SlideShare uma empresa Scribd logo
1 de 10
Baixar para ler offline
Fibre reinforced geopolymer concrete products for
underground infrastructure
Don Wimpenny
1
, Peter Duxson
2
, Tony Cooper
3
John Provis
4
, Robert Zeuschner
5
1 – Head of Materials & Asset Engineering, Halcrow Pacific Pty Ltd
2 - Chief Operating Officer, Zeobond Pty Ltd,
3 – General Manager Australia , Elastoplastic Concrete Pty Ltd,
4 - Senior Research Fellow, Department of Chemical & Biomolecular Engineering, University of
Melbourne
5 – General Manager Southern Region, Humes
TM
, Holcim (Australia) Pty Ltd
Synopsis: This paper presents the initial findings of a 3-year project to develop Fibre Reinforced
Geopolymer Concrete (FRGC) products for underground infrastructure. The work is funded by the
Victorian Science Agenda Investment Fund and a consortium of five organisations. By combining
synthetic fibre reinforcement and geopolymer technology, it is possible to remove Portland cement and
steel reinforcement from structural concrete to produce a new generation of structural concrete with
potential benefits of improved durability and reduced embodied carbon content.
The work involves laboratory studies, long-term exposure tests, production of prototype tunnel segments
and a life cycle assessment of embodied carbon for the products. The properties of the fresh and
hardened FRGC have been investigated, including workability, strength and durability. The latter has
included standard parameters, such as apparent volume of permeable voids (AVPV), as wells as chloride
migration testing and exposure to acid and sulphate solutions.
Mix designs utilising different fibre dosages and geopolymer binders have been assessed, together with
standard and accelerated curing regimes. The objective of the testing has been to provide information on
the essential engineering characteristics of the material using a typical specification as the basis for
compliance. Control mixes using Portland cement and 40kg/m
3
of steel fibres were also tested for
comparison purposes.
The test results show the FRGC mixes outperform the Portland cement based control mixes in terms of
strength, shrinkage and durability, and at the same time can reduce carbon emissions by approximately
70%.
Keywords: strength, chloride diffusion, synthetic fibres, flexural, geopolymer, carbon emissions.
1. Introduction
Concrete makes a substantial contribution to society, from its use in large infrastructure projects through
to public buildings and social housing schemes. Use of concrete in construction is also a major contributor
to greenhouse gases, reportedly generating more than 5% of worldwide carbon dioxide (CO2) emissions,
over three-quarters deriving from the Portland cement binder. Approximately half the CO2 emissions from
Portland cement are associated with energy used in the heating and grinding processes. The remaining
emissions derive from the chemical de-carbonation of the limestone. The cement industry has made
considerable improvements in energy efficiency and use of alternative fuel sources. However, if worldwide
emissions targets are to be met, some radical changes are required to further reduce the CO2 emissions
derived from the use of concrete.
A study carried out on behalf of the UK Environment Agency has identified concrete using geopolymer
binders as the most promising low carbon alternative to conventional concrete (1).
In reinforced concrete, the second highest source of carbon emissions is the steel reinforcement. Recent
developments in the production and use of synthetic fibres position these materials as an alternative to
steel reinforcing bar and steel fibres, with benefits of lower carbon emissions as well as the possibility of
enhanced durability (2).
This paper presents the initial findings of a 3-year project to develop Fibre Reinforced Geopolymer
Concrete (FRGC) precast products for underground infrastructure. By combining synthetic fibre
reinforcement and geopolymer technology, it is possible to remove Portland cement and steel
reinforcement from structural concrete to produce a new generation of structural concrete with potential
benefits of improved durability and reduced embodied carbon content.
The work is funded by the Victoria’s Science Agenda Investment Fund and a consortium of five
organisations. The consortium members are able to provide all the facets required to successfully develop
FRGC, from design and specification through to testing and production:
a) Design and specification of fibre reinforced concrete - Halcrow
b) Fibre technology – EPC
c) Geopolymer technology – Zeobond
d) Testing – University of Melbourne
e) Precast production - Humes.
The grant funded portion of the project is due to be completed in mid-2012.
2. Scope and objectives
The introduction of new products in the construction industry is controlled by the understandably
conservative nature of the engineering profession and the need to meet existing industry specifications.
Some of the issues relating to adoption of geopolymer and fibre technology are indicated in Table 1. In
order to address these issues, this project pre-empts the normal approvals process by testing the FRGC
products against the requirements of a typical performance specification. In addition, the project aims to
develop guidance on structural and durability design and produce prototype products.
Table 1. Key issues to address in the adoption of FRGC technology.
Geopolymer Synthetic fibres
Absence of structural design parameters
Practical constraints (e.g. controlling workability, setting
time and strength development)
Uncertainty over long-term performance (eg permeability
and diffusion properties and acid resistance)
Absence of structural design parameters
Uncertainty over long-term performance (eg creep)
Urgent need to identify appropriate test methods and limits to
control properties but avoid unacceptably high rates of non-
compliance
In order to ensure that industry concerns are properly addressed by the project, independent oversight is
provided by a stakeholder group comprising representatives from academia, the engineering profession,
the concrete industry and asset owners. The objective of the project is to achieve acceptance of FRGC
products by the industry and commercialise the technology to generate economic and environmental
benefits for the State of Victoria.
The focus of the project has been the production of precast tunnel segments because the use of fibre
reinforced concrete is already the preferred material for casting segments, because there are established
design methods (3), and because these are high-value products with a potential for good commercial
return. The project involves planning, laboratory and field trials, testing and marketing. A simplified flow
diagram is given in Figure 1, and the specification requirements are summarised in Table 2. The tests
include Australian Standard strength and durability tests, such as cylinder strength and apparent volume
of permeable voids, as well as European tests for water penetration and chloride migration.
Figure 1. Flow diagram showing the stages and output of the project.
FIELD TRIALS
LABORATORY
TRIALS
PROJECT PLAN
TESTING PLAN
SPECIFICATION
UPDATED TEST
DATA REPORTS
DESIGN GUIDES
TESTINGLONG-TERM
EXPOSURE
TESTS
PROTOTYPES
PROJECT
PLANNING
STAKEHOLDER
REVIEW
MARKETING TO
CONTRACTORS
MARKETING TO
ASSET OWNERS
STAKEHOLDER
REVIEW
TEST DATA
REPORTS
DESIGN GUIDES
STAKEHOLDER
REVIEW
Table 2. Summary of performance specification requirements.
Parameter Requirement Test Method
STRENGTH
28-day cylinder strength (MPa) 50 AS 1012.9
Cylinder strength for demoulding (MPa) 10 AS 1012.9
28-day tensile splitting strength (MPa) 4.2 AS 1012.10
28-day flexural strength (MPa) 4.6 ASTM C1609
28-day equivalent post-crack residual flexural strength
Fe3.0 (MPa)
3.2 ASTM C1609
DURABILITY
AVPV rodded (%) 13 AS 1012.8
28-day water penetration (mm)
Mean of 2 tests
20 BS EN 12390-8
56-day chloride migration coefficient (m2
/s)
91-day chloride migration coefficient (m2
/s)
4x10-12
2x10-12
NTB 443
Sorptivity (mm) 8 RTA T362
56-day drying shrinkage (microstrain) 600 AS 1012.13
3. Discussion
3.1 Laboratory Trials
3.1.1 Initial and Main Trials
The initial laboratory trials assessed the workability characteristics of FRGC mixes using different
fibre types, and doses of synthetic fibres from 8-12 kg/m
3
. A Portland cement based concrete
containing 8 kg/m
3
of synthetic fibres and geopolymer concrete with 40 kg/m
3
steel fibres provided
two control mixes. The Portland cement control mix was based on an existing production mix, with
20% fly ash in the binder and a water/binder ratio of less than 0.4.
The synthetic fibres are manufactured from polyolefin and are 60mm long and 0.5-1mm in diameter
with an embossed profile. The steel fibres are formed from cold drawn high tensile carbon steel
and are 60 mm long and 0.75 mm in diameter with hooked ends.
Based on the initial trials a geopolymer mix with 8 kg/m
3
of synthetic fibre with was selected for
further development in the main trials. This mix gave a 100mm target slump 60 minutes after
mixing (allowing for permissible tolerances).
The main laboratory mixes were 0.35m
3
in size and were produced at a batching plant at
Campbellfield in Victoria. A large number specimens were produced, including ASTM C1550 round
panels for toughness. The key findings from the laboratory trials are discussed below.
3.1.2 Strength
The strength results are summarised in Table 3.
Standard and accelerated curing were used to determine the effect on the early strength gain for
demoulding. For one production cycle every 24 hours the strength gain of the FRGC mix did not
require any accelerated curing, although at lower ambient temperatures (<15°C) heat curing may
be beneficial
Table 3. Summary of strength results for laboratory trials.
Parameter
Conventional
concrete with
synthetic fibres
Geopolymer
concrete with
steel fibres
Geopolymer
concrete with
synthetic fibres
28-day cylinder strength (MPa) 52.5 46.0 49.5
1-day cylinder strength for demoulding (MPa)* 25.0 24.0 25.0
28-day tensile splitting strength (MPa)* 4.8 4.0 3.4
28-day flexural strength (MPa)* 5.5 6.4 7.4
28-day equivalent post-crack residual flexural strength Fe3.0
(MPa)*
3.7 3.8 3.9
Note: * denotes accelerated-cured specimens
It can be observed that the compressive and tensile splitting strengths of the geopolymer concrete
were lower than those of the Portland cement based control and the typical specification
requirements. However, the flexural strength is of primary importance in the performance of tunnel
segments, and the flexural strength and equivalent post-crack residual flexural strength value at
3.0mm deflection of the geopolymer with synthetic fibres slightly exceed those of both the Portland
cement based control and the geopolymer mix with steel fibres. This is shown graphically in Figure
2.
0
1
2
3
4
5
6
