SlideShare uma empresa Scribd logo
1 de 8
Use of Low Quality Crop Residues
Low quality fibrous crop residues include straws, sugarcane baggasse, hulls, corn cake,
etc. These are very low in digestible energy and protein and are highly lignified. There
slow turnover in the rumen results in rumen fill becoming a limiting factor. Crop residues
contain insufficient nitrogen to support adequate microbial growth in the rumen.
Treatments to improve utilization of crop residues:
1. Chemical Treatment: Signification of the cell wall material is the main factor
responsible for the very low digestibility of fibers crop residues. Lignin is very
indigestible and by encrusting cellulose and other cell wall contents, impedes their
digestion too. However, lignin is very respectable to degradation by oxidation and is
destroyed by oxidizing agents such as hypochlorite and sulfites. These products are used
in the treatment of wood pulp to isolate cellulose for the purposes of paper manufacture.
Alkali dissolves lignin and readers the cell wall constituents susceptible to several
disadvantages in addition to cost: the need for supplemental nitrogen, the increased
sodium load on the animal, sodium contamination of soil, and the hazardous nature of the
chemical.
An alternative is ammoniation. Ammonia treatment, either as ammonium hydroxide or
gaseous ammonia is effective in dissolving lignin, and improving fiber digestibility. It
also provides a source of supplementary nitrogen. Ammonia is an effective preservative,
and is safer and easier to use. The color of the treated straw is changed to intense yellow-
brown; and is more easily reduced to small particle size, facilitating its digestion.
Urea can be used as a some of ammonia, and most roughage have sufficient bacterial
urease present to convert urea to ammonia. Ammoniation reduces effects of aflatozins. It
also reduces glucosinolates is mustard meal.
Toxicity of Ammoniated Roughages:
Ammoniation of feeds may produce toxins and toxicity symptoms in animals consuming
such treated feed.
This toxicity has been named as bovine hysteine, bovine bonkers, ammoniated hay toxic-
sis, hyper excitability, or crazy cow syndrome. Neurological signs, such as hyperactivity,
incardination, tremors and cowulsions occur in affected animals. Cattle may become
extremely nervous and difficult to handle. Affected animals may suddenly gallop in
circles and sun into fences, gates, and other objects, often causing them selves injury. The
causations factor appears to be a 4-methyl-imidizole, formed by the reaction between
reducing sugars e.g. glucose and ammonia in the presence of heat. Toxicity does not
occur if the temperature of the ammoniated roughages remains below 70
C during
ammoniation. Ammoniation of molasses may also produce bovine hysteine. Because of
the involvement of reducing sugars, amoniation of good quality roughages with abundant
reserves of cartbohyohates should be avoided.
Other Chemical Treatment:
Treatment of low quality roughages with alkaline hydrogen peroxide solution increase
digestibility. In this treatment, the lignin carbohydrate bends are disrupted, which
increases accessibility of the cellulose to cellulolytic enzymes, increasing cellulose
digestion. Treatment of roughages with ozone has also been shown to degrade lignin and
improve fiber digestibility.
Physical Treatment
The digestibility of low-quality roughages can be improved by grinding or chopping the
material. However, these benefits are usually offset by a more rapid passage of small
particles form the rumen, escaping menial digestion. The major benefits of chopping are
reduced feed wastage.
Lignin can also be degraded by various aerobic fungi and bacteria.
Improvement of the Rumen Environment:
Low quality roughages lack adequate fermentable nitrogen, true posteine readily
available carbohydrates, and minerals for optimal microbial activity. Slow rates of fiber
digestion and outflow from the rumen are major constraints to increasing voluntary intake
of poor-quality roughages. Supplementation of low-quality roughs with ground alfalfa
hay improves fiber digestibility and rumen environment parameters, such as
concentration of branched-chain fatty acids and ruminal ammonia nitrogen. Readily
fermentable cell wall constituents of alfalfa might stimulate cellulolytic microbes with
colonization of the poor-quality roughage. The positive effects of by pass protein on
intake of low-quality roughages are well-known.
Feed additives and their use in livestock feeding:
Feed additive is an ingredient or combination of ingredients added to the basic feed mix
to full fill the specific used. It may also be defined as any chemical incorporate in an
animal feed for the purpose of improving rate of gain, feed efficiency, or preventing and
controlling disease. A feed additive need not to be a drug.
Types of Feed Additives:
Feed additives can be a classified into nutrient feed additives e.g. amino acid, minerals
and vitamins, and non-nutrient feed additives e.g. antibiotics, hormones,
commomodulators, coccidiostate, enzymes, probiotics, yeast acidifiers, antioxidants,
mycotoxin binders, anticaking agents, feed preservatives, plavoring agents, cloring
agents, pellet binders, dietary baffers, methane inhibitors, propionate pronotors,
defamating agents, heptoses and bloat controlling agents, surfactants, sweetening agents
tranquilizers, emulsifiers and stabilizers, etc.
Advantages of Feed Additives:
1. Improve feed quality and palatability.
2. Improve animal performance
3. Improve the final product
4. Economize the production costs
Negative aspects of Feed Additives:
Hormones and antibiotic have residual effects in meat, milk and eggs. Feeding of low
concentration of antibiotics may favors the proliferation of antibiotic resistant
microorganisms. Use of antibiotic in ruminants, feed is not common in Pakistan.
Poultry:
Antimicrobial feed additives are included in the diets for the prevention and control of
coccidiosis, etc. and to improve growth, efficiency of feed utilization, livability and egg
production.
Ionophore Antibiotics:
These are produced by several strains of streptomyces species e.g. Monensin, Lasalocid,
Salinomycine, Hysocellin, which are antomiesobial compounds. Morensin is an
anticoccidial agent for broilers, lambs and beef cattle. It improves feed efficiency and not
growth. Heifers having more than 180 kg body weight can be fed 50 to 100 mg/head/day
by mixing in about 500 grams of feed. It impact is better in low protein diets.
Effect of ionophores on Rumen Fermentation:
1. It increases the rumen propionate and decease acetate concentration.
2. It deceases methane production
3. Depress the activity of some rumen enzymes like proteases, deaminases, and
urease.
4. Decrease the passage rate of feed; thus increaring the ME value per unit of feed
intake. (10%). Both monessine and lasalocid inhibit the growth of ruminal
microbes which produce acetate. Butyrate, lactate. Formate and hydrogen as
major and products. Other organisms which produce succnate and propionate or
utilize lactic acid would grow rapidly in the preauce of ionophores. The
production of increased levels of propionic acid in the rumen is related to
improved animal performance. Propionate has protein spening effect and stinulate
body protese synthesis and thus improve growth promoting activity.
Lasalocid (Trade Name: Bovitec):
It is produced by fungi streptomycin lasoliensis and is more protest than monensim. It
acts against hydrogen producing bacteria and results in higher propionate production. Its
dose is 1 mg per kg body weight or similar to monensin.
Benefits of growth promoting antibiotics in animal feeds include: better weight gain,
higher feed conversion ratio and less meruse with lower N and P content. Tetracyclins,
oxytetracyclins and chlortetracyclins are absorbable antibiotics. Nonabsorbable
antibiotics are zinc bacitracin, anoporcin, monensin, virginiamycin, etc which have
beneficial effects on the microflora of the intestinal tract. As per the latest European
union regulation (folloved for Setember 1999) only monensin, salinomycin, flevomycin
and avilamycin are the from feed grade pharmacentrial antibiotics remaining on the
approved list.
Arsenicals improve growth of broilers and such birds have bright red combs and wattles.
Arsenicals must be removed from the feed 5 days before slaughter. Accumulation of
arsenic in eggs and tissues is proporational to the amount in the ration and well below the
allowable levels. Arsanilic acid is tolerated upto 0.1% in the diet of chicks and upto
0.02% in the diet of turkeys. Arsenicals should not be included in the rations of the ducks
and gees.
Hormones:
The active principles sesected by the endocrine glands into the blood for transporation to
target organs and tissues are known as hormone. The two broad types of hormones
include:
1. Anabotic hormones e/g/ somatotropin, thyroxine and androgens.
2. Catabolic hormones e.g. oestrogens, glucocorticoids.
Hormones as carcass modifiers:
Intact males produce less fat and more lean from a given feed than either the females or
the castrate males. Bulls contain less subcutaneons fat intermusuclar fat than stears.
Anabolic agents evhance nitrogen rectention in the body and particularly in the muscle,
and result in production of leaver carcasses. Androgens are mainly used in females and
castrated males while estrogens are used in males.
Anabolic steroids:
There are banned in EU since 1989, because of health problems they might cause. These
include: oestradiol, tranbolone acetrate (TBA), Zeanol (Ralgro)+TBA.
Somatotropin:
It is a polypeptide and therefore not orally actic and it is species specific. Hence the little,
if any, sometotropin present in animal products get degraded in the GI tract and thus has
no influence on human health. Somatotropin and growth hormone (GH) can be used
interchangeably. The secretion of this hormone is enhanced following feeding of protein.
Somatotropin influences the biosynthesis of protein in the muscles; increase N setention;
increases skeletal growth and improves growth and milk production.
Exogenous Bovine Somatotropin (BST) injections:
A greater negative energy balance of often observed in cows during the first few weeks
after beginning the administration of bST, but cows gradually increase their feed intake to
obtain the required nutrients for body weight gain and increased milk production. High
yielding cows treated with daily s/c injections of b St (12-50,g) gave 20 to 40% increase
in milk yield and 12-14% increased feed efficiency. The increase in milk yield were
associated with increase sin feed intake.
The availability of slow relaease device of bST has eliminated the necessity for daily
injection. Lactating cows injected 640 mg bST at 28 Day intervals for a period of 112
days gaine 12 to 15% higher milk yield over control animals. Levels of ST in milk
