Teste de hipoteses

4.448 visualizações

Publicada em

teste estatisticos

Publicada em: Tecnologia, Diversão e humor
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
4.448
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
182
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Teste de hipoteses

  1. 1. TESTE DE HIPÓTES Trata-se de uma técnica para se fazer a inferência estatística sobre uma população a partir de uma amostra
  2. 2. TEORIA POPPERIANA • NÃO SE PODE PROVAR NADA, APENAS “DESPROVAR”. • SÓ APRENDEMOS QUANDO ERRAMOS. • É MAIS FACIL REFUTAR DO QUE PROVAR ALGUMA ASSERTIVA. • OS ESTATÍSTICOS NÃO PERGUNTAM QUAL É A PROBABILIDADE DE ESTAREM CERTOS, MAS A PROBABILIDADE DE ESTAREM ERRADOS. Para fazerem isso estabelecem um hipótese nula.
  3. 3. PRINCIPAIS CONCEITOS HIPÓTESE ESTATÍSTICA Trata-se de uma suposição quanto ao valor de um parâmetro populacional, ou quanto à natureza da distribuição de probabilidade de uma variável populacional. TESTE DE HIPÓTESE É uma regra de decisão para aceitar ou rejeitar uma hipótese estatística com base nos elementos amostrais
  4. 4. PRINCIPAIS CONCEITOS TIPOS DE HIPÓTESES Designa-se por Ho, chamada hipótese nula, a hipótese estatística a ser testada, e por H1, a hipótese alternativa. A HIPÓTESE NULA É UMA ASSERTIVA DE COMO O MUNDO DEVERIA SER, SE NOSSA SUPOSIÇÃO ESTIVESSE ERRADA. A hipótese nula expressa uma igualdade, enquanto a hipótese alternativa é dada por uma desigualdade. Ex: Ho - µ = 1,65 m H1 - µ 1,65 m≠
  5. 5. TIPOS DE ERRO DE HIPÓTESE EXISTEM DOIS TIPOS DE ERRO DE HIPÓTESE. Erro tipo 1 - rejeição de uma hipótese verdadeira; Erro tipo 2 – aceitação de uma hipótese falsa. As probabilidades desses dois tipos de erros são designadas α e β. A probabilidade α do erro tipo I é denominada “nível de significância” do teste.
  6. 6. LÓGICA DO TESTE DE SIGNIFICÂNCIA • ATRIBUEM-SE BAIXOS VALORES PARA α, GERALMENTE 1-10%; • FORMULA-SE Ho COM A PRETENSÃO DE REJEITÁ- LA, DAÍ O NOME DE HIPÓTESE NULA; • SE O TESTE INDICAR A REJEIÇÃO DE Ho TEM-SE UM INDICADOR MAIS SEGURO DA DECISÃO; • CASO O TESTE INDIQUE A ACEITAÇÃO DE Ho, DIZ-SE QUE, COM O NÍVEL DE SIGNIFICÂNCIA α, NÃO SE PODE REJEITAR Ho.
  7. 7. ESTATÍSTICA NÃO PARAMÉTRICA São extremamente interessantes para análises de dados qualitativos.
  8. 8. • As técnicas de estatística não paramétrica são particularmente adaptáveis aos dados das ciências do comportamento. • A aplicação dessas técnicas não exige suposições quanto à distribuição da população da qual se tenha retirado amostras para análises. • Podem ser aplicadas a dados que se disponham simplesmente em ordem, ou mesmo para estudo de variáveis nominais.Contrariamente à estatística paramétrica, onde as variáveis são, na maioria das vezes, intervalares. • Exigem poucos cálculos e são aplicáveis para análise de pequenas amostras. • Independe dos parâmetros populacionais e amostrais (média, variância, desvio padrão).
  9. 9. TIPOS DE TESTE • Qui-Quadrado • Teste dos sinais • Teste de Wilcoxon • Teste de Mann-Whitney • Teste da Mediana • Teste de Kruskal-Wallis
  10. 10. QUI-QUADRADO (χ2 ) Testes de Adequação de amostras e Associação entre variáveis
  11. 11. QUI-QUADRADO (χ2 ) • Teste mais popular • Denominado teste de adequação ou ajustamento. Usos 1. Adequação ou Aderência dos dados: freqüência observada adequada a uma freqüência esperada); 2. Independência ou Associação entre duas variáveis Comportamento de uma variável depende de outra. χ2 = ∑= −k i Fei FeiFoi 1 2 )(