7
8
Conventional concrete with
synthetic fibres
Geopolymer concrete with
steel fibres
Geopolymer concrete with
synthetic fibres
Strength(MPa)
Flexural strength Eq. (Post-crack) Residual Strength, Fe0.75
Eq. (Post-crack) Residual Strength, Fe3.0
Figure 2. Flexural strength results.
Conventional concrete mixes with steel fibres have shown a tendency to embrittlement as the
concrete strength increases due to fibre rupture rather than gradual pull-out (2). The good
equivalent post-crack residual flexural strength values of the geopolymer mix with synthetic fibres is
encouraging, and this value would not be expected to be reduced by long-term strength gain of the
concrete in the same way as steel fibres because of the lower elastic modulus of synthetic fibres.
3.1.3 Durability
The durability test results are summarised in Table 4.
The Apparent Volume of Permeable Voids of the geopolymer mixes were higher than that of the
Portland cement based control, and also exceeded the specified limit of 13%. In contrast, the
chloride migration, sorptivity and dying shrinkage of the geopolymer mixes are significantly better
than those of the Portland cement based control.
Table 4. Summary of durability test results for laboratory trials.
Parameter Conventional concrete with
synthetic fibres
Geopolymer concrete with
steel fibres
Geopolymer concrete with
synthetic fibres
AVPV rodded (%) 13 17 14
28-day water penetration (mm)
Mean of 2 tests
<20mm <20mm <20mm
56-day chloride migration
coefficient (m2
/s)
91-day chloride migration
coefficient (m2
/s)
3.45
1.87
Not tested
Not tested
1.08
0.91
Sorptivity (mm) 9.0 6.1 6.2
56-day drying shrinkage
(microstrain)
530 240 400
One potential reason for the above differences is the lack of a conventional capillary pore structure
in geopolymer concrete. This means that parameters which are heavily influenced by capillary
porosity and capillary transport of moisture could be beneficially influenced by using geopolymer
concrete.
3.2 Field Trials
Field trials of up to 2.5m
3
size were undertaken at the Hume precast plant in Echuca, Victoria. Tunnel
segment moulds were already available at this plant from a recently completed project. The objective of
the field trials was to produce prototype segments, as well as larger specimens for further testing (Section
3.4). A conventional concrete control mix with steel fibres was also included.
The field trials used a FRGC with 8 kg/m
3
of synthetic fibres and Portland cement based concrete with 40
kg/m
3
of steel fibres (with and without the addition of 1 kg/m
3
of synthetic microfibers for improved fire
spalling resistance).
Four rectangular bolted segments (each approximately 0.4m
3
and 0.8 tonnes in weight) and four smaller
tapered key segments (each approximately 0.1m
3
and 0.2 tonnes in weight) were produced from the
FRGC mix. The compressive strength development of the FRGC mix was similar to the control mix and
met the performance specification. The segments were successfully stripped to allow a single casting
cycle every 24 hours at an ambient temperature at casting of 22°C.
0
10
20
30
40
50
60
70
80
1 day 7 days 28 days
Compressivestrength(MPa)
Conventional concrete
with steel fibres
Geopolymer concrete
with synthetic fibres
Figure 3. Compressive strength development, field trials.
Figure 4 shows the typical condition of the demoulded segments and a sawn cross-section. The cross-
section shows good uniformity and compaction, although care has to be taken to evenly disperse the
fibres during mixing and to cure the concrete adequately.
Figure 4. Prototype tunnel segments and sawn cross-section
3.3 Embodied carbon
Reducing the carbon emissions of concrete is a key driver for the project. In order to assess the impact of
using FRGC compared to conventional concrete, two scenarios were considered:
a) Casting FRGC or conventional concrete segments at Echuca, Victoria for delivery by road
220km to a project site in Melbourne; and
b) Casting FRGC segments at Echuca, Victoria for delivery by road 3310km to a project site
in Perth, Western Australia.
The first case represents a realistic supply situation for precast segments, whereas the second case is
intended to represent a maximum transport distance in order to assess the influence of haulage on carbon
emissions.
The carbon emissions were calculated using published values for converting energy and fuel to CO2 (4).
The calculations assumed that the strength and durability performance of the FRGC and conventional
concrete mixes are similar. The FRGC concrete has 8 kg/m
3
of synthetic fibres and conventional concrete
assumes 40 kg/m
3
of steel reinforcing bar or steel fibres.
The calculations allow for the embodied carbon in the constituent materials (including obtaining and
processing the raw materials), transportation to the precast plant, production of the segments and their
transportation to the project site. The calculations do not assess the effects of carbonation, or the carbon
emission associated with demolition and reuse of tunnel segments.
Figure 5 shows the comparison between FRGC and conventional concrete. The CO2 emissions of
segments produced at Echuca using FRGC are 34% and 60% of the values for conventional concrete
segments delivered to sites in Melbourne and Perth, representing a reduction of up to approximately 70%
in emissions. The influence of binder and reinforcement upon carbon emissions predominates over
transportation. The CO2 emissions for FRGC segments transported to Perth are slightly less than those
associated with conventional concrete segments delivered to Melbourne, indicating that binder and
reinforcement type predominate over transportation.
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Melbourne Perth
Totalemission(tonneCO2/tonnesegment)
Conventional concrete
with steel rebar/fibres
Geopolymer concrete
with synthetic fibres
Figure 5. Carbon emissions associated with FRGC and conventional concrete segments produced
in Echuca and delivered to sites in Melbourne and Perth.
3.4 Further work
The following further work is planned:
• Exposure tests
• Creep tests
• Fire resistance tests
• Project trials.
FRGC samples are being exposed to abrasion and acid sulphate conditions to simulate a sewer
environment. These exposure conditions, using a sulphuric acid solution with a pH of 2, are intended to
last at least 2 years. The interim results at 140 days are shown below in Figure 6. These very early
results indicate a slightly lower depth of attack in FRGC concrete compared to the Portland cement based
control. The steel fibres produce a slightly lower depth of attack, which may reflect enhanced abrasion
resistance compared to synthetic fibres. These trends need to be verified in the long-term exposure data.
Creep tests will be undertaken using cracked ASTM C1550 round panels to establish the difference in
performance between a Portland cement based control with steel fibres and FRGC using synthetic fibres.
Previous results of such tests using Portland cement based concrete have shown comparable
performance of steel fibre and synthetic fibre reinforced concrete, dependent on the loading (2).
Fire testing to assess spalling resistance is a common requirement for the lining of transportation tunnels.
Tunnel segments from the field trials are being fire tested at Victoria University to simulate a hydrocarbon
fire.
Following successful completion of the laboratory and field trials, opportunities are being sought to use
FRGC in project trials. This is an important step to secure early application of the technology to benefit the
construction industry and wider society.
0
0.5
1
1.5
2
2.5
3
0 50 100 150
Time of exposure (days)
Depthofdamage(mm)
Portland Cement Concrete
with Synthetic Fibres
Geopolymer Concrete with
Synthetic Fibres
Geopolymer Concrete with
Steel Fibres
Figure 6. Depth of damage under abrasion and acid sulphate conditions.
4. Conclusions
Use of concrete in construction contributes over 5% of worldwide carbon dioxide emissions. If emission
targets are to be met some radical changes need to be made to reduce this value. The use of geopolymer
binder and synthetic fibres in place of Portland cement and steel reinforcement to produce fibre reinforced
geopolymer concrete (FRGC) provides a lower carbon alternative to conventional concrete.
A 3-year study involving is being undertaken to develop and commercialise FRGC products for use in
underground infrastructure. The work involves laboratory studies, long-term exposure tests, production of
prototype tunnel segments and a life cycle assessment of embodied carbon for the products. The
properties of the fresh and hardened FRGC have been investigated, including workability, strength and
durability. The latter has included standard parameters, such as AVPV, as wells as chloride migration
testing and exposure to acid and sulphate solutions.
Mix designs utilising different fibre dosages and geopolymer binders have been assessed, together with
standard and accelerated curing regimes. The objective of the testing has been to provide information on
the essential engineering characteristics of the material using a typical specification as the basis for
compliance. Control mixes using Portland cement and 40 kg/m
3
of steel fibres were also tested for
comparison purposes.
The work indicates that combining geopolymer binder and 8 kg/m
3
of synthetic fibres produces concrete
with acceptable workability. The hardened properties are encouraging when assessed against a typical
specification for tunnel segments.
The test results show that FRGC can outperform the Portland cement based control in respect of flexural
strength, shrinkage and durability and at the same time can reduce carbon emissions by approximately
70%.
Field trials and production of prototype segments have been successfully completed. Further long-term
testing is continuing and opportunities are being sought for project trials.
5. Acknowledgement
The authors acknowledge the substantial contributions made by Dr Van Bui in management of the project
and analysis of the data. The financial support of the Victorian Government through the Victoria’s Science
Agenda program is also acknowledged.
6. References
1. Wimpenny D E, “Low carbon concrete- options for the next generation of infrastructure”, 24
th
Biennial Conference of the Concrete Institute of Australia, Sydney, Australia, 2009.
2. Wimpenny D E, Angerer W, Cooper A, Bernard S, “The use of Steel and Synthetic Fibres in
Concrete under Extreme Conditions”, 24
th
Biennial Conference of the Concrete Institute of
Australia, Sydney, Australia, 2009.
3. King M R, and Alder A J, ”The practical specification of steel fibre reinforced concrete (SFRC) for
tunnel linings”, Proceedings of Underground Construction 2007 Conference, London, Brintex Ltd.
4. Halcrow, “Development of Fibre Reinforced Geopolymer: Concrete-Life Cycle Assessment
(LCA)”, January 2011.

