O slideshow foi denunciado.
Utilizamos seu perfil e dados de atividades no LinkedIn para personalizar e exibir anúncios mais relevantes. Altere suas preferências de anúncios quando desejar.
Probabilidades 9º Ano
Em 1651 o Conde de Méré (viciado no jogo)
viajava com Pascal ( homem que estudava religião
e Matemática – inventor da máqu...
Probabilidades 9º Ano
Pascal interessou-se por este problema e
iniciou uma correspondência com o seu
amigo Fermat para ana...
Probabilidades 9º Ano
Importância do estudo da Teoria das
Probabilidades
METEREOLOGIA
É pouco provável que chova durante e...
Todos os dias somos confrontados com situações, que nos
conduzem a utilizar, intuitivamente, a noção de
probabilidade:
• D...
ATIVIDADE 1: A Matemática e os jogos de azar
Considera as seguintes situações:
• O boletim do totoloto que o Vítor preench...
ATIVIDADE 2: Tipos de experiências
Considera as seguintes experiências:
Situação 1: Situação 2:
Abrir a mão e largar a moe...
Probabilidades 9º Ano
Termos e conceitos
Experiências
• Lançamento de uma moeda
• Lançamento de um dado
• Totoloto
• Estad...
Probabilidades 9º Ano
Importância do estudo da Teoria das
Probabilidades
A Teoria da Probabilidade prende-se com o estudo ...
Atividade 3:
Para cada uma das situações seguintes indica o cartão que associavas à
frase:
i. A próxima semana tem oito di...
ATIVIDADE 4: Jogo do dado
Considera a experiência que consiste em lançar o dado uma vez e
anotar o número de pontos da fac...
Probabilidades 9º Ano
Termos e conceitos
Espaço de Resultados
Espaço de resultados é o conjunto de todos os resultados
pos...
Probabilidades 9º Ano
Termos e conceitos
Acontecimento
EXPERIÊNCIA: Lançamento de um rapa
Espaço de resultados = E = { R, ...
Probabilidades 9º Ano
EXPERIÊNCIA: Lançamento de um dado
Espaço de resultados = E = {1, 2, 3, 4, 5, 6 }
Acontecimento
ELEM...
Probabilidades 9º Ano
PROBABILIDADE DE UM ACONTECIMENTO
Lei de LAPLACE
1749 - 1827
A primeira definição de probabilidade (...
ATIVIDADE 5:
Antes de jogares, responde às seguintes questões:
I. Quem pensas que vai ganhar, o A ou o B? Têm ambos as mes...
Probabilidades 9º Ano
Lei de LAPLACE
EXPERIÊNCIA: Lançamento de um dado
E = { 1,2,3,4,5,6 }O dado tem 6 faces:
Qual é a pr...
Probabilidades 9º Ano
Cálculo de Probabilidades
Calcula a probabilidade dos seguintes acontecimentos:
  %1717,0
6
1
A...
Probabilidades 9º Ano
Propriedades das probabilidades
1) A probabilidade de um acontecimento impossível é 0.
2) A probabil...
Probabilidades 9º Ano
Propriedades das probabilidades
4) Acontecimentos que não podem ocorrer em simultâneo.
Acontecimento...
Probabilidades 9º Ano
Propriedades das probabilidades
Num saco em que existem 70 bolas amarelas, 65 azuis, 75
vermelhas, 6...
Probabilidades 9º Ano
Problemas de contagem – Tabelas de Dupla entrada
EXPERIÊNCIA: Lançamento de dois dados
1 2 3 4 5 6
1...
9º Ano
Problemas de contagem– Diagramas de árvores
EXPERIÊNCIA: Ementa de restaurante
 Arroz de
frango
 Bife grelhado
 ...
2) Escolhida uma refeição ao acaso qual é a probabilidade
de comer bife ou fruta?
Cálculo de Probabilidades
9º Ano
9º Ano
Cálculo de Probabilidades
Entrada Prato Sobremesa Refeição
S
C
A
B
L
A
B
L
F
P
F
P
F
P
F
P
F
P
F
P
( S,A,F )
( S,A,...
Probabilidades 9º Ano
Ténis Xadrez
3
610 6
25 - 3 = 22
16 + 12 = 28
Meio: 28 - 22 = 6
Só Ténis: 16 - 6 = 10
Só Xadrez: 12 ...
Probabilidades 9º Ano
c) jogar ténis?
Ténis Xadrez
3
610 6
P = 10
25
b) jogar só ténis?
= 2
5
P = 16
25
Escolhendo um alun...
Face
Frequência
absoluta
Frequência relativa
Frequência
absoluta
Frequência relativa
Frequência
absoluta
Frequência relati...
Frequência relativa e probabilidade

