SlideShare uma empresa Scribd logo
1 de 39
Baixar para ler offline
11

      2

      Expandx  y5 

      x5  5 x4 y  10 x3 y2  10 x2 y3  5 x y4  y5

      Abs 4

      4

      Sin

      0

      Cos

      1

      Log

      1

      Log10, 100

      2

comment Plot[f[x], {x, xmin, xmax}];     Solve[eqn,x];   D[f[x],x]

      PlotSinx, x,  10, 10

                                  1.0



                                  0.5




      10             5                            5           10



                                 0.5



                                 1.0


                       x  2  3 x  y  x  w
                                                                              x
                                                                                 :

 ctrl  
                                                                              2
                 x2 : ctrl  ^              x : ctrl  2 then x      x2 : ctrl  _

      2100
      1 267 650 600 228 229 401 496 703 205 376

      12 345  5555

       2469
       1111
2   1st.nb




        0.239998

        0.239998

        0.12  10 ^ 11

        1.2  1010

             1
        2        0.5
             4
        2.75

        2  1  4  0.5

        2.75

        3  0.7 i

        3  0.7 i

N[x]                          x
Rationalize[x]            x
        NPi, 11

        3.1415926536

        Rationalize, 0.000001

        355
        113

        Pi

        

        E

        

        Degree

        °

        i

        i

        Infinity

        

         Infinity

        
1st.nb   3




      NGoldenRatio

      1.61803

NumberForm[expr, n] n                           expr
ScientificForm[expr]                   expr
EngineeringForm[expr]                    expr
      NPi ^ 30, 30

      8.21289330402749581586503585434  1014

      NumberFormNPi ^ 30

      8.21289  1014

      ScientificFormNPi ^ 30

      8.21289  1014

      EngineeringFormNPi ^ 30, 7

      821.2893  1012

      x3

      3

      x^2  2

      11

      u, v, w  1, 2, 3

      1, 2, 3

      2u3vw

      11

      u .

      2u3vw

      92u

      x .

      f  x21
           x
      1
           2

      f . x  1

      3
      2
4   1st.nb




        f . x  2

        2

        f .

        f  x  y x  y ^ 2 . x  3, y  1  a

        4  a 2  a2

        f .

        fx_  x  Sinx  x ^ 2

        x2  x Sinx

        f3

        9  3 Sin3

        Plotft, t, 0, 2



        5


        4


        3


        2


        1



                        0.5          1.0          1.5   2.0

        Clearf

        Plotft, t, 0, 2

        1.0


        0.8


        0.6


        0.4


        0.2



                         0.5         1.0          1.5   2.0

        Removef
1st.nb   5




Plotft, t, 0, 2

1.0


0.8


0.6


0.4


0.2



                 0.5            1.0       1.5   2.0

fx_, y_  x  y  y  Cosx

x y  y Cosx

f2, 3

6  3 Cos2

f .

fx_, y_ : x  y  y  Cosx

f2, 3

6  3 Cos2

f .

fx_ : x  1 ; x  0
fx_ : x ^ 2 ; x   1 && x  0
fx_ : Sinx ; x   1

Plotfx, x,  2, 2

                          1.0



                          0.5




2             1                         1     2



                        0.5



                        1.0
6   1st.nb




        Ifx  0, x  1, Ifx   1, Sinx, x ^ 2;
        Plotfx, x,  2, 2
                                     1.0