produced by treated cows are axcedingly low and constitute no threat to the uman
consumer. In beef cattel steroid implants and somatotsopin produced additive increases in
performance of finishing steers. In growing lambs chronic administration of ST for 12
weeks led to a 20% increase in rate of daily gain. However, some negative impacts on
reproductive performance have been reported.
Growth Promoters for Fattening Ruminants:
In the EU, the recommended doses for fattening cattle are 20-60mg/kg feed for nomensin
with optimum of 30. Ionophores improve average daily gain and feed conversion
efficiency of growing kids by 10%. Ionophores supprescoccidisive; increase
propionate /acetate ratio.
Amprolin, clopridol, hasalocid sodium, monensin sodium, slinomycine, robenidine,
meduremicin, narecin, etc act as coccidiostates.
Several hormone implants viz oestradiol, trenbolone and testosterone are used in animal
production, but are banned in EU.
Anabolic steroids and growth hormone use has been banned in the EU, and also banned
meat imported from countries such as USA, when growth hormone is used to achieve
improved efficiency and leaner carcasses.
Feed Enzyme Additives:
These act as biocatalysts to assist the digestion process and support the utilization of
nutrients that otherwise go unused.
The predominant non-starch polysaccharides in cercal grains are cellulose, arabinoxylans
and betaglucans.
Feed enzymes such as B-glucanases and xylanases have enabled barley or wheat in
poultry diets up-to 50 or 50%. Arabinases, xylanases and pectinases breakdown the
arabinoxylans and pectin’s present in sunflower seed meal, rapeseed meal, etc. and
release the protein and other nutrients; and bring the nutritional value of sunflower meal
equal to soybean meal.
A multi-enzyme preparation with cellulolytic and photolytic activity (celluloses, B-
glucanases and protease) can degrade the structural polysaccharides and proteins. Phytase
enzyme helps to increase the utilization of phytin P by poultry etc.
“Fibrozyme”, (alltech) in the first feed-grade enzyme that is rumen stable. It significantly
increases DM digestibility VFA production and carbohydrate utilization in cattle fed high
amounts of fiber. Feeds containing fibrozyme can be pelleted with only a slight loss in
enzyme activity.
Probiotics, Yeast Culture and Acidifiers
Probiotics are defined as “organisms and substances which contribute to intestinal
microbial balance”. The terms probiotic means “for life” in contrast with the term
antibiotic means “against life”.
Protiotics are advocated as an alternative to antibiotics for growth promotion. Probiotics
are live cultures of non-pathogenic organisms which are administer orally. Later
probiotics were redefined as live microbial feed supplements which beneficially affect
the host animal by improving its intestinal microbial balance. Probiotics are available in
the form of oral pastes, water dispersible powders or liquids or directly fed feed additives
and include microbial cells, microbial cultures and microbial metabolites. Most probiotics
get destroyed by upto 80% in the presence of antibiotics. The term “pronatrient” is used
in place of probiotics. The US Food and Drug Administration used the term direct fed
microbial (DFM_ instead of probiotic.
Micro-organisms used as Probiotics:
Some important are: lactobacillus acidophilus, L.bifidus, :. Bulgaricus, L. casei. L.
fermentrim, L. lactis, L. plantarum, L. ruminis, L. salivaricus, Bifido bacterium bifidum,
Aspergillus oryzae, Torulopsis, Streptococus faecuim, s. thermophilus, Saccharomyces
cervisiae.
Lactobacillus acidophillis produce lactic acid and the enzyme amylase. Lactobacillus
casei complements the growth of L. aciclophillus. Bifido bacterium bifidum is commonly
found in mother milk and the intestine of humans and animals.
Aspergillus oryzae produce enzyme cellulose. Torulopsis is the mother culture of yeast.
The enzyme lipase is exhibited by Torulopsis. Probiotics at the specific concentration
stimulate immunity. A low pH (4-5) favours lactobacillus sp. And a high pH (6-7) is
optimal for E.coli.
Shortly after hatching, the chick has a nearly sterile digestive tract with a pH rauge of 5.5
to 6.0. So supplementation of a lactobacillus product in the water or feed along-with an
acidifying agent would be effective in controlling the coli-form proliferation.
Yeast Culture: It is known to contain compounds formerly refessed to as UFGs which
positively affect animal performance rumen bacterial concentrations increase when
fermentation products such as yeast cultures are added to the diet. Metabolites in the
fermentation products serve as nutrients for the bacteria. Byproducts of fermentation
include dried brewers yeast, dried distillers soluble, dried bacterial press cakes.
Yeast cells are destroyed by pelleting the feed, storage conditions and strong mineral
mixtures. Significant losses of variable yeast cells canals occur over time for yeast
products hold at 35oC in paper bags. The rate of deterioration is time and temperature
dependant.
Inclusion of live yeast cultures in the diet (3 to 5g/d) decreases body temperature and
respiration rate in hot, but not in cool weather. It also act by production of growth
stimulating factors in the rumen. Stabilizing rumen pH and reduction of lactic acid
production, and increasing rumen bacterial population.
Yeast culture increases rumen bacterial population, which in turn will increase flow of
microbial protein, as well as increase degradation of fiber in rumen, leading to increased
feed intake, and thus ultimately increasing animal productivity.
Yeast culture may increase milk yield (8%); with more response during early lactation.
Responses increase as the ratio of concentrate to forage in the ration increases. Total
butter fat and milk protein also increase. Inclusion of yeast in the diet of cows fed a 60%
concentrate and 40% when straw was replaced by hay. The addition of yeast culture to
diets containing 40 to 80% oat straw increased in sites NDF digestibility in steers.
Acetate was reduced which propionate was increased by yeast addition. Ruminal
protozoa numbers increased in steers fed yeast culture. Total and cellulytic bacteria were
higher in ruminal fluid of calves fed yeast culture.
White rot fungi decompose lignin or lignocelluloses with minimal degradation of
hemicelluloses and cellulose. Yeasts are always found in culture of white rot fungi. The
potential synergism between yeast (S. cerevisiae) and fungi (Armillaria heimii) had the
best potential for increasing forage digestibility. Inclusion of yeast culture diets given to
yearling horses.
Supplementation of broilers diet with live yeast culture (1 kg/ton) may increase weight
gain and FCR. Combined use of lactobacillus and yeast culture in the feed and water may
be effective in reducing morbidity and mortality and improving growth performance and
production.
Direct-fed microbial include:
Lactobacillus, streptococcus, Bacillus and yeast (saccharomyces cerevisiae). Lactobacilli
are delicate microbes that are unable to withstand various environmental extremes, such
as the heat and pressure of pelleting. Bacilli are very stable microbes that can survive
pelleting. Yeast and streptococcus fall somewhat between lactobacillus and bacillus in
their ability to survive pelleting. The ability of the yeast to grow in the rumen is limited,
but is able to remain alive and metabolically active in the rumen and postruminelly. DEF,
are designed to prevent or reduce E.coli scones in calves. The rational for their use in the
calf is that feeding live, non-pathogenic bacteria may displace and suppress intestinal
pathogens. DFMs may be of little benefit under good rearing conditions and husbandry
practices. Stress such as extreme weather or transportation, would more likely enhance
the potential benefits of feeding a DFM to calves.
Acidifiers: Organic acids usually are added only as preservations, but they do positively
influence performance when included at higher quantities.
Liquid acidifiers are :
1. Formic acid- 6-8kg/ton
2. Prop-ionic acid- 8-10kg/ton
Organic acids in powder form are:
1. Fumaric acid 12-15kg/ton
2. Citric acid 20-25kg/ton.
In diets for laying hens, the feed additive calcium format (1.3%), which is converted to
formic acid in the crop, offers potential benefits beyond reducing E. coli and salmonella
populations. It inhibits molds; improves consistency of droppings, resulting in fewer dirty
eggs; better calcium absorption and egg shell quality. It is stable in storage, safe in food
and the environment and without negative effects for other feed supplements, such as
vitamins, etc. Calcium format is non-corrosive, odor free and non-caustic. It approved by
EU for use as food and feed preservation.
Antioxidants:
Oxidation of feed fats causes rancidity spoiling the taste and flavor of the feeds thus a
process known as lipid per-oxidation or autoxidation these rained fat containing diets
impart undesirable off flavor in the milk and milk products. Oxidation also causes much
loss to carotenes; vitamin A and vitamin D. the use of antioxidants limit this oxidative
spoilage. Oxidation negatively affects odor, taste and nutritive value of the food, as well
as produces harmful by-products. The addition of antioxidants map up the free radicals.
Antioxidants may be natural and synthetic. National ones are vitamin E (tocopherol) and
ascorbic acid. The most common synthetic antioxidants are ethoxyquin, butyrate
hydroxyanisole (BHA) and butylated hydaroxytoluene (BHT). BHT and BHA tend to be
more effective in preventing oxidation of animal fats than of vegetable oils which
ethoxyguin is most effective in protecting both animal fats and vegetable oils.
Mycotoxin binders: these chemicals are harmful to animals and humans. The major
mycotoxin producing fungi are aspergillums, Fusarium and penicillium and the toxins are
aflatoxins, zeralemone, trichothecenes, fumonisins, ochratoxin A, etc. Mycotoxin binding
agents include activated charcoal, yeast cell wall products, synthetic zeolites and mined
mineral days such as aluminosilicates, sodium betonies.
Anticaking agents: these are substances that can pick up moisture without themselves
becoming wet. They are added to dry mixes to prevent the particles clumping together
and so hup the product free flowing. Anticaking agents include: calcium star-ate, calcium
phosphate ferrous ammonium citrate, yellow prussiate of soda, potassium or sodium
ferrocyanide, magnesium oxide, kaolin, ball clay, sodium aluminum silicates, hydrated
sodium calcium alluminosilicate (HSCAS), calcium aluminum silicate, etc.
Preservatives: The aim of preservatives is to prevent microbial spoilage. e.g. nisin,
benzoic acid, methyl-4-hydroxybenzoate, cthyl-4-nitrate, prop-ionic acid, sorbic acid and
sulphur dioxide.
Antifungal agents: Sodium propionate, sodium benzoate, nystatin, etc.
Use of low quality crop residues by shakira (Pakistan)