Mais conteúdo relacionado

Mais procurados

IRJET- Strengthening of Reinforced Concrete Beams using Fiber Reinforced Poly...
IRJET- Strengthening of Reinforced Concrete Beams using Fiber Reinforced Poly...IRJET- Strengthening of Reinforced Concrete Beams using Fiber Reinforced Poly...
IRJET- Strengthening of Reinforced Concrete Beams using Fiber Reinforced Poly...IRJET Journal
 
IRJET- Experimental Investigation on the Performance of Calcium Chloride and ...
IRJET- Experimental Investigation on the Performance of Calcium Chloride and ...IRJET- Experimental Investigation on the Performance of Calcium Chloride and ...
IRJET- Experimental Investigation on the Performance of Calcium Chloride and ...IRJET Journal
 
"Reliability assessment of braided FRP reinforcement for concrete structures"...
"Reliability assessment of braided FRP reinforcement for concrete structures"..."Reliability assessment of braided FRP reinforcement for concrete structures"...
"Reliability assessment of braided FRP reinforcement for concrete structures"...TRUSS ITN
 
IRJET- Experimental Study on Strength Characteristics of Glass Fibre Reinforc...
IRJET- Experimental Study on Strength Characteristics of Glass Fibre Reinforc...IRJET- Experimental Study on Strength Characteristics of Glass Fibre Reinforc...
IRJET- Experimental Study on Strength Characteristics of Glass Fibre Reinforc...IRJET Journal
 
IRJET - Insertion of Nano Silica and Metakaolin as Additive in Reactive Powde...
IRJET - Insertion of Nano Silica and Metakaolin as Additive in Reactive Powde...IRJET - Insertion of Nano Silica and Metakaolin as Additive in Reactive Powde...
IRJET - Insertion of Nano Silica and Metakaolin as Additive in Reactive Powde...IRJET Journal
 
IRJET- Influence of Addition of Nano-Silica on Physical and Mechanical Proper...
IRJET- Influence of Addition of Nano-Silica on Physical and Mechanical Proper...IRJET- Influence of Addition of Nano-Silica on Physical and Mechanical Proper...
IRJET- Influence of Addition of Nano-Silica on Physical and Mechanical Proper...IRJET Journal
 
IRJET- Mechanical Properties of Hybrid Fiber Reinforced Geopolymer Concrete
IRJET- Mechanical Properties of Hybrid Fiber Reinforced Geopolymer ConcreteIRJET- Mechanical Properties of Hybrid Fiber Reinforced Geopolymer Concrete
IRJET- Mechanical Properties of Hybrid Fiber Reinforced Geopolymer ConcreteIRJET Journal
 
Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...
Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...
Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...IRJET Journal
 
IRJET- Achieving the Mechanical Properties in Conventional Concrete by using ...
IRJET- Achieving the Mechanical Properties in Conventional Concrete by using ...IRJET- Achieving the Mechanical Properties in Conventional Concrete by using ...
IRJET- Achieving the Mechanical Properties in Conventional Concrete by using ...IRJET Journal
 
Fibers frca aci544_b
Fibers frca aci544_bFibers frca aci544_b
Fibers frca aci544_bAsuSSEBENA
 
Effect of Nano-Silica and Metakaolin on Properties of Recycled Coarse Aggrega...
Effect of Nano-Silica and Metakaolin on Properties of Recycled Coarse Aggrega...Effect of Nano-Silica and Metakaolin on Properties of Recycled Coarse Aggrega...
Effect of Nano-Silica and Metakaolin on Properties of Recycled Coarse Aggrega...IRJET Journal
 
IRJET- An Experimental Investigation on Structural Properties of Polymer ...
IRJET-  	  An Experimental Investigation on Structural Properties of Polymer ...IRJET-  	  An Experimental Investigation on Structural Properties of Polymer ...
IRJET- An Experimental Investigation on Structural Properties of Polymer ...IRJET Journal
 
Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...
Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...
Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...IRJET Journal
 
Effect of Annealing Process on the Corrosion Resistance of Aluminium 7075-T6 ...
Effect of Annealing Process on the Corrosion Resistance of Aluminium 7075-T6 ...Effect of Annealing Process on the Corrosion Resistance of Aluminium 7075-T6 ...
Effect of Annealing Process on the Corrosion Resistance of Aluminium 7075-T6 ...IRJET Journal
 
IRJET- An Experimental Investigation on Durability Studies of Concrete by usi...
IRJET- An Experimental Investigation on Durability Studies of Concrete by usi...IRJET- An Experimental Investigation on Durability Studies of Concrete by usi...
IRJET- An Experimental Investigation on Durability Studies of Concrete by usi...IRJET Journal
 