  12. 12. QUI-QUADRADO (χ2 ) Restrições ao uso: Se o número de classes é k=2, a freqüência esperada mínima deve ser ≥5; Se k >2, o teste não deve ser usado se mais de 20% das freqüências esperadas forem abaixo de 5 ou se qualquer uma delas for inferior a 1.
  13. 13. ADEQUAÇÃO DOS DADOS Exemplos: 1. avaliar se uma moeda ou um dado é honesto; 2. número de livros emprestados em um biblioteca durante os dias de uma determinada semana; 3. Tipo de sangue para uma determinada raça
  14. 14. ADEQUAÇÃO DOS DADOS PROCEDIMENTO 1. Enunciar as hipóteses (Ho e H1); 2. Fixar α; escolher a variável χ2 com ϕ = (k-1). k é o número de eventos; 3. Com auxílio da tabela de χ2 , determinar RA (região de aceitação de Ho) e RC (região de rejeição de Ho) χ2
  15. 15. ADEQUAÇÃO DOS DADOS EXEMPLO Em 100 lances de moeda, observaram-se 65 coroas e 35 caras. Testar se a moeda é honesta. 1° Ho- a moeda é honesta; H1- a moeda não é honesta; 2° α = 5%; escolhe-se um χ2 , pois k = 2 e ϕ 2-1=1; 3° Determinação de RA e RC; χ2 = χ2 = (35-50)2 /50 + (65-50)2 /50=9 χ2 tab= 3,84, logo rejeita-se Ho. A moeda não é honesta. Eventos Cara Coroa Freq. observada 35 65 Freq. Esperada 50 50 ∑= −k i Fei FeiFoi 1 2 )(
  16. 16. ADEQUAÇÃO DOS DADOS • 4 ocorrência de 4 tipos de sangue em uma dada raça K=4, ϕ=3 e α = 2,5% χ2 =(230-180)2 /180 + (470-480)2 /480 + (170-200)2 /200 + (130-140)2 /140 χ2 calc =16.04 χ2 tab = 9,25 Logo rejeita-se Ho com 2,5% de probabilidade de erro. Classes A B AB O Freq. Observada 230 470 170 130 Freq. esperada 180 480 200 140
  17. 17. ADEQUAÇÃO DOS DADOS • Número de acidentes na rodovia, de acordo com o dia da semana Freqüência esperada – 1/7 x 175 = 25 χ2 calc =12,0 χ2 tab=12,6 Logo aceita-se Ho com 95% de probabilidade de acerto. Classes Seg Ter Qua Qui Sex Sab Dom Número de acidentes 26 21 22 17 20 36 33 Classes Seg Ter Qua Qui Sex Sab Dom Acidentes Observados 26 21 22 17 20 36 33 Acidentes esperados 25 25 25 25 25 25 25
  18. 18. INDEPENDÊNCIA OU ASSOCIAÇÃO ENTRE DUAS VARIÁVEIS EXEMPLOS • Dependência entre sabor de pasta de dente e o bairro; • Notas dos alunos e nível salarial; • Efeito da vacinação em animais;
  19. 19. INDEPENDÊNCIA OU ASSOCIAÇÃO ENTRE DUAS VARIÁVEIS A representação das freqüências observadas é dada por uma tabela de dupla entrada ou tabela de contingência. PROCEDIMENTO 1. Ho: as variáveis são independentes; H1: as variáveis são dependentes; 2. Fixar α. Escolher a variável qui-quadrado com ϕ = (L-1) x (C- 1), onde L = número de linhas da tabela de contingência e C+ número de colunas. 3. Com auxílio da tabela calculam-se RA e RC
  20. 20. INDEPENDÊNCIA OU ASSOCIAÇÃO EXEMPLO Dependência entre bairro e escolha do sabor de pasta de dente Dados: Ho: a preferencia pelo sabor independe do bairro; H1: a preferência pelo sabor depende do bairro α = 5% χ2 tab = ϕ= (4-1) x (3-1) = 6 graus de liberdade Freqüência esperada = (soma da linha i) x (soma da coluna J)/(total de observações) χ2 = Sabor Bairros ΣA B C Limão 70 44 86 200 Chocolate 50 30 45 125 Hortelã 10 6 34 50 Menta 20 20 85 125 Σ 150 100 250 500 ∑∑ == −C j L i Feij FeijFoij 1 2 1 )(