Mais conteúdo relacionado

Mais procurados

feed additive moa,clssifiction,uses
feed additive moa,clssifiction,usesfeed additive moa,clssifiction,uses
feed additive moa,clssifiction,usesDr. Waqas Nawaz
 
Antinutritional Factors in fishes
Antinutritional Factors in fishesAntinutritional Factors in fishes
Antinutritional Factors in fishesMadhaviHatwar1
 
Feed Additives (Animal Nutrtion)
Feed Additives (Animal Nutrtion)Feed Additives (Animal Nutrtion)
Feed Additives (Animal Nutrtion)Osama Zahid
 
Organic acids in broilers
Organic acids in broilersOrganic acids in broilers
Organic acids in broilersOssama Motawae
 
Water_Soluble_Vtamines_for_Poultry
Water_Soluble_Vtamines_for_PoultryWater_Soluble_Vtamines_for_Poultry
Water_Soluble_Vtamines_for_PoultryOssama Motawae
 
Anti nutritional factors and toxins in food- krishnegowda
Anti nutritional factors and toxins in food- krishnegowdaAnti nutritional factors and toxins in food- krishnegowda
Anti nutritional factors and toxins in food- krishnegowdakrishnegowda
 
Overcoming anti-nutritional factors by using enzymes
Overcoming anti-nutritional factors by using enzymesOvercoming anti-nutritional factors by using enzymes
Overcoming anti-nutritional factors by using enzymesDSM Animal Nutrition & Health
 
Trace_Minerals_In_Poultry
Trace_Minerals_In_PoultryTrace_Minerals_In_Poultry
Trace_Minerals_In_PoultryOssama Motawae
 
Sodium butyrate in broiler
Sodium butyrate in broilerSodium butyrate in broiler
Sodium butyrate in broilerOssama Motawae
 