                                     0.5




        2              1                        1     2



                                    0.5



                                    1.0

        1, 2, 3

        1, 2, 3

        1   x  x^

        1  2 x, 1  2 x  x2 , 1  3 x  x3 

        D, x

        2, 2  2 x, 3  3 x2 

         . x  1

        2, 4, 6

        Tablex  i, i, 2, 6

        2 x, 3 x, 4 x, 5 x, 6 x

        Tablex ^ 2, 4

        x2 , x2 , x2 , x2 

        Range10

        1, 2, 3, 4, 5, 6, 7, 8, 9, 10

        Range8, 20, 2

        8, 10, 12, 14, 16, 18, 20

        t  Table2  i  j, i, 1, 3, j, 3, 5

        5, 6, 7, 7, 8, 9, 9, 10, 11

        TableFormt

        5 6 7
        7 8 9
        9 10 11
1st.nb   7




      t2

      7, 8, 9

      Expandx  y ^ 4 x  y ^ 2

      x5  4 x4 y  6 x3 y2  x4 y2  4 x2 y3  4 x3 y3  x y4  6 x2 y4  4 x y5  y6

      Factor

      x  y4 x  y2 

      ShortExpand1  x ^ 30

      1  30 x  435 x2  4060 x3  27 405 x4  142 506 x5  593 775 x6 
       17  593 775 x24  142 506 x25  27 405 x26  4060 x27  435 x28  30 x29  x30

      Short, 3

      1  30 x  435 x2  4060 x3  27 405 x4  142 506 x5  593 775 x6  2 035 800 x7 
       5 852 925 x8  14 307 150 x9  30 045 015 x10  54 627 300 x11  86 493 225 x12  5 
       86 493 225 x18  54 627 300 x19  30 045 015 x20  14 307 150 x21  5 852 925 x22 
       2 035 800 x23  593 775 x24  142 506 x25  27 405 x26  4060 x27  435 x28  30 x29  x30

      x  2; y  9;

      xy

      False

      3^2  y  1

      True

      LogicalExpand3 xx ^ 2  yy  1 && 3 ^ 2  yy

      yy  9 && 3 xx2  1  yy



&&
||
Xor
If
      x .

      SimplifyExpand2  x ^ 4 1  x ^ 4 3  x ^ 3

      3  x3 2  3 x  x2 
                                 4



      p1  a ^ 2  3 a  2; p2  a  1;

      p1  p2

      3  4 a  a2

      p1  p2

      1  2 a  a2
8   1st.nb




        p1  p2

        1  a 2  3 a  a2 

        p1  p2

        2  3 a  a2
             1a

        Cancelp1  p2

        2a

        PolynomialQuotientx ^ 2  2 x  2, x  1, x

        1x

        PolynomialRemainderx ^ 2  2 x  2, x  1, x

        1

        Rootsx ^ 2  3 x  2  0, x

        x  1  x  2

        Solve

        x  1, x  2

        FindRoot3  Cosx  Logx, x, 1

        x  1.44726

        FindRoot3  Cosx  Logx, x, 5

        x  5.30199

        Plot3  Cosx, Logx, x, 0, 10


         2



                       2          4     6         8      10

        2


        4


        6


        8
1st.nb   9




       Solvex ^ 3  5 x  3  0, x

                                                                   27      2229 
                                                                                          13

       x   5                                                                                ,
                                                 13           1
                               2                               2

                       3  27    2229 
                                                       
                                                                           323


                 1       3         27      2229                              5 1        3 
                                                                    13

        x                                                                                                         ,
                                   1
                                   2


                                                                              223 3  27         2229 
                                                                          
                                       2 323                                                                  13




                 1       3         27      2229                              5 1        3 
                                                                    13

        x                                                                                                         
                                   1
                                   2


                                                                                     3  27       2229 
                                                                          
                                       2 323                                 223
                                                                                                               13




       N

       x   0.5641, x  0.28205  2.28881 , x  0.28205  2.28881 

       x .; y .; NSolve2 x  y  0, x  3 y  3  0, x, y

       x   0.6, y  1.2

       Solvea  x ^ 2  b  x  c  0, x


       x                            , x                                     
                b      b2  4 a c                b             b2  4 a c
                         2a                                        2a

       Reducea  x ^ 2  b  x  c  0, x


                                                    x                                        
                           b     b2  4 a c                       b       b2  4 a c
        a  0 && x 
                                   2a                                         2a