IRJET- Workability and Strength Properties of SCC Made with Processed RCA
IRJET- Workability and Strength Properties of SCC Made with Processed RCAIRJET- Workability and Strength Properties of SCC Made with Processed RCA
IRJET- Workability and Strength Properties of SCC Made with Processed RCAIRJET Journal
 
Effect of Waste Steel Slag and Silica Fume on Mechanical Properties of High S...
Effect of Waste Steel Slag and Silica Fume on Mechanical Properties of High S...Effect of Waste Steel Slag and Silica Fume on Mechanical Properties of High S...
Effect of Waste Steel Slag and Silica Fume on Mechanical Properties of High S...IRJET Journal
 
Experimental Study on the Mechanical Behaviour of Sisal Fibre Reinforced Self...
Experimental Study on the Mechanical Behaviour of Sisal Fibre Reinforced Self...Experimental Study on the Mechanical Behaviour of Sisal Fibre Reinforced Self...
Experimental Study on the Mechanical Behaviour of Sisal Fibre Reinforced Self...IRJET Journal
 
IRJET- Strength Development of Fly Ash based Geopolymer Concrete
IRJET- Strength Development of Fly Ash based Geopolymer ConcreteIRJET- Strength Development of Fly Ash based Geopolymer Concrete
IRJET- Strength Development of Fly Ash based Geopolymer ConcreteIRJET Journal
 

Mais procurados (20)

IRJET- Strengthening of Reinforced Concrete Beams using Fiber Reinforced Poly...
IRJET- Strengthening of Reinforced Concrete Beams using Fiber Reinforced Poly...IRJET- Strengthening of Reinforced Concrete Beams using Fiber Reinforced Poly...
IRJET- Strengthening of Reinforced Concrete Beams using Fiber Reinforced Poly...
 
IRJET- Experimental Investigation on the Performance of Calcium Chloride and ...
IRJET- Experimental Investigation on the Performance of Calcium Chloride and ...IRJET- Experimental Investigation on the Performance of Calcium Chloride and ...
IRJET- Experimental Investigation on the Performance of Calcium Chloride and ...
 
"Reliability assessment of braided FRP reinforcement for concrete structures"...
"Reliability assessment of braided FRP reinforcement for concrete structures"..."Reliability assessment of braided FRP reinforcement for concrete structures"...
"Reliability assessment of braided FRP reinforcement for concrete structures"...
 
IRJET- Experimental Study on Strength Characteristics of Glass Fibre Reinforc...
IRJET- Experimental Study on Strength Characteristics of Glass Fibre Reinforc...IRJET- Experimental Study on Strength Characteristics of Glass Fibre Reinforc...
IRJET- Experimental Study on Strength Characteristics of Glass Fibre Reinforc...
 
IRJET - Insertion of Nano Silica and Metakaolin as Additive in Reactive Powde...
IRJET - Insertion of Nano Silica and Metakaolin as Additive in Reactive Powde...IRJET - Insertion of Nano Silica and Metakaolin as Additive in Reactive Powde...
IRJET - Insertion of Nano Silica and Metakaolin as Additive in Reactive Powde...
 
IRJET- Influence of Addition of Nano-Silica on Physical and Mechanical Proper...
IRJET- Influence of Addition of Nano-Silica on Physical and Mechanical Proper...IRJET- Influence of Addition of Nano-Silica on Physical and Mechanical Proper...
IRJET- Influence of Addition of Nano-Silica on Physical and Mechanical Proper...
 
IRJET- Mechanical Properties of Hybrid Fiber Reinforced Geopolymer Concrete
IRJET- Mechanical Properties of Hybrid Fiber Reinforced Geopolymer ConcreteIRJET- Mechanical Properties of Hybrid Fiber Reinforced Geopolymer Concrete
IRJET- Mechanical Properties of Hybrid Fiber Reinforced Geopolymer Concrete
 
Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...
Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...
Corrosion Effects of Cr and Ni in Thermo-Mechanical Treated Steel Bar in Mari...
 
IRJET- Achieving the Mechanical Properties in Conventional Concrete by using ...
IRJET- Achieving the Mechanical Properties in Conventional Concrete by using ...IRJET- Achieving the Mechanical Properties in Conventional Concrete by using ...
IRJET- Achieving the Mechanical Properties in Conventional Concrete by using ...
 
Fibers frca aci544_b
Fibers frca aci544_bFibers frca aci544_b
Fibers frca aci544_b
 
Effect of Nano-Silica and Metakaolin on Properties of Recycled Coarse Aggrega...
Effect of Nano-Silica and Metakaolin on Properties of Recycled Coarse Aggrega...Effect of Nano-Silica and Metakaolin on Properties of Recycled Coarse Aggrega...
Effect of Nano-Silica and Metakaolin on Properties of Recycled Coarse Aggrega...
 
IRJET- An Experimental Investigation on Structural Properties of Polymer ...
IRJET-  	  An Experimental Investigation on Structural Properties of Polymer ...IRJET-  	  An Experimental Investigation on Structural Properties of Polymer ...
IRJET- An Experimental Investigation on Structural Properties of Polymer ...
 
Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...
Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...
Bioprocessing and Characterization of Polyhydroxyalkanoate Blends from Cassia...
 
Effect of Annealing Process on the Corrosion Resistance of Aluminium 7075-T6 ...
Effect of Annealing Process on the Corrosion Resistance of Aluminium 7075-T6 ...Effect of Annealing Process on the Corrosion Resistance of Aluminium 7075-T6 ...
Effect of Annealing Process on the Corrosion Resistance of Aluminium 7075-T6 ...
 
IRJET- An Experimental Investigation on Durability Studies of Concrete by usi...
IRJET- An Experimental Investigation on Durability Studies of Concrete by usi...IRJET- An Experimental Investigation on Durability Studies of Concrete by usi...
IRJET- An Experimental Investigation on Durability Studies of Concrete by usi...
 
IRJET- Workability and Strength Properties of SCC Made with Processed RCA
IRJET- Workability and Strength Properties of SCC Made with Processed RCAIRJET- Workability and Strength Properties of SCC Made with Processed RCA
IRJET- Workability and Strength Properties of SCC Made with Processed RCA
 
Furan
FuranFuran
Furan
 
Effect of Waste Steel Slag and Silica Fume on Mechanical Properties of High S...
Effect of Waste Steel Slag and Silica Fume on Mechanical Properties of High S...Effect of Waste Steel Slag and Silica Fume on Mechanical Properties of High S...
Effect of Waste Steel Slag and Silica Fume on Mechanical Properties of High S...
 
Experimental Study on the Mechanical Behaviour of Sisal Fibre Reinforced Self...
Experimental Study on the Mechanical Behaviour of Sisal Fibre Reinforced Self...Experimental Study on the Mechanical Behaviour of Sisal Fibre Reinforced Self...
Experimental Study on the Mechanical Behaviour of Sisal Fibre Reinforced Self...
 