Introduction_To_Essential_Oils_In_Poultry
Introduction_To_Essential_Oils_In_PoultryIntroduction_To_Essential_Oils_In_Poultry
Introduction_To_Essential_Oils_In_PoultryOssama Motawae
 
Antinutritional and allergens
Antinutritional and allergensAntinutritional and allergens
Antinutritional and allergensAman Kumar
 

Mais procurados (20)

Enzymes in foods
Enzymes in foodsEnzymes in foods
Enzymes in foods
 
feed additive moa,clssifiction,uses
feed additive moa,clssifiction,usesfeed additive moa,clssifiction,uses
feed additive moa,clssifiction,uses
 
Antinutritional Factors in fishes
Antinutritional Factors in fishesAntinutritional Factors in fishes
Antinutritional Factors in fishes
 
Feed Additives (Animal Nutrtion)
Feed Additives (Animal Nutrtion)Feed Additives (Animal Nutrtion)
Feed Additives (Animal Nutrtion)
 
Feed additives
Feed additives Feed additives
Feed additives
 
Organic acids in broilers
Organic acids in broilersOrganic acids in broilers
Organic acids in broilers
 
Moringa fish-diet
Moringa fish-dietMoringa fish-diet
Moringa fish-diet
 
Feed additives for poultry
Feed additives for poultryFeed additives for poultry
Feed additives for poultry
 
Water_Soluble_Vtamines_for_Poultry
Water_Soluble_Vtamines_for_PoultryWater_Soluble_Vtamines_for_Poultry
Water_Soluble_Vtamines_for_Poultry
 
Anti nutritional factors and toxins in food- krishnegowda
Anti nutritional factors and toxins in food- krishnegowdaAnti nutritional factors and toxins in food- krishnegowda
Anti nutritional factors and toxins in food- krishnegowda
 
Overcoming anti-nutritional factors by using enzymes
Overcoming anti-nutritional factors by using enzymesOvercoming anti-nutritional factors by using enzymes
Overcoming anti-nutritional factors by using enzymes
 
Trace_Minerals_In_Poultry
Trace_Minerals_In_PoultryTrace_Minerals_In_Poultry
Trace_Minerals_In_Poultry
 
Alternative of antibiotic growth promoter in Livestock and Poultry
Alternative of antibiotic growth promoter in Livestock and PoultryAlternative of antibiotic growth promoter in Livestock and Poultry
Alternative of antibiotic growth promoter in Livestock and Poultry
 
Sodium butyrate in broiler
Sodium butyrate in broilerSodium butyrate in broiler
Sodium butyrate in broiler
 
Feed additives
Feed additivesFeed additives
Feed additives
 
Betaine in poultry
Betaine in poultryBetaine in poultry
Betaine in poultry
 
feed additives
feed additives feed additives
feed additives
 
Introduction_To_Essential_Oils_In_Poultry
Introduction_To_Essential_Oils_In_PoultryIntroduction_To_Essential_Oils_In_Poultry
Introduction_To_Essential_Oils_In_Poultry
 
Antinutritional and allergens
Antinutritional and allergensAntinutritional and allergens
Antinutritional and allergens
 
Anti nutritional factors
Anti nutritional factorsAnti nutritional factors
Anti nutritional factors
 

Semelhante a Use of low quality crop residues by shakira (Pakistan)

BIOTECHNOLOGY IN ANIMAL FEED.ppt
BIOTECHNOLOGY IN ANIMAL FEED.pptBIOTECHNOLOGY IN ANIMAL FEED.ppt
BIOTECHNOLOGY IN ANIMAL FEED.pptDr.hema hassan
 
anti nutrition factor.pptx
anti nutrition factor.pptxanti nutrition factor.pptx
anti nutrition factor.pptxsherozJutt6
 
Manipulation of rumen
Manipulation of rumen Manipulation of rumen
Manipulation of rumen UCV&AS IUB
 
Manipulation of rumen function to augment livestock productivity
Manipulation of rumen function to augment livestock productivityManipulation of rumen function to augment livestock productivity
Manipulation of rumen function to augment livestock productivityUCV&AS IUB
 
MINERALS-IN-FOODS.pptx
MINERALS-IN-FOODS.pptxMINERALS-IN-FOODS.pptx
MINERALS-IN-FOODS.pptxssuser712ea5
 
vnd.openxmlformats-officedocument.wordprocessingml.document&rendition=1-2.docx
vnd.openxmlformats-officedocument.wordprocessingml.document&rendition=1-2.docxvnd.openxmlformats-officedocument.wordprocessingml.document&rendition=1-2.docx
vnd.openxmlformats-officedocument.wordprocessingml.document&rendition=1-2.docxAjithPArun1
 
Fermented food
Fermented food Fermented food
Fermented food khehkesha
 
Rumen manipulation
Rumen manipulation Rumen manipulation
Rumen manipulation Ravi Kumar
 
Role of biotechnology in animal feed
Role of biotechnology in animal feedRole of biotechnology in animal feed
Role of biotechnology in animal feedBatool Abbas
 
Harmful natural constituents and common adulterants
Harmful natural constituents and common adulterantsHarmful natural constituents and common adulterants
Harmful natural constituents and common adulterantsKaushalendra Kumar
 
Protease for use in poultry
Protease for use in poultryProtease for use in poultry
Protease for use in poultryDVS BioLife Ltd
 
Feed additives.pptx
Feed additives.pptxFeed additives.pptx
Feed additives.pptxswarnavet05
 
R ecent advances in poultry feed additive
R ecent advances in poultry feed additiveR ecent advances in poultry feed additive
R ecent advances in poultry feed additiveMahalsakant Nikam
 

Semelhante a Use of low quality crop residues by shakira (Pakistan) (20)

BIOTECHNOLOGY IN ANIMAL FEED.ppt
BIOTECHNOLOGY IN ANIMAL FEED.pptBIOTECHNOLOGY IN ANIMAL FEED.ppt
BIOTECHNOLOGY IN ANIMAL FEED.ppt
 
anti nutrition factor.pptx
anti nutrition factor.pptxanti nutrition factor.pptx
anti nutrition factor.pptx
 
Feed additives by Abhishek Sharma
Feed additives by Abhishek SharmaFeed additives by Abhishek Sharma
Feed additives by Abhishek Sharma
 
Manipulation of rumen
Manipulation of rumen Manipulation of rumen
Manipulation of rumen
 
Manipulation of rumen function to augment livestock productivity
Manipulation of rumen function to augment livestock productivityManipulation of rumen function to augment livestock productivity
Manipulation of rumen function to augment livestock productivity
 
MINERALS-IN-FOODS.pptx
MINERALS-IN-FOODS.pptxMINERALS-IN-FOODS.pptx
MINERALS-IN-FOODS.pptx
 
vnd.openxmlformats-officedocument.wordprocessingml.document&rendition=1-2.docx
vnd.openxmlformats-officedocument.wordprocessingml.document&rendition=1-2.docxvnd.openxmlformats-officedocument.wordprocessingml.document&rendition=1-2.docx
vnd.openxmlformats-officedocument.wordprocessingml.document&rendition=1-2.docx
 
Fermented food
Fermented food Fermented food
Fermented food
 
Rumen manipulation
Rumen manipulation Rumen manipulation
Rumen manipulation
 
Role of biotechnology in animal feed
Role of biotechnology in animal feedRole of biotechnology in animal feed
Role of biotechnology in animal feed
 