                                                 c  0 && b  0 && a  0
                                         c
         a  0 && b  0 && x  
                                         b

Solve, Roots                                 Reduce

       Sc  x ^ 2  y


       x2  y
10   1st.nb




       Solvex ^ 4  b  x ^ 2  c  0, Sc, x, y




       y                                                                 , y                                                        ,
                1                                b             b2  4 c                   1                           b    b2  4 c
                    b    b2  4 c   ,x                                                      b    b2  4 c   ,x
                2                                                2                          2                                  2


         y                                                          b2  4 c ,
                1                                    b       1
                    b    b2  4 c   ,x              
                2                                    2       2



         y                                                         b2  4 c 
                1                                b       1
                    b    b2  4 c   ,x           
                2                                2       2

       Sc .

       Sc  Sinx ^ 2  Cosx ^ 2  1

       Cosx2  Sinx2  1

       SolveCosx  2 Sinx  1, Sc, Sinx, Cosx


       Sinx  0, Cosx  1, Sinx                                             
                                                             4                     3
                                                                 , Cosx  
                                                             5                     5

       Sumi, i, 1, 9, 2

       25

       Sum2 i  1, i, 1, 5

       25

       Sumi  j, i, 1, 5, j, 1, 5

       225

       Producti  j, i, 1, 5, j, 1, 5

       619 173 642 240 000 000 000

       NSum1  i ^ 2, i, 1, Infinity

       1.64493

       NSum1  i ^ 2, i, 1, Infinity, 2

       1.2337

       NProduct1  i ^ 2, i, 1, Infinity, 2

       0.
1st.nb   11




gx_  Sinx ^ 2  1  x
Plotgx, x, 0, 2 Pi

Sinx2 
  1x

 0.4

 0.3

 0.2

 0.1


           1       2       3    4        5       6
0.1

0.2

0.3

Plotgx, x, 0, 2 Pi, AspectRatio  1  2

 0.4
 0.3
 0.2
 0.1

           1       2       3    4        5       6
0.1
0.2
0.3

Plotgx, x, 0, 2 Pi, Ticks  none
12   1st.nb




       Plotgx, x, 0, 2 Pi, AxesLabel  "time", "height"

            height

        0.4

        0.3

        0.2

        0.1

                                                                            time
                         1       2       3     4       5            6
       0.1

       0.2

       0.3

       Plotgx, x, 0, 2 Pi, AxesOrigin  3, 0, PlotLabel  "Decay Waves"

                                     Decay Waves
                                       0.4

                                       0.3

                                       0.2

                                       0.1


        0            1           2                 4            5       6
                                      0.1

                                      0.2

                                      0.3

       Plotgx, x, 0, 2 Pi, Ticks  0, Pi  2, 3 Pi  2, 2 Pi, Automatic


        0.4

        0.3

        0.2

        0.1


                                                          3
                                                                             2
                             2                             2
       0.1

       0.2

       0.3
1st.nb   13




       Plotgx, x, 0, 2 Pi, PlotRange   0.6, 0.6

         0.6


         0.4


         0.2



                    1         2         3    4       5            6

       0.2


       0.4


       0.6

       g1  Plotgx, x, 0, 2 Pi;
       g2  Plotx  Cosx  12, x, 0, 2 Pi;
       Showg1, g2

         0.4

         0.3

         0.2

         0.1


                    1         2         3    4       5            6
       0.1

       0.2

       0.3

ListPlot[{y1, y2, … ..}]                         x        1 2… y1, y2, …

ListPlot[{{x1, y1}, {x2, y2}, … ..}]                     xi, yi

ListPlot[List, PlotJoined -> True]

ParametricPlot[{fx,fy},{t,tmin,tmax}]

ParametricPlot[{{fx,fy},{gx,gy},….},{t,tmin,tmax}]