IRJET- Strength Development of Fly Ash based Geopolymer Concrete
IRJET- Strength Development of Fly Ash based Geopolymer ConcreteIRJET- Strength Development of Fly Ash based Geopolymer Concrete
IRJET- Strength Development of Fly Ash based Geopolymer Concrete
 

Destaque

フェイスブックプロモーション支援のご提案1
フェイスブックプロモーション支援のご提案1フェイスブックプロモーション支援のご提案1
フェイスブックプロモーション支援のご提案1麻莉絵 小崎
 
119601 2323 ijcee-ijens
119601 2323 ijcee-ijens119601 2323 ijcee-ijens
119601 2323 ijcee-ijenszaqqy
 
Helsinki mw
Helsinki mwHelsinki mw
Helsinki mwzaqqy
 
Halcrow low carbon_concrete_sydney_2009
Halcrow low carbon_concrete_sydney_2009Halcrow low carbon_concrete_sydney_2009
Halcrow low carbon_concrete_sydney_2009zaqqy
 
119601 2323 ijcee-ijens
119601 2323 ijcee-ijens119601 2323 ijcee-ijens
119601 2323 ijcee-ijenszaqqy
 
情報プレゼン
情報プレゼン情報プレゼン
情報プレゼンyoshi10ki
 
Fly ash based geopolymer concrete with recycled concrete aggregate
Fly ash based geopolymer concrete with recycled concrete aggregateFly ash based geopolymer concrete with recycled concrete aggregate
Fly ash based geopolymer concrete with recycled concrete aggregatezaqqy
 
Cavalline presentation 4 13-10
Cavalline presentation 4 13-10Cavalline presentation 4 13-10
Cavalline presentation 4 13-10zaqqy
 

Destaque (8)

フェイスブックプロモーション支援のご提案1
フェイスブックプロモーション支援のご提案1フェイスブックプロモーション支援のご提案1
フェイスブックプロモーション支援のご提案1
 
119601 2323 ijcee-ijens
119601 2323 ijcee-ijens119601 2323 ijcee-ijens
119601 2323 ijcee-ijens
 
Helsinki mw
Helsinki mwHelsinki mw
Helsinki mw
 
Halcrow low carbon_concrete_sydney_2009
Halcrow low carbon_concrete_sydney_2009Halcrow low carbon_concrete_sydney_2009
Halcrow low carbon_concrete_sydney_2009
 
119601 2323 ijcee-ijens
119601 2323 ijcee-ijens119601 2323 ijcee-ijens
119601 2323 ijcee-ijens
 
情報プレゼン
情報プレゼン情報プレゼン
情報プレゼン
 
Fly ash based geopolymer concrete with recycled concrete aggregate
Fly ash based geopolymer concrete with recycled concrete aggregateFly ash based geopolymer concrete with recycled concrete aggregate
Fly ash based geopolymer concrete with recycled concrete aggregate
 
Cavalline presentation 4 13-10
Cavalline presentation 4 13-10Cavalline presentation 4 13-10
Cavalline presentation 4 13-10
 

Semelhante a Frgc products for_undergound_infrastructure

IRJET- Experimental Study on Geopolymer Concrete by using Glass Fibres
IRJET-  	  Experimental Study on Geopolymer Concrete by using Glass FibresIRJET-  	  Experimental Study on Geopolymer Concrete by using Glass Fibres
IRJET- Experimental Study on Geopolymer Concrete by using Glass FibresIRJET Journal
 
Effect of Steel Fiber on Alkali activated Fly Ash Concrete
Effect of Steel Fiber on Alkali activated Fly Ash ConcreteEffect of Steel Fiber on Alkali activated Fly Ash Concrete
Effect of Steel Fiber on Alkali activated Fly Ash ConcreteIJERA Editor
 
Mechanical and Statistical Study of Seawater Mixed Concrete
Mechanical and Statistical Study of Seawater Mixed ConcreteMechanical and Statistical Study of Seawater Mixed Concrete
Mechanical and Statistical Study of Seawater Mixed ConcreteIRJET Journal
 
EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING FINE AGGREGATE AS PARTIAL R...
EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING FINE AGGREGATE AS PARTIAL R...EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING FINE AGGREGATE AS PARTIAL R...
EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING FINE AGGREGATE AS PARTIAL R...IRJET Journal
 
IRJET- Corrosion Effect Over the Flexural Strenght of Ferro-Cement
IRJET-  	  Corrosion Effect Over the Flexural Strenght of Ferro-CementIRJET-  	  Corrosion Effect Over the Flexural Strenght of Ferro-Cement
IRJET- Corrosion Effect Over the Flexural Strenght of Ferro-CementIRJET Journal
 
IRJET- Investigation on Ferrock based Mortar an Environment Friendly Concrete
IRJET- Investigation on Ferrock based Mortar an Environment Friendly ConcreteIRJET- Investigation on Ferrock based Mortar an Environment Friendly Concrete
IRJET- Investigation on Ferrock based Mortar an Environment Friendly ConcreteIRJET Journal
 
IRJET- Mechanical and Bond Properties of Steel Fibre Reinforced SBR Modified ...
IRJET- Mechanical and Bond Properties of Steel Fibre Reinforced SBR Modified ...IRJET- Mechanical and Bond Properties of Steel Fibre Reinforced SBR Modified ...
IRJET- Mechanical and Bond Properties of Steel Fibre Reinforced SBR Modified ...IRJET Journal
 
Strength and durability studies on silica fume modified high volume fly ash c...
Strength and durability studies on silica fume modified high volume fly ash c...Strength and durability studies on silica fume modified high volume fly ash c...
Strength and durability studies on silica fume modified high volume fly ash c...IAEME Publication
 
. effect of different types of cement on fresh and mechanical properties of c...
. effect of different types of cement on fresh and mechanical properties of c.... effect of different types of cement on fresh and mechanical properties of c...
. effect of different types of cement on fresh and mechanical properties of c...ENGJiidhe
 
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”IRJET Journal
 
USE OF DISCRETE FIBERS IN ROAD CONSTRUCTION: A REVIEW
USE OF DISCRETE FIBERS IN ROAD CONSTRUCTION: A REVIEWUSE OF DISCRETE FIBERS IN ROAD CONSTRUCTION: A REVIEW
USE OF DISCRETE FIBERS IN ROAD CONSTRUCTION: A REVIEWIRJET Journal
 
IRJET- Experimental Investigation on Effect of Alccofine with Flyash an...
IRJET- Experimental  Investigation  on  Effect of Alccofine  with  Flyash  an...IRJET- Experimental  Investigation  on  Effect of Alccofine  with  Flyash  an...
IRJET- Experimental Investigation on Effect of Alccofine with Flyash an...IRJET Journal
 
Effect of mineral admixtures on characteristics of high strength concrete
Effect of mineral admixtures on characteristics of high strength concreteEffect of mineral admixtures on characteristics of high strength concrete
Effect of mineral admixtures on characteristics of high strength concreteeSAT Journals
 
DURABILITY STUDIES OF SELF- COMPACTING CONCRETE WITH RECYCLED COARSE AGGREGAT...
DURABILITY STUDIES OF SELF- COMPACTING CONCRETE WITH RECYCLED COARSE AGGREGAT...DURABILITY STUDIES OF SELF- COMPACTING CONCRETE WITH RECYCLED COARSE AGGREGAT...
DURABILITY STUDIES OF SELF- COMPACTING CONCRETE WITH RECYCLED COARSE AGGREGAT...IRJET Journal
 
IRJET - Study on Workability and Compressive Strength of Concrete Blended...
IRJET -  	  Study on Workability and Compressive Strength of Concrete Blended...IRJET -  	  Study on Workability and Compressive Strength of Concrete Blended...
IRJET - Study on Workability and Compressive Strength of Concrete Blended...IRJET Journal
 
IRJET- An Investigation on the Durability Properties of Textile Fibre Reinfor...
IRJET- An Investigation on the Durability Properties of Textile Fibre Reinfor...IRJET- An Investigation on the Durability Properties of Textile Fibre Reinfor...
IRJET- An Investigation on the Durability Properties of Textile Fibre Reinfor...IRJET Journal
 
IRJET- Effect on Steel Slag Concrete using Silica Fume along with Flyash
IRJET- 	 Effect on Steel Slag Concrete using Silica Fume along with FlyashIRJET- 	 Effect on Steel Slag Concrete using Silica Fume along with Flyash
IRJET- Effect on Steel Slag Concrete using Silica Fume along with FlyashIRJET Journal
 
Concrete corrosion
Concrete corrosionConcrete corrosion
Concrete corrosionAhmed Faraj
 

Semelhante a Frgc products for_undergound_infrastructure (20)

IRJET- Experimental Study on Geopolymer Concrete by using Glass Fibres
IRJET-  	  Experimental Study on Geopolymer Concrete by using Glass FibresIRJET-  	  Experimental Study on Geopolymer Concrete by using Glass Fibres
IRJET- Experimental Study on Geopolymer Concrete by using Glass Fibres
 
EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES AND DURABILITY OF REACTIVE POWDER...
EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES AND DURABILITY OF REACTIVE POWDER...EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES AND DURABILITY OF REACTIVE POWDER...
EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES AND DURABILITY OF REACTIVE POWDER...
 