Food technology
Food technology Food technology
Food technology
 
Harmful natural constituents and common adulterants
Harmful natural constituents and common adulterantsHarmful natural constituents and common adulterants
Harmful natural constituents and common adulterants
 
Preservatives
PreservativesPreservatives
Preservatives
 
Protease for use in poultry
Protease for use in poultryProtease for use in poultry
Protease for use in poultry
 
Toxinstop Brochure 2022
Toxinstop Brochure 2022 Toxinstop Brochure 2022
Toxinstop Brochure 2022
 
Profiles enzymix
Profiles enzymixProfiles enzymix
Profiles enzymix
 
Feed additives.pptx
Feed additives.pptxFeed additives.pptx
Feed additives.pptx
 
R ecent advances in poultry feed additive
R ecent advances in poultry feed additiveR ecent advances in poultry feed additive
R ecent advances in poultry feed additive
 
Aminoacid
AminoacidAminoacid
Aminoacid
 
Shopan
ShopanShopan
Shopan
 

Mais de Shakira Sulehri

Gene silencing by shakira sulehri 2013
Gene silencing by shakira sulehri 2013Gene silencing by shakira sulehri 2013
Gene silencing by shakira sulehri 2013Shakira Sulehri
 
Ruminants ( Shakira sulehri)
Ruminants ( Shakira sulehri)Ruminants ( Shakira sulehri)
Ruminants ( Shakira sulehri)Shakira Sulehri
 
Presentation on cell lines by shakira sulehri
Presentation on cell lines by shakira sulehriPresentation on cell lines by shakira sulehri
Presentation on cell lines by shakira sulehriShakira Sulehri
 
Presentation on cell line by Shakira 2
Presentation on cell line by Shakira 2Presentation on cell line by Shakira 2
Presentation on cell line by Shakira 2Shakira Sulehri
 
Pestedes petits ruminants in Pakistan by Shakira sulehri
Pestedes petits ruminants in Pakistan by Shakira sulehriPestedes petits ruminants in Pakistan by Shakira sulehri
Pestedes petits ruminants in Pakistan by Shakira sulehriShakira Sulehri
 
2013 polymerase chain-reaction-shakira sulehri
2013 polymerase chain-reaction-shakira sulehri2013 polymerase chain-reaction-shakira sulehri
2013 polymerase chain-reaction-shakira sulehriShakira Sulehri
 
Nutrient by shakira sulehri
Nutrient by shakira sulehriNutrient by shakira sulehri
Nutrient by shakira sulehriShakira Sulehri
 
Antioxidants by SHAKIRA SULEHRI
Antioxidants by SHAKIRA SULEHRIAntioxidants by SHAKIRA SULEHRI
Antioxidants by SHAKIRA SULEHRIShakira Sulehri
 
Bacterial infection (by shakira)
Bacterial infection (by shakira)Bacterial infection (by shakira)
Bacterial infection (by shakira)Shakira Sulehri
 
Introduction to immune system
Introduction to immune systemIntroduction to immune system
Introduction to immune systemShakira Sulehri
 
Introduction to immune system
Introduction to immune systemIntroduction to immune system
Introduction to immune systemShakira Sulehri
 
Introduction to immune system
Introduction to immune systemIntroduction to immune system
Introduction to immune systemShakira Sulehri
 
Basicprinciplesofimmunesystem
BasicprinciplesofimmunesystemBasicprinciplesofimmunesystem
BasicprinciplesofimmunesystemShakira Sulehri
 
Manipulation of rumen fermentation by use of microbial feed additivesmicrobial
Manipulation of  rumen fermentation by use of microbial feed additivesmicrobialManipulation of  rumen fermentation by use of microbial feed additivesmicrobial
Manipulation of rumen fermentation by use of microbial feed additivesmicrobialShakira Sulehri
 

Mais de Shakira Sulehri (18)

Fungi 2
Fungi 2Fungi 2
Fungi 2
 
Fungi
FungiFungi
Fungi
 
Doc2
Doc2Doc2
Doc2
 
Gene silencing by shakira sulehri 2013
Gene silencing by shakira sulehri 2013Gene silencing by shakira sulehri 2013
Gene silencing by shakira sulehri 2013
 
Ruminants ( Shakira sulehri)
Ruminants ( Shakira sulehri)Ruminants ( Shakira sulehri)
Ruminants ( Shakira sulehri)
 
Presentation on cell lines by shakira sulehri
Presentation on cell lines by shakira sulehriPresentation on cell lines by shakira sulehri
Presentation on cell lines by shakira sulehri
 
Presentation on cell line by Shakira 2
Presentation on cell line by Shakira 2Presentation on cell line by Shakira 2
Presentation on cell line by Shakira 2
 
Pestedes petits ruminants in Pakistan by Shakira sulehri
Pestedes petits ruminants in Pakistan by Shakira sulehriPestedes petits ruminants in Pakistan by Shakira sulehri
Pestedes petits ruminants in Pakistan by Shakira sulehri
 
2013 polymerase chain-reaction-shakira sulehri
2013 polymerase chain-reaction-shakira sulehri2013 polymerase chain-reaction-shakira sulehri
2013 polymerase chain-reaction-shakira sulehri
 
Nutrient by shakira sulehri
Nutrient by shakira sulehriNutrient by shakira sulehri
Nutrient by shakira sulehri
 
Antioxidants by SHAKIRA SULEHRI
Antioxidants by SHAKIRA SULEHRIAntioxidants by SHAKIRA SULEHRI
Antioxidants by SHAKIRA SULEHRI
 
Bacterial infection (by shakira)
Bacterial infection (by shakira)Bacterial infection (by shakira)
Bacterial infection (by shakira)
 
Introduction to immune system
Introduction to immune systemIntroduction to immune system
Introduction to immune system
 
Introduction to immune system
Introduction to immune systemIntroduction to immune system
Introduction to immune system
 
Innate immunity
Innate immunityInnate immunity
Innate immunity
 
Introduction to immune system
Introduction to immune systemIntroduction to immune system
Introduction to immune system
 
Basicprinciplesofimmunesystem
BasicprinciplesofimmunesystemBasicprinciplesofimmunesystem
Basicprinciplesofimmunesystem
 
Manipulation of rumen fermentation by use of microbial feed additivesmicrobial
Manipulation of  rumen fermentation by use of microbial feed additivesmicrobialManipulation of  rumen fermentation by use of microbial feed additivesmicrobial
Manipulation of rumen fermentation by use of microbial feed additivesmicrobial
 

Último

Technical Leaders - Working with the Management Team
Technical Leaders - Working with the Management TeamTechnical Leaders - Working with the Management Team
Technical Leaders - Working with the Management TeamArik Fletcher
 
APRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfAPRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfRbc Rbcua
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03DallasHaselhorst
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Americas Got Grants
 
WSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfWSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfJamesConcepcion7
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersPeter Horsten
 
Introducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applicationsIntroducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applicationsKnowledgeSeed
 
Driving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerDriving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerAggregage
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFChandresh Chudasama
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Peter Ward
 
Send Files | Sendbig.comSend Files | Sendbig.com
Send Files | Sendbig.comSend Files | Sendbig.comSend Files | Sendbig.comSend Files | Sendbig.com
Send Files | Sendbig.comSend Files | Sendbig.comSendBig4
 
business environment micro environment macro environment.pptx
business environment micro environment macro environment.pptxbusiness environment micro environment macro environment.pptx
business environment micro environment macro environment.pptxShruti Mittal
 
Darshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfDarshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfShashank Mehta
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMVoces Mineras
 
Jewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource CentreJewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource CentreNZSG
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfJamesConcepcion7
 
digital marketing , introduction of digital marketing
digital marketing , introduction of digital marketingdigital marketing , introduction of digital marketing
digital marketing , introduction of digital marketingrajputmeenakshi733
 

Último (20)

Technical Leaders - Working with the Management Team
Technical Leaders - Working with the Management TeamTechnical Leaders - Working with the Management Team
Technical Leaders - Working with the Management Team
 
APRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdfAPRIL2024_UKRAINE_xml_0000000000000 .pdf
APRIL2024_UKRAINE_xml_0000000000000 .pdf
 
Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03Cybersecurity Awareness Training Presentation v2024.03
Cybersecurity Awareness Training Presentation v2024.03
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...Church Building Grants To Assist With New Construction, Additions, And Restor...
Church Building Grants To Assist With New Construction, Additions, And Restor...
 
WSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdfWSMM Media and Entertainment Feb_March_Final.pdf
WSMM Media and Entertainment Feb_March_Final.pdf
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exporters
 
Introducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applicationsIntroducing the Analogic framework for business planning applications
Introducing the Analogic framework for business planning applications
 
Driving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon HarmerDriving Business Impact for PMs with Jon Harmer
Driving Business Impact for PMs with Jon Harmer
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDF
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...
 
Send Files | Sendbig.comSend Files | Sendbig.com
Send Files | Sendbig.comSend Files | Sendbig.comSend Files | Sendbig.comSend Files | Sendbig.com
Send Files | Sendbig.comSend Files | Sendbig.com
 
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptxThe Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
 
business environment micro environment macro environment.pptx
business environment micro environment macro environment.pptxbusiness environment micro environment macro environment.pptx
business environment micro environment macro environment.pptx
 
Darshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfDarshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdf
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQM
 
Jewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource CentreJewish Resources in the Family Resource Centre
Jewish Resources in the Family Resource Centre
 
WSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdfWSMM Technology February.March Newsletter_vF.pdf
WSMM Technology February.March Newsletter_vF.pdf
 
digital marketing , introduction of digital marketing
digital marketing , introduction of digital marketingdigital marketing , introduction of digital marketing
digital marketing , introduction of digital marketing
 

Use of low quality crop residues by shakira (Pakistan)