Próximos SlideShares
Carregando em…5
×

Probabilidades 9c2ba-ano-alterado

0 visualizações

Publicada em

Probabilidadesppt

Publicada em: Educação
  • Seja o primeiro a comentar

Probabilidades 9c2ba-ano-alterado

  1. 1. Probabilidades 9º Ano
  2. 2. Em 1651 o Conde de Méré (viciado no jogo) viajava com Pascal ( homem que estudava religião e Matemática – inventor da máquina de calcular) e colocou-lhe a seguinte questão: “ Eu e um amigo estávamos a jogar quando uma mensagem urgente nos obrigou a interromper o jogo. Tínhamos colocado em jogo 30 pistolas cada um ( 1 pistola = 2,5 € ). Ganharia as 60 pistolas o primeiro que obtivesse 3 vezes o número que escolheu no lançamento de um dado. Eu tinha escolhido o 6 e quando o jogo foi interrompido já tinha saído o 6 duas vezes. O meu amigo tinha escolhido o 1 que apenas tinha saído uma vez”. Como dividir as 60 pistolas?
  3. 3. Probabilidades 9º Ano Pascal interessou-se por este problema e iniciou uma correspondência com o seu amigo Fermat para analisar a situação. Essa correspondência marca o início da Teoria das Probabilidades. Blaise Pascal Fermat Vídeo: É uma banda desenhada canadiana, com legendas em português, e que de uma forma muito interessante explica a área de estudo das Probabilidades. http://www.youtube.com/watch?v=tJz8sKHHisI
  4. 4. Probabilidades 9º Ano Importância do estudo da Teoria das Probabilidades METEREOLOGIA É pouco provável que chova durante esta semana. SEGUROS Porque é que um condutor com pouco tempo de carta paga mais seguro? JOGOS Porque é que o totoloto tem 49 números e não 10 ou 20?
  5. 5. Todos os dias somos confrontados com situações, que nos conduzem a utilizar, intuitivamente, a noção de probabilidade: • Dizemos que existe uma pequena probabilidade de ganhar o totoloto; • O político deseja saber qual a sua probabilidade de ganhar as eleições; • Dizemos que existe uma grande probabilidade de não chover num dia de verão; • O médico interroga-se sobre qual a probabilidade de um doente, tratado com um novo medicamento sobreviver.
  6. 6. ATIVIDADE 1: A Matemática e os jogos de azar Considera as seguintes situações: • O boletim do totoloto que o Vítor preencheu está representado na figura seguinte. Em qual das apostas terá maior probabilidade de ganhar? • Um árbitro de futebol atirou uma moeda ao ar seis semanas seguidas e obteve sempre face. Vai atirá-la uma sétima vez. É mais provável sair face comum ou face nacional?
  7. 7. ATIVIDADE 2: Tipos de experiências Considera as seguintes experiências: Situação 1: Situação 2: Abrir a mão e largar a moeda Lançar uma moeda e verificar se sai cara  Na primeira experiência já sabemos o que acontece mesmo antes de a realizar – a moeda cai ao chão (trata-se de uma experiência determinista).  Na segunda experiência só é possível conhecer o resultado depois de a realizarmos (trata-se de uma experiência aleatória). Faz uma pequena reflexão sobre o que poderá acontecer em cada uma das situações.
  8. 8. Probabilidades 9º Ano Termos e conceitos Experiências • Lançamento de uma moeda • Lançamento de um dado • Totoloto • Estado do tempo para a semana • Extracção de uma carta • Tempo que uma lâmpada irá durar • Furar um balão cheio • Deixar cair um prego num copo de água • Calcular a área de quadrado de lado 9 cm À partida não sabemos o resultado À partida já conhecemos o resultado