Effect of Steel Fiber on Alkali activated Fly Ash Concrete
Effect of Steel Fiber on Alkali activated Fly Ash ConcreteEffect of Steel Fiber on Alkali activated Fly Ash Concrete
Effect of Steel Fiber on Alkali activated Fly Ash Concrete
 
Mechanical and Statistical Study of Seawater Mixed Concrete
Mechanical and Statistical Study of Seawater Mixed ConcreteMechanical and Statistical Study of Seawater Mixed Concrete
Mechanical and Statistical Study of Seawater Mixed Concrete
 
3048-8524-1-PB.pdf
3048-8524-1-PB.pdf3048-8524-1-PB.pdf
3048-8524-1-PB.pdf
 
EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING FINE AGGREGATE AS PARTIAL R...
EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING FINE AGGREGATE AS PARTIAL R...EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING FINE AGGREGATE AS PARTIAL R...
EFFECT ON MECHANICAL PROPERTIES OF CONCRETE USING FINE AGGREGATE AS PARTIAL R...
 
IRJET- Corrosion Effect Over the Flexural Strenght of Ferro-Cement
IRJET-  	  Corrosion Effect Over the Flexural Strenght of Ferro-CementIRJET-  	  Corrosion Effect Over the Flexural Strenght of Ferro-Cement
IRJET- Corrosion Effect Over the Flexural Strenght of Ferro-Cement
 
IRJET- Investigation on Ferrock based Mortar an Environment Friendly Concrete
IRJET- Investigation on Ferrock based Mortar an Environment Friendly ConcreteIRJET- Investigation on Ferrock based Mortar an Environment Friendly Concrete
IRJET- Investigation on Ferrock based Mortar an Environment Friendly Concrete
 
IRJET- Mechanical and Bond Properties of Steel Fibre Reinforced SBR Modified ...
IRJET- Mechanical and Bond Properties of Steel Fibre Reinforced SBR Modified ...IRJET- Mechanical and Bond Properties of Steel Fibre Reinforced SBR Modified ...
IRJET- Mechanical and Bond Properties of Steel Fibre Reinforced SBR Modified ...
 
Strength and durability studies on silica fume modified high volume fly ash c...
Strength and durability studies on silica fume modified high volume fly ash c...Strength and durability studies on silica fume modified high volume fly ash c...
Strength and durability studies on silica fume modified high volume fly ash c...
 
. effect of different types of cement on fresh and mechanical properties of c...
. effect of different types of cement on fresh and mechanical properties of c.... effect of different types of cement on fresh and mechanical properties of c...
. effect of different types of cement on fresh and mechanical properties of c...
 
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
 
USE OF DISCRETE FIBERS IN ROAD CONSTRUCTION: A REVIEW
USE OF DISCRETE FIBERS IN ROAD CONSTRUCTION: A REVIEWUSE OF DISCRETE FIBERS IN ROAD CONSTRUCTION: A REVIEW
USE OF DISCRETE FIBERS IN ROAD CONSTRUCTION: A REVIEW
 
IRJET- Experimental Investigation on Effect of Alccofine with Flyash an...
IRJET- Experimental  Investigation  on  Effect of Alccofine  with  Flyash  an...IRJET- Experimental  Investigation  on  Effect of Alccofine  with  Flyash  an...
IRJET- Experimental Investigation on Effect of Alccofine with Flyash an...
 
Effect of mineral admixtures on characteristics of high strength concrete
Effect of mineral admixtures on characteristics of high strength concreteEffect of mineral admixtures on characteristics of high strength concrete
Effect of mineral admixtures on characteristics of high strength concrete
 
DURABILITY STUDIES OF SELF- COMPACTING CONCRETE WITH RECYCLED COARSE AGGREGAT...
DURABILITY STUDIES OF SELF- COMPACTING CONCRETE WITH RECYCLED COARSE AGGREGAT...DURABILITY STUDIES OF SELF- COMPACTING CONCRETE WITH RECYCLED COARSE AGGREGAT...
DURABILITY STUDIES OF SELF- COMPACTING CONCRETE WITH RECYCLED COARSE AGGREGAT...
 
IRJET - Study on Workability and Compressive Strength of Concrete Blended...
IRJET -  	  Study on Workability and Compressive Strength of Concrete Blended...IRJET -  	  Study on Workability and Compressive Strength of Concrete Blended...
IRJET - Study on Workability and Compressive Strength of Concrete Blended...
 
IRJET- An Investigation on the Durability Properties of Textile Fibre Reinfor...
IRJET- An Investigation on the Durability Properties of Textile Fibre Reinfor...IRJET- An Investigation on the Durability Properties of Textile Fibre Reinfor...
IRJET- An Investigation on the Durability Properties of Textile Fibre Reinfor...
 
IRJET- Effect on Steel Slag Concrete using Silica Fume along with Flyash
IRJET- 	 Effect on Steel Slag Concrete using Silica Fume along with FlyashIRJET- 	 Effect on Steel Slag Concrete using Silica Fume along with Flyash
IRJET- Effect on Steel Slag Concrete using Silica Fume along with Flyash
 
Concrete corrosion
Concrete corrosionConcrete corrosion
Concrete corrosion
 

Último

SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 

Último (20)

SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 

Frgc products for_undergound_infrastructure

  • 1. Fibre reinforced geopolymer concrete products for underground infrastructure Don Wimpenny 1 , Peter Duxson 2 , Tony Cooper 3 John Provis 4 , Robert Zeuschner 5 1 – Head of Materials & Asset Engineering, Halcrow Pacific Pty Ltd 2 - Chief Operating Officer, Zeobond Pty Ltd, 3 – General Manager Australia , Elastoplastic Concrete Pty Ltd, 4 - Senior Research Fellow, Department of Chemical & Biomolecular Engineering, University of Melbourne 5 – General Manager Southern Region, Humes TM , Holcim (Australia) Pty Ltd Synopsis: This paper presents the initial findings of a 3-year project to develop Fibre Reinforced Geopolymer Concrete (FRGC) products for underground infrastructure. The work is funded by the Victorian Science Agenda Investment Fund and a consortium of five organisations. By combining synthetic fibre reinforcement and geopolymer technology, it is possible to remove Portland cement and steel reinforcement from structural concrete to produce a new generation of structural concrete with potential benefits of improved durability and reduced embodied carbon content. The work involves laboratory studies, long-term exposure tests, production of prototype tunnel segments and a life cycle assessment of embodied carbon for the products. The properties of the fresh and hardened FRGC have been investigated, including workability, strength and durability. The latter has included standard parameters, such as apparent volume of permeable voids (AVPV), as wells as chloride migration testing and exposure to acid and sulphate solutions. Mix designs utilising different fibre dosages and geopolymer binders have been assessed, together with standard and accelerated curing regimes. The objective of the testing has been to provide information on the essential engineering characteristics of the material using a typical specification as the basis for compliance. Control mixes using Portland cement and 40kg/m 3 of steel fibres were also tested for comparison purposes. The test results show the FRGC mixes outperform the Portland cement based control mixes in terms of strength, shrinkage and durability, and at the same time can reduce carbon emissions by approximately 70%. Keywords: strength, chloride diffusion, synthetic fibres, flexural, geopolymer, carbon emissions. 1. Introduction Concrete makes a substantial contribution to society, from its use in large infrastructure projects through to public buildings and social housing schemes. Use of concrete in construction is also a major contributor to greenhouse gases, reportedly generating more than 5% of worldwide carbon dioxide (CO2) emissions, over three-quarters deriving from the Portland cement binder. Approximately half the CO2 emissions from Portland cement are associated with energy used in the heating and grinding processes. The remaining emissions derive from the chemical de-carbonation of the limestone. The cement industry has made considerable improvements in energy efficiency and use of alternative fuel sources. However, if worldwide emissions targets are to be met, some radical changes are required to further reduce the CO2 emissions derived from the use of concrete. A study carried out on behalf of the UK Environment Agency has identified concrete using geopolymer binders as the most promising low carbon alternative to conventional concrete (1). In reinforced concrete, the second highest source of carbon emissions is the steel reinforcement. Recent developments in the production and use of synthetic fibres position these materials as an alternative to steel reinforcing bar and steel fibres, with benefits of lower carbon emissions as well as the possibility of enhanced durability (2).
  • 2. This paper presents the initial findings of a 3-year project to develop Fibre Reinforced Geopolymer Concrete (FRGC) precast products for underground infrastructure. By combining synthetic fibre reinforcement and geopolymer technology, it is possible to remove Portland cement and steel reinforcement from structural concrete to produce a new generation of structural concrete with potential benefits of improved durability and reduced embodied carbon content. The work is funded by the Victoria’s Science Agenda Investment Fund and a consortium of five organisations. The consortium members are able to provide all the facets required to successfully develop FRGC, from design and specification through to testing and production: a) Design and specification of fibre reinforced concrete - Halcrow b) Fibre technology – EPC c) Geopolymer technology – Zeobond d) Testing – University of Melbourne e) Precast production - Humes. The grant funded portion of the project is due to be completed in mid-2012. 2. Scope and objectives The introduction of new products in the construction industry is controlled by the understandably conservative nature of the engineering profession and the need to meet existing industry specifications. Some of the issues relating to adoption of geopolymer and fibre technology are indicated in Table 1. In order to address these issues, this project pre-empts the normal approvals process by testing the FRGC products against the requirements of a typical performance specification. In addition, the project aims to develop guidance on structural and durability design and produce prototype products. Table 1. Key issues to address in the adoption of FRGC technology. Geopolymer Synthetic fibres Absence of structural design parameters Practical constraints (e.g. controlling workability, setting time and strength development) Uncertainty over long-term performance (eg permeability and diffusion properties and acid resistance) Absence of structural design parameters Uncertainty over long-term performance (eg creep) Urgent need to identify appropriate test methods and limits to control properties but avoid unacceptably high rates of non- compliance In order to ensure that industry concerns are properly addressed by the project, independent oversight is provided by a stakeholder group comprising representatives from academia, the engineering profession, the concrete industry and asset owners. The objective of the project is to achieve acceptance of FRGC products by the industry and commercialise the technology to generate economic and environmental benefits for the State of Victoria. The focus of the project has been the production of precast tunnel segments because the use of fibre reinforced concrete is already the preferred material for casting segments, because there are established design methods (3), and because these are high-value products with a potential for good commercial return. The project involves planning, laboratory and field trials, testing and marketing. A simplified flow diagram is given in Figure 1, and the specification requirements are summarised in Table 2. The tests include Australian Standard strength and durability tests, such as cylinder strength and apparent volume of permeable voids, as well as European tests for water penetration and chloride migration.
  • 3. Figure 1. Flow diagram showing the stages and output of the project. FIELD TRIALS LABORATORY TRIALS PROJECT PLAN TESTING PLAN SPECIFICATION UPDATED TEST DATA REPORTS DESIGN GUIDES TESTINGLONG-TERM EXPOSURE TESTS PROTOTYPES PROJECT PLANNING STAKEHOLDER REVIEW MARKETING TO CONTRACTORS MARKETING TO ASSET OWNERS STAKEHOLDER REVIEW TEST DATA REPORTS DESIGN GUIDES STAKEHOLDER REVIEW
  • 4. Table 2. Summary of performance specification requirements. Parameter Requirement Test Method STRENGTH 28-day cylinder strength (MPa) 50 AS 1012.9 Cylinder strength for demoulding (MPa) 10 AS 1012.9 28-day tensile splitting strength (MPa) 4.2 AS 1012.10 28-day flexural strength (MPa) 4.6 ASTM C1609 28-day equivalent post-crack residual flexural strength Fe3.0 (MPa) 3.2 ASTM C1609 DURABILITY AVPV rodded (%) 13 AS 1012.8 28-day water penetration (mm) Mean of 2 tests 20 BS EN 12390-8 56-day chloride migration coefficient (m2 /s) 91-day chloride migration coefficient (m2 /s) 4x10-12 2x10-12 NTB 443 Sorptivity (mm) 8 RTA T362 56-day drying shrinkage (microstrain) 600 AS 1012.13 3. Discussion 3.1 Laboratory Trials 3.1.1 Initial and Main Trials The initial laboratory trials assessed the workability characteristics of FRGC mixes using different fibre types, and doses of synthetic fibres from 8-12 kg/m 3 . A Portland cement based concrete containing 8 kg/m 3 of synthetic fibres and geopolymer concrete with 40 kg/m 3 steel fibres provided two control mixes. The Portland cement control mix was based on an existing production mix, with 20% fly ash in the binder and a water/binder ratio of less than 0.4. The synthetic fibres are manufactured from polyolefin and are 60mm long and 0.5-1mm in diameter with an embossed profile. The steel fibres are formed from cold drawn high tensile carbon steel and are 60 mm long and 0.75 mm in diameter with hooked ends. Based on the initial trials a geopolymer mix with 8 kg/m 3 of synthetic fibre with was selected for further development in the main trials. This mix gave a 100mm target slump 60 minutes after mixing (allowing for permissible tolerances). The main laboratory mixes were 0.35m 3 in size and were produced at a batching plant at Campbellfield in Victoria. A large number specimens were produced, including ASTM C1550 round panels for toughness. The key findings from the laboratory trials are discussed below. 3.1.2 Strength The strength results are summarised in Table 3. Standard and accelerated curing were used to determine the effect on the early strength gain for demoulding. For one production cycle every 24 hours the strength gain of the FRGC mix did not require any accelerated curing, although at lower ambient temperatures (<15°C) heat curing may be beneficial