  • 1. Use of Low Quality Crop Residues Low quality fibrous crop residues include straws, sugarcane baggasse, hulls, corn cake, etc. These are very low in digestible energy and protein and are highly lignified. There slow turnover in the rumen results in rumen fill becoming a limiting factor. Crop residues contain insufficient nitrogen to support adequate microbial growth in the rumen. Treatments to improve utilization of crop residues: 1. Chemical Treatment: Signification of the cell wall material is the main factor responsible for the very low digestibility of fibers crop residues. Lignin is very indigestible and by encrusting cellulose and other cell wall contents, impedes their digestion too. However, lignin is very respectable to degradation by oxidation and is destroyed by oxidizing agents such as hypochlorite and sulfites. These products are used in the treatment of wood pulp to isolate cellulose for the purposes of paper manufacture. Alkali dissolves lignin and readers the cell wall constituents susceptible to several disadvantages in addition to cost: the need for supplemental nitrogen, the increased sodium load on the animal, sodium contamination of soil, and the hazardous nature of the chemical. An alternative is ammoniation. Ammonia treatment, either as ammonium hydroxide or gaseous ammonia is effective in dissolving lignin, and improving fiber digestibility. It also provides a source of supplementary nitrogen. Ammonia is an effective preservative, and is safer and easier to use. The color of the treated straw is changed to intense yellow- brown; and is more easily reduced to small particle size, facilitating its digestion. Urea can be used as a some of ammonia, and most roughage have sufficient bacterial urease present to convert urea to ammonia. Ammoniation reduces effects of aflatozins. It also reduces glucosinolates is mustard meal. Toxicity of Ammoniated Roughages: Ammoniation of feeds may produce toxins and toxicity symptoms in animals consuming such treated feed. This toxicity has been named as bovine hysteine, bovine bonkers, ammoniated hay toxic- sis, hyper excitability, or crazy cow syndrome. Neurological signs, such as hyperactivity, incardination, tremors and cowulsions occur in affected animals. Cattle may become extremely nervous and difficult to handle. Affected animals may suddenly gallop in circles and sun into fences, gates, and other objects, often causing them selves injury. The causations factor appears to be a 4-methyl-imidizole, formed by the reaction between reducing sugars e.g. glucose and ammonia in the presence of heat. Toxicity does not occur if the temperature of the ammoniated roughages remains below 70 C during ammoniation. Ammoniation of molasses may also produce bovine hysteine. Because of the involvement of reducing sugars, amoniation of good quality roughages with abundant reserves of cartbohyohates should be avoided. Other Chemical Treatment: Treatment of low quality roughages with alkaline hydrogen peroxide solution increase digestibility. In this treatment, the lignin carbohydrate bends are disrupted, which increases accessibility of the cellulose to cellulolytic enzymes, increasing cellulose digestion. Treatment of roughages with ozone has also been shown to degrade lignin and improve fiber digestibility. Physical Treatment
  • 2. The digestibility of low-quality roughages can be improved by grinding or chopping the material. However, these benefits are usually offset by a more rapid passage of small particles form the rumen, escaping menial digestion. The major benefits of chopping are reduced feed wastage. Lignin can also be degraded by various aerobic fungi and bacteria. Improvement of the Rumen Environment: Low quality roughages lack adequate fermentable nitrogen, true posteine readily available carbohydrates, and minerals for optimal microbial activity. Slow rates of fiber digestion and outflow from the rumen are major constraints to increasing voluntary intake of poor-quality roughages. Supplementation of low-quality roughs with ground alfalfa hay improves fiber digestibility and rumen environment parameters, such as concentration of branched-chain fatty acids and ruminal ammonia nitrogen. Readily fermentable cell wall constituents of alfalfa might stimulate cellulolytic microbes with colonization of the poor-quality roughage. The positive effects of by pass protein on intake of low-quality roughages are well-known. Feed additives and their use in livestock feeding: Feed additive is an ingredient or combination of ingredients added to the basic feed mix to full fill the specific used. It may also be defined as any chemical incorporate in an animal feed for the purpose of improving rate of gain, feed efficiency, or preventing and controlling disease. A feed additive need not to be a drug. Types of Feed Additives: Feed additives can be a classified into nutrient feed additives e.g. amino acid, minerals and vitamins, and non-nutrient feed additives e.g. antibiotics, hormones, commomodulators, coccidiostate, enzymes, probiotics, yeast acidifiers, antioxidants, mycotoxin binders, anticaking agents, feed preservatives, plavoring agents, cloring agents, pellet binders, dietary baffers, methane inhibitors, propionate pronotors, defamating agents, heptoses and bloat controlling agents, surfactants, sweetening agents tranquilizers, emulsifiers and stabilizers, etc. Advantages of Feed Additives: 1. Improve feed quality and palatability. 2. Improve animal performance 3. Improve the final product 4. Economize the production costs Negative aspects of Feed Additives: Hormones and antibiotic have residual effects in meat, milk and eggs. Feeding of low concentration of antibiotics may favors the proliferation of antibiotic resistant microorganisms. Use of antibiotic in ruminants, feed is not common in Pakistan. Poultry: Antimicrobial feed additives are included in the diets for the prevention and control of coccidiosis, etc. and to improve growth, efficiency of feed utilization, livability and egg production. Ionophore Antibiotics: These are produced by several strains of streptomyces species e.g. Monensin, Lasalocid, Salinomycine, Hysocellin, which are antomiesobial compounds. Morensin is an
  • 3. anticoccidial agent for broilers, lambs and beef cattle. It improves feed efficiency and not growth. Heifers having more than 180 kg body weight can be fed 50 to 100 mg/head/day by mixing in about 500 grams of feed. It impact is better in low protein diets. Effect of ionophores on Rumen Fermentation: 1. It increases the rumen propionate and decease acetate concentration. 2. It deceases methane production 3. Depress the activity of some rumen enzymes like proteases, deaminases, and urease. 4. Decrease the passage rate of feed; thus increaring the ME value per unit of feed intake. (10%). Both monessine and lasalocid inhibit the growth of ruminal microbes which produce acetate. Butyrate, lactate. Formate and hydrogen as major and products. Other organisms which produce succnate and propionate or utilize lactic acid would grow rapidly in the preauce of ionophores. The production of increased levels of propionic acid in the rumen is related to improved animal performance. Propionate has protein spening effect and stinulate body protese synthesis and thus improve growth promoting activity. Lasalocid (Trade Name: Bovitec): It is produced by fungi streptomycin lasoliensis and is more protest than monensim. It acts against hydrogen producing bacteria and results in higher propionate production. Its dose is 1 mg per kg body weight or similar to monensin. Benefits of growth promoting antibiotics in animal feeds include: better weight gain, higher feed conversion ratio and less meruse with lower N and P content. Tetracyclins, oxytetracyclins and chlortetracyclins are absorbable antibiotics. Nonabsorbable antibiotics are zinc bacitracin, anoporcin, monensin, virginiamycin, etc which have beneficial effects on the microflora of the intestinal tract. As per the latest European union regulation (folloved for Setember 1999) only monensin, salinomycin, flevomycin and avilamycin are the from feed grade pharmacentrial antibiotics remaining on the approved list. Arsenicals improve growth of broilers and such birds have bright red combs and wattles. Arsenicals must be removed from the feed 5 days before slaughter. Accumulation of arsenic in eggs and tissues is proporational to the amount in the ration and well below the allowable levels. Arsanilic acid is tolerated upto 0.1% in the diet of chicks and upto 0.02% in the diet of turkeys. Arsenicals should not be included in the rations of the ducks and gees. Hormones: The active principles sesected by the endocrine glands into the blood for transporation to target organs and tissues are known as hormone. The two broad types of hormones include: 1. Anabotic hormones e/g/ somatotropin, thyroxine and androgens. 2. Catabolic hormones e.g. oestrogens, glucocorticoids. Hormones as carcass modifiers: Intact males produce less fat and more lean from a given feed than either the females or the castrate males. Bulls contain less subcutaneons fat intermusuclar fat than stears. Anabolic agents evhance nitrogen rectention in the body and particularly in the muscle, and result in production of leaver carcasses. Androgens are mainly used in females and castrated males while estrogens are used in males.
  • 4. Anabolic steroids: There are banned in EU since 1989, because of health problems they might cause. These include: oestradiol, tranbolone acetrate (TBA), Zeanol (Ralgro)+TBA. Somatotropin: It is a polypeptide and therefore not orally actic and it is species specific. Hence the little, if any, sometotropin present in animal products get degraded in the GI tract and thus has no influence on human health. Somatotropin and growth hormone (GH) can be used interchangeably. The secretion of this hormone is enhanced following feeding of protein. Somatotropin influences the biosynthesis of protein in the muscles; increase N setention; increases skeletal growth and improves growth and milk production. Exogenous Bovine Somatotropin (BST) injections: A greater negative energy balance of often observed in cows during the first few weeks after beginning the administration of bST, but cows gradually increase their feed intake to obtain the required nutrients for body weight gain and increased milk production. High yielding cows treated with daily s/c injections of b St (12-50,g) gave 20 to 40% increase in milk yield and 12-14% increased feed efficiency. The increase in milk yield were associated with increase sin feed intake. The availability of slow relaease device of bST has eliminated the necessity for daily injection. Lactating cows injected 640 mg bST at 28 Day intervals for a period of 112 days gaine 12 to 15% higher milk yield over control animals. Levels of ST in milk produced by treated cows are axcedingly low and constitute no threat to the uman consumer. In beef cattel steroid implants and somatotsopin produced additive increases in performance of finishing steers. In growing lambs chronic administration of ST for 12 weeks led to a 20% increase in rate of daily gain. However, some negative impacts on reproductive performance have been reported. Growth Promoters for Fattening Ruminants: In the EU, the recommended doses for fattening cattle are 20-60mg/kg feed for nomensin with optimum of 30. Ionophores improve average daily gain and feed conversion efficiency of growing kids by 10%. Ionophores supprescoccidisive; increase propionate /acetate ratio. Amprolin, clopridol, hasalocid sodium, monensin sodium, slinomycine, robenidine, meduremicin, narecin, etc act as coccidiostates. Several hormone implants viz oestradiol, trenbolone and testosterone are used in animal production, but are banned in EU. Anabolic steroids and growth hormone use has been banned in the EU, and also banned meat imported from countries such as USA, when growth hormone is used to achieve improved efficiency and leaner carcasses. Feed Enzyme Additives: These act as biocatalysts to assist the digestion process and support the utilization of nutrients that otherwise go unused. The predominant non-starch polysaccharides in cercal grains are cellulose, arabinoxylans and betaglucans.