  9. 9. Probabilidades 9º Ano Importância do estudo da Teoria das Probabilidades A Teoria da Probabilidade prende-se com o estudo de modelos matemáticos especiais, a que chamamos modelos probabilísticos, para descrever fenómenos aleatórios.
  10. 10. Atividade 3: Para cada uma das situações seguintes indica o cartão que associavas à frase: i. A próxima semana tem oito dias ii. O António estudou a matéria e vai tirar Muito Bom no teste. iii. O Pedro jogou na lotaria e vai ganhar um prémio. iv. Este ano tem 52 semanas. v. Ao domingo há jogos de futebol. Certo ImpossívelProvável Pouco Provável
  11. 11. ATIVIDADE 4: Jogo do dado Considera a experiência que consiste em lançar o dado uma vez e anotar o número de pontos da face voltada para cima. I. Quantos são os casos possíveis? Escreve todos os casos possíveis. II. Quantos são os casos favoráveis ao acontecimento: A: Sair número par B: Sair um quadrado perfeito III. Define e classifica os seguintes acontecimentos: A: Sair divisor de 10 B: Sair um número par e primo C: Sair o número 7 D: Sair um número menor do que 7.
  12. 12. Probabilidades 9º Ano Termos e conceitos Espaço de Resultados Espaço de resultados é o conjunto de todos os resultados possíveis de uma experiência aleatória. EXPERIÊNCIA 1: Lançamento de um dado Espaço de resultados = E = {1, 2, 3, 4, 5, 6 } EXPERIÊNCIA 2: Jogo de futebol Espaço de resultados = E = {Vitória, Empate, Derrota } EXPERIÊNCIA 3: tirar uma bola de Totoloto Espaço de resultados = E = {1, 2, 3, ... ,47, 48, 49 }
  13. 13. Probabilidades 9º Ano Termos e conceitos Acontecimento EXPERIÊNCIA: Lançamento de um rapa Espaço de resultados = E = { R, T, D, P } IMPOSSÍVEL CERTO “ Sair a letra X ” “ Sair uma consoante ” PROVÁVEL “ Sair a letra T ”
  14. 14. Probabilidades 9º Ano EXPERIÊNCIA: Lançamento de um dado Espaço de resultados = E = {1, 2, 3, 4, 5, 6 } Acontecimento ELEMENTAR COMPOSTO A: “ Sair o nº 3 ” A={ 3 } Só tem um elemento B: “ Sair um nº ímpar ” B={ 1, 3, 5 } Tem mais do que um elemento Acontecimento CERTO IMPOSSÍVEL C: “ Sair um nº menor que 7 ” C={1,2,3,4,5,6 } Coincide com o espaço de resultados D: “ Sair o nº 8 ” D={ }
  15. 15. Probabilidades 9º Ano PROBABILIDADE DE UM ACONTECIMENTO Lei de LAPLACE 1749 - 1827 A primeira definição de probabilidade (definição clássica de probabilidade) foi enunciada pelo matemático francês Pierre Simon Laplace (1749- 1827) e publicada num tratado, em 1812, designado por "Théorie analytique des probabilités" (Teoria Analítica das Probabilidades) e que unificou na altura todos os seus trabalhos sobre probabilidades.
  16. 16. ATIVIDADE 5: Antes de jogares, responde às seguintes questões: I. Quem pensas que vai ganhar, o A ou o B? Têm ambos as mesmas hipóteses de ganhar? II. Qual a probabilidade de sair face com número primo?
  17. 17. Probabilidades 9º Ano Lei de LAPLACE EXPERIÊNCIA: Lançamento de um dado E = { 1,2,3,4,5,6 }O dado tem 6 faces: Qual é a probabilidade de sair face com número primo?   possíveiscasosdeNúmero favoráveiscasosdeNúmero "º" primonsairP Nº casos favoráveis = 3 Nº casos possíveis = 6   %505,0 2 1 6 3 primo"número" sairP
  18. 18. Probabilidades 9º Ano Cálculo de Probabilidades Calcula a probabilidade dos seguintes acontecimentos:   %1717,0 6 1 AP A: “ Sair o número 3 “1) 2) B: “ Sair um número maior que 3 “   %505,0 2 1 BP A probabilidade de um acontecimento pode ser representada sob a forma de fracção, dízima ou de percentagem.