  21. 21. INDEPENDÊNCIA OU ASSOCIAÇÃO Tabela de freqüências esperadas Fe11 = 200 x 150/500 = 60 Fe12 = 200 x 100/500 = 40 Fe13 = 200 x 250/500 = 100 Fe21 = 125 x 150/500 = 37.5 Fe22 = 125 x 100/500 = 25 Fe23 = 125 x 250/500 = 62.5 Fe31 = 50 x 150/500 = 15 Fe32 = 50 x 100/500 = 10 Fe33 = 50 x 250/500 = 25 χ2 cal=37.88 Fe41 = 125 x 150/500 = 37.5 χ2 tab=12.6 Fe42 = 125 x 100/500 = 25 Logo rejeita-se Ho Fe43 = 125 x 250/500 = 62,5 SABOR BAIRRO A B C (1)Limão 60 40 100 (2)Chocolate 37.5 25 62.5 (3)Hortelã 15 10 25 (4)Menta 37.5 25 62.5
  22. 22. TESTE DOS SINAIS Análise de dados emparelhados (O mesmo indivíduo é submetido a duas medidas)
  23. 23. TESTE DOS SINAIS • É utilizado na análise de dados emparelhados. Situações em que o pesquisador deseja determinar se duas condições são diferentes. • A variável pode ser intervalar ou ordinal. • O nome do teste dos sinais se deve ao fato de se utilizar sinais + e – em lugar do dados numéricos. • A lógica do teste é que as condições podem ser consideradas iguais quando as quantidades de + e _ forem aproximadamente iguais. Isto é, a proporção de + equivale 50%, ou seja: p=0,5.
  24. 24. TESTE DOS SINAIS PROCEDIMENTO 1. Ho: não há diferença entre os grupos, ou seja: p = 0,5; H1: há diferença, ou seja: uma das alternativas a) p ≠ 0,5 -Distribuição “z “bicaudal. b) p < 0,5 – Distribuição “z” unicaudal a esquerda. c) p > 0,5 – Distribuição “z” unicaudal a direita. 2. Fixar α. Escolher a distribuição N(0,1) se n>25 ou Binomial se n ≤25. 3. Com auxílio da tabela, determinar-se RA e RC (para n > 25), caso n <25 utiliza-se distribuição binomial. 4. Cálculo do valor da variável Z
  25. 25. TESTE DOS SINAIS Exemplo: Sessenta alunos matricularam-se num curso de inglês. Na primeira aula aplica- se um teste que mede o conhecimento da língua. Após seis meses, aplica-se um segundo teste. Os resultados mostram que 35 alunos apresentaram melhora (35 +), 20 se conduziram melhor no primeiro teste (20 -) e 5 não apresentaram modificações (5 “0”). Ho: O curso não alterou (p=0,50) H1: O curso melhorou o conhecimento de inglês (p > 0,5). α= 5% (variável N(0,1). Cálculo da variável “Z”. Zcal = , onde: y - número de sinais positivos (35); n – tamanho da amostra descontado os empates (60-5=55); p – 0,5 q – 1-p = 0,5 Zcal = = 2,02 Ztab= 1.64, logo rejeita Ho. ... . qpn pny − )5,0()5,0(55 5,05535 xx x−
  26. 26. Teste de Wilcoxon • É uma extensão do teste de sinais. É mais interessante pois leva em consideração a magnitude da diferença para cada par. • Exemplo: um processo de emagrecimento em teste. Cada par no caso é o mesmo indivíduo com peso antes e depois do processo.
  27. 27. Teste Mann-Whitney • É usado para testar se das amostras independentes foram retiradas de populações com média iguais. • Trata-se de uma interessante alternativa ao teste paramétrico para igualdade de médias, pois o teste não exige considerações sobre a distribuição populacional. Aplicado à variáveis intervalares e ordinais. • Exemplo: a média de vendas de dois shoppings são diferentes?.
  28. 28. Teste da mediana • Trata-se de uma alternativa ao teste de Mann-Whitney. Testa as hipótese se dois grupos independentes possuem mesma mediana. Dados ordinais e intervalares.
  29. 29. Teste Kruskal-Wallis • Trata-se de um teste para decidir se K amostras (K>2) independentes provêm de populações co médias iguais. • Exemplo: testar, no nível de 5% de probabilidade, a hipótese de igualdade das médias para os três grupos de alunos que foram submetidos a esquemas diferentes de aulas. Notas para uma mesma prova. Aulas com recursos audiovisuais, aulas expositivas e aulas ensino programado.

×