  • 5. Feed enzymes such as B-glucanases and xylanases have enabled barley or wheat in poultry diets up-to 50 or 50%. Arabinases, xylanases and pectinases breakdown the arabinoxylans and pectin’s present in sunflower seed meal, rapeseed meal, etc. and release the protein and other nutrients; and bring the nutritional value of sunflower meal equal to soybean meal. A multi-enzyme preparation with cellulolytic and photolytic activity (celluloses, B- glucanases and protease) can degrade the structural polysaccharides and proteins. Phytase enzyme helps to increase the utilization of phytin P by poultry etc. “Fibrozyme”, (alltech) in the first feed-grade enzyme that is rumen stable. It significantly increases DM digestibility VFA production and carbohydrate utilization in cattle fed high amounts of fiber. Feeds containing fibrozyme can be pelleted with only a slight loss in enzyme activity. Probiotics, Yeast Culture and Acidifiers Probiotics are defined as “organisms and substances which contribute to intestinal microbial balance”. The terms probiotic means “for life” in contrast with the term antibiotic means “against life”. Protiotics are advocated as an alternative to antibiotics for growth promotion. Probiotics are live cultures of non-pathogenic organisms which are administer orally. Later probiotics were redefined as live microbial feed supplements which beneficially affect the host animal by improving its intestinal microbial balance. Probiotics are available in the form of oral pastes, water dispersible powders or liquids or directly fed feed additives and include microbial cells, microbial cultures and microbial metabolites. Most probiotics get destroyed by upto 80% in the presence of antibiotics. The term “pronatrient” is used in place of probiotics. The US Food and Drug Administration used the term direct fed microbial (DFM_ instead of probiotic. Micro-organisms used as Probiotics: Some important are: lactobacillus acidophilus, L.bifidus, :. Bulgaricus, L. casei. L. fermentrim, L. lactis, L. plantarum, L. ruminis, L. salivaricus, Bifido bacterium bifidum, Aspergillus oryzae, Torulopsis, Streptococus faecuim, s. thermophilus, Saccharomyces cervisiae. Lactobacillus acidophillis produce lactic acid and the enzyme amylase. Lactobacillus casei complements the growth of L. aciclophillus. Bifido bacterium bifidum is commonly found in mother milk and the intestine of humans and animals. Aspergillus oryzae produce enzyme cellulose. Torulopsis is the mother culture of yeast. The enzyme lipase is exhibited by Torulopsis. Probiotics at the specific concentration stimulate immunity. A low pH (4-5) favours lactobacillus sp. And a high pH (6-7) is optimal for E.coli. Shortly after hatching, the chick has a nearly sterile digestive tract with a pH rauge of 5.5 to 6.0. So supplementation of a lactobacillus product in the water or feed along-with an acidifying agent would be effective in controlling the coli-form proliferation. Yeast Culture: It is known to contain compounds formerly refessed to as UFGs which positively affect animal performance rumen bacterial concentrations increase when fermentation products such as yeast cultures are added to the diet. Metabolites in the
  • 6. fermentation products serve as nutrients for the bacteria. Byproducts of fermentation include dried brewers yeast, dried distillers soluble, dried bacterial press cakes. Yeast cells are destroyed by pelleting the feed, storage conditions and strong mineral mixtures. Significant losses of variable yeast cells canals occur over time for yeast products hold at 35oC in paper bags. The rate of deterioration is time and temperature dependant. Inclusion of live yeast cultures in the diet (3 to 5g/d) decreases body temperature and respiration rate in hot, but not in cool weather. It also act by production of growth stimulating factors in the rumen. Stabilizing rumen pH and reduction of lactic acid production, and increasing rumen bacterial population. Yeast culture increases rumen bacterial population, which in turn will increase flow of microbial protein, as well as increase degradation of fiber in rumen, leading to increased feed intake, and thus ultimately increasing animal productivity. Yeast culture may increase milk yield (8%); with more response during early lactation. Responses increase as the ratio of concentrate to forage in the ration increases. Total butter fat and milk protein also increase. Inclusion of yeast in the diet of cows fed a 60% concentrate and 40% when straw was replaced by hay. The addition of yeast culture to diets containing 40 to 80% oat straw increased in sites NDF digestibility in steers. Acetate was reduced which propionate was increased by yeast addition. Ruminal protozoa numbers increased in steers fed yeast culture. Total and cellulytic bacteria were higher in ruminal fluid of calves fed yeast culture. White rot fungi decompose lignin or lignocelluloses with minimal degradation of hemicelluloses and cellulose. Yeasts are always found in culture of white rot fungi. The potential synergism between yeast (S. cerevisiae) and fungi (Armillaria heimii) had the best potential for increasing forage digestibility. Inclusion of yeast culture diets given to yearling horses. Supplementation of broilers diet with live yeast culture (1 kg/ton) may increase weight gain and FCR. Combined use of lactobacillus and yeast culture in the feed and water may be effective in reducing morbidity and mortality and improving growth performance and production. Direct-fed microbial include: Lactobacillus, streptococcus, Bacillus and yeast (saccharomyces cerevisiae). Lactobacilli are delicate microbes that are unable to withstand various environmental extremes, such as the heat and pressure of pelleting. Bacilli are very stable microbes that can survive pelleting. Yeast and streptococcus fall somewhat between lactobacillus and bacillus in their ability to survive pelleting. The ability of the yeast to grow in the rumen is limited, but is able to remain alive and metabolically active in the rumen and postruminelly. DEF, are designed to prevent or reduce E.coli scones in calves. The rational for their use in the calf is that feeding live, non-pathogenic bacteria may displace and suppress intestinal pathogens. DFMs may be of little benefit under good rearing conditions and husbandry practices. Stress such as extreme weather or transportation, would more likely enhance the potential benefits of feeding a DFM to calves. Acidifiers: Organic acids usually are added only as preservations, but they do positively influence performance when included at higher quantities.
  • 7. Liquid acidifiers are : 1. Formic acid- 6-8kg/ton 2. Prop-ionic acid- 8-10kg/ton Organic acids in powder form are: 1. Fumaric acid 12-15kg/ton 2. Citric acid 20-25kg/ton. In diets for laying hens, the feed additive calcium format (1.3%), which is converted to formic acid in the crop, offers potential benefits beyond reducing E. coli and salmonella populations. It inhibits molds; improves consistency of droppings, resulting in fewer dirty eggs; better calcium absorption and egg shell quality. It is stable in storage, safe in food and the environment and without negative effects for other feed supplements, such as vitamins, etc. Calcium format is non-corrosive, odor free and non-caustic. It approved by EU for use as food and feed preservation. Antioxidants: Oxidation of feed fats causes rancidity spoiling the taste and flavor of the feeds thus a process known as lipid per-oxidation or autoxidation these rained fat containing diets impart undesirable off flavor in the milk and milk products. Oxidation also causes much loss to carotenes; vitamin A and vitamin D. the use of antioxidants limit this oxidative spoilage. Oxidation negatively affects odor, taste and nutritive value of the food, as well as produces harmful by-products. The addition of antioxidants map up the free radicals. Antioxidants may be natural and synthetic. National ones are vitamin E (tocopherol) and ascorbic acid. The most common synthetic antioxidants are ethoxyquin, butyrate hydroxyanisole (BHA) and butylated hydaroxytoluene (BHT). BHT and BHA tend to be more effective in preventing oxidation of animal fats than of vegetable oils which ethoxyguin is most effective in protecting both animal fats and vegetable oils. Mycotoxin binders: these chemicals are harmful to animals and humans. The major mycotoxin producing fungi are aspergillums, Fusarium and penicillium and the toxins are aflatoxins, zeralemone, trichothecenes, fumonisins, ochratoxin A, etc. Mycotoxin binding agents include activated charcoal, yeast cell wall products, synthetic zeolites and mined mineral days such as aluminosilicates, sodium betonies. Anticaking agents: these are substances that can pick up moisture without themselves becoming wet. They are added to dry mixes to prevent the particles clumping together and so hup the product free flowing. Anticaking agents include: calcium star-ate, calcium phosphate ferrous ammonium citrate, yellow prussiate of soda, potassium or sodium ferrocyanide, magnesium oxide, kaolin, ball clay, sodium aluminum silicates, hydrated sodium calcium alluminosilicate (HSCAS), calcium aluminum silicate, etc. Preservatives: The aim of preservatives is to prevent microbial spoilage. e.g. nisin, benzoic acid, methyl-4-hydroxybenzoate, cthyl-4-nitrate, prop-ionic acid, sorbic acid and sulphur dioxide. Antifungal agents: Sodium propionate, sodium benzoate, nystatin, etc.