  19. 19. Probabilidades 9º Ano Propriedades das probabilidades 1) A probabilidade de um acontecimento impossível é 0. 2) A probabilidade de um acontecimento certo é 1. 3) A probabilidade de um acontecimento varia sempre entre 0 e 1.   0"7º" nsairP   1"7quemenor" númerosairP 1)(0  AP Acontecimento CertoAcontecimento Impossível Acontecimento possível mas não certo
  20. 20. Probabilidades 9º Ano Propriedades das probabilidades 4) Acontecimentos que não podem ocorrer em simultâneo. Acontecimentos disjuntos ou mutuamente exclusivos   )()(Bu BpApoAP  Num saco em que existem 70 bolas amarelas, 65 azuis, 75 vermelhas, 65 verdes e 25 cor de rosa, qual a probabilidade, numa extração, sair bola amarela ou verde?
  21. 21. Probabilidades 9º Ano Propriedades das probabilidades Num saco em que existem 70 bolas amarelas, 65 azuis, 75 vermelhas, 65 verdes e 25 cor de rosa, qual a probabilidade, numa extração, não sair bola vermelha? 5) Acontecimento contrário. Acontecimento complementar   1)(  ApAP
  22. 22. Probabilidades 9º Ano Problemas de contagem – Tabelas de Dupla entrada EXPERIÊNCIA: Lançamento de dois dados 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6) I. Quantos são os casos possíveis? II. Qual é a probabilidade de sair dois números maiores que 3? 9 1 36 4 P  
  23. 23. 9º Ano Problemas de contagem– Diagramas de árvores EXPERIÊNCIA: Ementa de restaurante  Arroz de frango  Bife grelhado  Lampreia Sobremesa:  Fruta da época  Pudim Prato: Entrada :  Sopa  Canja 1) Quantas refeições diferentes podemos escolher, tendo cada uma, uma entrada, um prato e uma sobremesa? Entrada Prato Sobremesa Refeição S C A B L A B L F P F P F P F P F P F P ( S,A,F ) ( S,A,P ) ( S,B,F ) ( S,B,P ) ( S,L,P ) ( S,L,F ) ( C,A,F ) ( C,A,P ) ( C,B,F ) ( C,B,P ) ( C,L,F ) ( C,L,P ) 12 refeições diferentes!
  24. 24. 2) Escolhida uma refeição ao acaso qual é a probabilidade de comer bife ou fruta? Cálculo de Probabilidades 9º Ano
  25. 25. 9º Ano Cálculo de Probabilidades Entrada Prato Sobremesa Refeição S C A B L A B L F P F P F P F P F P F P ( S,A,F ) ( S,A,P ) ( S,B,F ) ( S,B,P ) ( S,L,P ) ( S,L,F ) ( C,A,F ) ( C,A,P ) ( C,B,F ) ( C,B,P ) ( C,L,F ) ( C,L,P ) 3 2 12 8 P Escolhida uma refeição ao acaso qual é a probabilidade de comer bife ou fruta? Resposta:
  26. 26. Probabilidades 9º Ano Ténis Xadrez 3 610 6 25 - 3 = 22 16 + 12 = 28 Meio: 28 - 22 = 6 Só Ténis: 16 - 6 = 10 Só Xadrez: 12 - 6 = 6 Processo de Contagem – Diagrama de Venn Numa turma de 25 alunos fez-se um inquérito e após a análise dos seus desportos favoritos, registaram-se as seguintes conclusões: -16 alunos sabem jogar ténis; -12 alunos sabem jogar xadrez; -3 não sabem jogar ténis nem xadrez.
  27. 27. Probabilidades 9º Ano c) jogar ténis? Ténis Xadrez 3 610 6 P = 10 25 b) jogar só ténis? = 2 5 P = 16 25 Escolhendo um aluno ao acaso qual é a probabilidade de saber: a) jogar ténis e xadrez? P = 25 6
  28. 28. Face Frequência absoluta Frequência relativa Frequência absoluta Frequência relativa Frequência absoluta Frequência relativa Nacional 62 165 244 Comum 38 135 256 100 300 500   62 0,62 62% 100   165 0,55 55% 300   244 0,488 48,8% 500   38 0,38 38% 100   135 0,45 45% 300   256 0,512 51,2% 500 O João realizou 3 experiências ao lançar uma moeda ao ar: 100 vezes na 1ª experiência, 300 vezes na segunda e 500 vezes na terceira experiência. Experiência 3Experiência 2Experiência 1 À medida que o número de lançamentos aumenta, compara a frequência relativa de cada acontecimento com a sua probabilidade. Que observas? Frequência Relativa e Probabilidade
  29. 29. Frequência relativa e probabilidade 

×