  • 5. Table 3. Summary of strength results for laboratory trials. Parameter Conventional concrete with synthetic fibres Geopolymer concrete with steel fibres Geopolymer concrete with synthetic fibres 28-day cylinder strength (MPa) 52.5 46.0 49.5 1-day cylinder strength for demoulding (MPa)* 25.0 24.0 25.0 28-day tensile splitting strength (MPa)* 4.8 4.0 3.4 28-day flexural strength (MPa)* 5.5 6.4 7.4 28-day equivalent post-crack residual flexural strength Fe3.0 (MPa)* 3.7 3.8 3.9 Note: * denotes accelerated-cured specimens It can be observed that the compressive and tensile splitting strengths of the geopolymer concrete were lower than those of the Portland cement based control and the typical specification requirements. However, the flexural strength is of primary importance in the performance of tunnel segments, and the flexural strength and equivalent post-crack residual flexural strength value at 3.0mm deflection of the geopolymer with synthetic fibres slightly exceed those of both the Portland cement based control and the geopolymer mix with steel fibres. This is shown graphically in Figure 2. 0 1 2 3 4 5 6 7 8 Conventional concrete with synthetic fibres Geopolymer concrete with steel fibres Geopolymer concrete with synthetic fibres Strength(MPa) Flexural strength Eq. (Post-crack) Residual Strength, Fe0.75 Eq. (Post-crack) Residual Strength, Fe3.0 Figure 2. Flexural strength results. Conventional concrete mixes with steel fibres have shown a tendency to embrittlement as the concrete strength increases due to fibre rupture rather than gradual pull-out (2). The good equivalent post-crack residual flexural strength values of the geopolymer mix with synthetic fibres is encouraging, and this value would not be expected to be reduced by long-term strength gain of the concrete in the same way as steel fibres because of the lower elastic modulus of synthetic fibres. 3.1.3 Durability The durability test results are summarised in Table 4. The Apparent Volume of Permeable Voids of the geopolymer mixes were higher than that of the Portland cement based control, and also exceeded the specified limit of 13%. In contrast, the chloride migration, sorptivity and dying shrinkage of the geopolymer mixes are significantly better than those of the Portland cement based control.
  • 6. Table 4. Summary of durability test results for laboratory trials. Parameter Conventional concrete with synthetic fibres Geopolymer concrete with steel fibres Geopolymer concrete with synthetic fibres AVPV rodded (%) 13 17 14 28-day water penetration (mm) Mean of 2 tests <20mm <20mm <20mm 56-day chloride migration coefficient (m2 /s) 91-day chloride migration coefficient (m2 /s) 3.45 1.87 Not tested Not tested 1.08 0.91 Sorptivity (mm) 9.0 6.1 6.2 56-day drying shrinkage (microstrain) 530 240 400 One potential reason for the above differences is the lack of a conventional capillary pore structure in geopolymer concrete. This means that parameters which are heavily influenced by capillary porosity and capillary transport of moisture could be beneficially influenced by using geopolymer concrete. 3.2 Field Trials Field trials of up to 2.5m 3 size were undertaken at the Hume precast plant in Echuca, Victoria. Tunnel segment moulds were already available at this plant from a recently completed project. The objective of the field trials was to produce prototype segments, as well as larger specimens for further testing (Section 3.4). A conventional concrete control mix with steel fibres was also included. The field trials used a FRGC with 8 kg/m 3 of synthetic fibres and Portland cement based concrete with 40 kg/m 3 of steel fibres (with and without the addition of 1 kg/m 3 of synthetic microfibers for improved fire spalling resistance). Four rectangular bolted segments (each approximately 0.4m 3 and 0.8 tonnes in weight) and four smaller tapered key segments (each approximately 0.1m 3 and 0.2 tonnes in weight) were produced from the FRGC mix. The compressive strength development of the FRGC mix was similar to the control mix and met the performance specification. The segments were successfully stripped to allow a single casting cycle every 24 hours at an ambient temperature at casting of 22°C. 0 10 20 30 40 50 60 70 80 1 day 7 days 28 days Compressivestrength(MPa) Conventional concrete with steel fibres Geopolymer concrete with synthetic fibres Figure 3. Compressive strength development, field trials.
  • 7. Figure 4 shows the typical condition of the demoulded segments and a sawn cross-section. The cross- section shows good uniformity and compaction, although care has to be taken to evenly disperse the fibres during mixing and to cure the concrete adequately. Figure 4. Prototype tunnel segments and sawn cross-section 3.3 Embodied carbon Reducing the carbon emissions of concrete is a key driver for the project. In order to assess the impact of using FRGC compared to conventional concrete, two scenarios were considered: a) Casting FRGC or conventional concrete segments at Echuca, Victoria for delivery by road 220km to a project site in Melbourne; and b) Casting FRGC segments at Echuca, Victoria for delivery by road 3310km to a project site in Perth, Western Australia. The first case represents a realistic supply situation for precast segments, whereas the second case is intended to represent a maximum transport distance in order to assess the influence of haulage on carbon emissions. The carbon emissions were calculated using published values for converting energy and fuel to CO2 (4). The calculations assumed that the strength and durability performance of the FRGC and conventional concrete mixes are similar. The FRGC concrete has 8 kg/m 3 of synthetic fibres and conventional concrete assumes 40 kg/m 3 of steel reinforcing bar or steel fibres. The calculations allow for the embodied carbon in the constituent materials (including obtaining and processing the raw materials), transportation to the precast plant, production of the segments and their transportation to the project site. The calculations do not assess the effects of carbonation, or the carbon emission associated with demolition and reuse of tunnel segments. Figure 5 shows the comparison between FRGC and conventional concrete. The CO2 emissions of segments produced at Echuca using FRGC are 34% and 60% of the values for conventional concrete segments delivered to sites in Melbourne and Perth, representing a reduction of up to approximately 70% in emissions. The influence of binder and reinforcement upon carbon emissions predominates over transportation. The CO2 emissions for FRGC segments transported to Perth are slightly less than those associated with conventional concrete segments delivered to Melbourne, indicating that binder and reinforcement type predominate over transportation.
  • 8. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Melbourne Perth Totalemission(tonneCO2/tonnesegment) Conventional concrete with steel rebar/fibres Geopolymer concrete with synthetic fibres Figure 5. Carbon emissions associated with FRGC and conventional concrete segments produced in Echuca and delivered to sites in Melbourne and Perth. 3.4 Further work The following further work is planned: • Exposure tests • Creep tests • Fire resistance tests • Project trials. FRGC samples are being exposed to abrasion and acid sulphate conditions to simulate a sewer environment. These exposure conditions, using a sulphuric acid solution with a pH of 2, are intended to last at least 2 years. The interim results at 140 days are shown below in Figure 6. These very early results indicate a slightly lower depth of attack in FRGC concrete compared to the Portland cement based control. The steel fibres produce a slightly lower depth of attack, which may reflect enhanced abrasion resistance compared to synthetic fibres. These trends need to be verified in the long-term exposure data. Creep tests will be undertaken using cracked ASTM C1550 round panels to establish the difference in performance between a Portland cement based control with steel fibres and FRGC using synthetic fibres. Previous results of such tests using Portland cement based concrete have shown comparable performance of steel fibre and synthetic fibre reinforced concrete, dependent on the loading (2). Fire testing to assess spalling resistance is a common requirement for the lining of transportation tunnels. Tunnel segments from the field trials are being fire tested at Victoria University to simulate a hydrocarbon fire. Following successful completion of the laboratory and field trials, opportunities are being sought to use FRGC in project trials. This is an important step to secure early application of the technology to benefit the construction industry and wider society.
  • 9. 0 0.5 1 1.5 2 2.5 3 0 50 100 150 Time of exposure (days) Depthofdamage(mm) Portland Cement Concrete with Synthetic Fibres Geopolymer Concrete with Synthetic Fibres Geopolymer Concrete with Steel Fibres Figure 6. Depth of damage under abrasion and acid sulphate conditions. 4. Conclusions Use of concrete in construction contributes over 5% of worldwide carbon dioxide emissions. If emission targets are to be met some radical changes need to be made to reduce this value. The use of geopolymer binder and synthetic fibres in place of Portland cement and steel reinforcement to produce fibre reinforced geopolymer concrete (FRGC) provides a lower carbon alternative to conventional concrete. A 3-year study involving is being undertaken to develop and commercialise FRGC products for use in underground infrastructure. The work involves laboratory studies, long-term exposure tests, production of prototype tunnel segments and a life cycle assessment of embodied carbon for the products. The properties of the fresh and hardened FRGC have been investigated, including workability, strength and durability. The latter has included standard parameters, such as AVPV, as wells as chloride migration testing and exposure to acid and sulphate solutions. Mix designs utilising different fibre dosages and geopolymer binders have been assessed, together with standard and accelerated curing regimes. The objective of the testing has been to provide information on the essential engineering characteristics of the material using a typical specification as the basis for compliance. Control mixes using Portland cement and 40 kg/m 3 of steel fibres were also tested for comparison purposes. The work indicates that combining geopolymer binder and 8 kg/m 3 of synthetic fibres produces concrete with acceptable workability. The hardened properties are encouraging when assessed against a typical specification for tunnel segments. The test results show that FRGC can outperform the Portland cement based control in respect of flexural strength, shrinkage and durability and at the same time can reduce carbon emissions by approximately 70%. Field trials and production of prototype segments have been successfully completed. Further long-term testing is continuing and opportunities are being sought for project trials. 5. Acknowledgement The authors acknowledge the substantial contributions made by Dr Van Bui in management of the project and analysis of the data. The financial support of the Victorian Government through the Victoria’s Science Agenda program is also acknowledged.
  • 10. 6. References 1. Wimpenny D E, “Low carbon concrete- options for the next generation of infrastructure”, 24 th Biennial Conference of the Concrete Institute of Australia, Sydney, Australia, 2009. 2. Wimpenny D E, Angerer W, Cooper A, Bernard S, “The use of Steel and Synthetic Fibres in Concrete under Extreme Conditions”, 24 th Biennial Conference of the Concrete Institute of Australia, Sydney, Australia, 2009. 3. King M R, and Alder A J, ”The practical specification of steel fibre reinforced concrete (SFRC) for tunnel linings”, Proceedings of Underground Construction 2007 Conference, London, Brintex Ltd. 4. Halcrow, “Development of Fibre Reinforced Geopolymer: Concrete-Life Cycle Assessment (LCA)”, January 2011.