse Recovery Time Turn-Off Fall Time A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The value in any given application depends on the user's specific board design. B. The power dissipation PD is based on TJ(MAX)=150°C, using ≤ 10s junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep initialTJ=25°C. D. The RθJA is the sum of the thermal impedence from junction to lead RθJL and lead to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. Rev 11: Mar. 2011 www.aosmd.com Page 6 of 9
  • 7. AO4914 Q2: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 17 5 2 10 0 18 0 5 10 15 20 25 30 1 1.5 2 2.5 3 3.5 4 ID(A) VGS(Volts) Figure 2: Transfer Characteristics (Note E) 10 15 20 25 30 0 5 10 15 20 RDS(ON)(mΩΩΩΩ) ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 0.8 1 1.2 1.4 1.6 0 25 50 75 100 125 150 175 NormalizedOn-Resistance Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature (Note E) VGS=4.5V ID=4A VGS=10V ID=8A 25°C 125°C VDS=5V VGS=4.5V VGS=10V 0 5 10 15 20 25 30 0 1 2 3 4 5 ID(A) VDS (Volts) Fig 1: On-Region Characteristics (Note E) VGS=2.5V 3V 10V 3.5V 4V 5V 18 40 0 5 10 15 20 25 30 1 1.5 2 2.5 3 3.5 4 ID(A) VGS(Volts) Figure 2: Transfer Characteristics (Note E) 10 15 20 25 30 0 5 10 15 20 RDS(ON)(mΩΩΩΩ) ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E) 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -IS(A) -VSD (Volts) Figure 6: Body-Diode Characteristics (Note E) 25°C 125°C 0.8 1 1.2 1.4 1.6 0 25 50 75 100 125 150 175 NormalizedOn-Resistance Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature (Note E) VGS=4.5V ID=4A VGS=10V ID=8A 10 15 20 25 30 35 40 2 4 6 8 10 RDS(ON)(mΩΩΩΩ) VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E) 25°C 125°C VDS=5V VGS=4.5V VGS=10V ID=8A 25°C 125°C 0 5 10 15 20 25 30 0 1 2 3 4 5 ID(A) VDS (Volts) Fig 1: On-Region Characteristics (Note E) VGS=2.5V 3V 10V 3.5V 4V 5V Rev 11: Mar. 2011 www.aosmd.com Page 7 of 9
  • 8. AO4914 Q2: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 0 2 4 6 8 10 0 3 6 9 12 15 VGS(Volts) Qg (nC) Figure 7: Gate-Charge Characteristics 0 200 400 600 800 1000 1200 0 5 10 15 20 25 30 Capacitance(pF) VDS (Volts) Figure 8: Capacitance Characteristics Ciss Coss Crss VDS=15V ID=8A 1 10 100 1000 0.00001 0.001 0.1 10 1000 Power(W) Pulse Width (s) Figure 10: Single Pulse Power Rating Junction- TA=25°C 0.0 0.1 1.0 10.0 100.0 0.01 0.1 1 10 100 -ID(Amps) -VDS (Volts) Figure 9: Maximum Forward Biased Safe 10µs 10s 1ms DC RDS(ON) TJ(Max)=150°C TA=25°C 100µs 10ms 0 2 4 6 8 10 0 3 6 9 12 15 VGS(Volts) Qg (nC) Figure 7: Gate-Charge Characteristics 0 200 400 600 800 1000 1200 0 5 10 15 20 25 30 Capacitance(pF) VDS (Volts) Figure 8: Capacitance Characteristics Ciss Coss Crss VDS=15V ID=8A 1 10 100 1000 0.00001 0.001 0.1 10 1000 Power(W) Pulse Width (s) Figure 10: Single Pulse Power Rating Junction- to-Ambient (Note F) TA=25°C 0.0 0.1 1.0 10.0 100.0 0.01 0.1 1 10 100 -ID(Amps) -VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note F) 10µs 10s 1ms DC RDS(ON) TJ(Max)=150°C TA=25°C 100µs 10ms 0.001 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 ZθθθθJANormalizedTransient ThermalResistance Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F) In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse D=Ton/T TJ,PK=TA+PDM.ZθJA.RθJA RθJA=90°C/W Ton T PD Rev 11: Mar. 2011 www.aosmd.com Page 8 of 9
  • 9. AO4914 - + VDC Ig Vds DUT - + VDC Vgs Vgs 10V Qg Qgs Qgd Charge Gate Charge Test Circuit & Waveform - + VDC DUT VddVgs Vds Vgs RL Rg Vgs Vds 10% 90% Resistive Switching Test Circuit & Waveforms t trd(on) ton td(off) tf toff Id L Vds BV Unclamped Inductive Switching (UIS) Test Circuit & Waveforms Vds DSS 2 E = 1/2 LIARAR - + VDC Ig Vds DUT - + VDC Vgs Vgs 10V Qg Qgs Qgd Charge Gate Charge Test Circuit & Waveform - + VDC DUT VddVgs Vds Vgs RL Rg Vgs Vds 10% 90% Resistive Switching Test Circuit & Waveforms t trd(on) ton td(off) tf toff VddVgs Id Vgs Rg DUT - + VDC L Vgs Vds Id Vgs BV I Unclamped Inductive Switching (UIS) Test Circuit & Waveforms Ig Vgs - + VDC DUT L Vds Vgs Vds Isd Isd Diode Recovery Test Circuit & Waveforms Vds - Vds + I F AR DSS 2 E = 1/2 LI dI/dt I RM rr Vdd Vdd Q = - Idt ARAR trr Rev 11: Mar. 2011 www.aosmd.com Page 9 of 9