ParametricPlot[{fx,fy},{t,tmin,tmax},AspectRatio->Automatic]
14   1st.nb




       ParametricPlotSin3 t Cost, Sin3 t Sint, t, 0, 2 Pi


                               0.5




                 0.5                        0.5




                              0.5




                              1.0

       ParametricPlotSin3 t Cost, Sin3 t Sin2 t, Sint, Cost,
        t, 0, 2 Pi, AspectRatio  Automatic

                               1.0




                               0.5




       1.0        0.5                    0.5          1.0




                              0.5




                              1.0

       List1  Tablei ^ 3  i, i, 10

       2, 10, 30, 68, 130, 222, 350, 520, 738, 1010
1st.nb   15




ListPlotList1

1000


 800


 600


 400


 200



            2        4           6     8       10

ListPlotList1, PlotJoined  True

1000


 800


 600


 400


 200



            2        4           6     8       10

g1  GraphicsText"left",  1, 0, Text"right", 1, 0, Text"above", 0, 1,
    Text"below", 0,  1, PointSize0.4, Point0, 0, PlotRange  All
                         above




left                                          right




                         below
16   1st.nb




       LineTablen,  1 ^ n, n, 6

       Line1,  1, 2, 1, 3,  1, 4, 1, 5,  1, 6, 1

       Graphics




       ShowGraphics, Axes  True

        1.0


        0.5


                     2       3         4        5           6

       0.5


       1.0

       St : TableRectanglex, 0, x  0.08, Sinx, x, 0, 2 Pi, 0.15

       ShowGraphicsSt, Axes  True

        1.0

        0.5


                 1       2       3         4    5       6
       0.5

       1.0
1st.nb   17




GraphicsCircle0, 0, 1, Axes  True

                      1.0




                      0.5




1.0        0.5                     0.5       1.0




                     0.5




                     1.0

ShowGraphicsCircle0, 0, 5, 3, Axes  True

                       3


                       2


                       1



       4      2                2         4

                      1


                      2


                      3
18   1st.nb




       GraphicsCircle0, 0, 1, 0, Pi  2, Axes  True

       1.0




       0.8




       0.6




       0.4




       0.2




                 0.2       0.4      0.6       0.8      1.0

       ShowGraphicsCircle0, 0, 5, 3, Pi  2, 3  Pi  2, Axes  True, AspectRatio  Automatic

                                                       3




                                                       2




                                                       1




       5       4        3        2       1




                                                      1




                                                      2




                                                      3
1st.nb   19




GraphicsDisk0, 0, 1, Axes  True

                      1.0




                      0.5




1.0       0.5                     0.5        1.0




                     0.5




                     1.0

GraphicsRaster0, 0, 1, 0, 1, 0, 1, 0, 0
20   1st.nb




       PlotSinx, Sin2 x, Sin3 x, x, 0, 2 Pi,
        PlotStyle  RGBColor0.9, 0, 0, RGBColor0, 0.9, 0, RGBColor0, 0, 0.9
        1.0



        0.5




                 1       2       3       4         5   6


       0.5



       1.0

       v1   1, 0, 0, 1, 1, 0, 0,  1

        1, 0, 0, 1, 1, 0, 0,  1

       ShowGraphicsHue0.2, Polygon3  v1, Hue0.4, Polygon2  v1, Hue0.9, Polygonv1,
        AspectRatio  Automatic




       TablePointn ^ 2, Primen, n, 5;
1st.nb   21




ShowGraphicsPointSize0.1, , PlotRange  All




TableGraphicsAbsolutePointSized, Point0, 0, d, 0.5, 2, 7, 15




                                                ,
22   1st.nb




              ,




              ,




              
1st.nb   23




                                                   




Show

    
  Graphics



       AbsoluteThicknessd, Line0, 0, 1, d, d, 5,
      Table

      Line0, 5, 1, 0
    
  

24   1st.nb




       PlotSinx ^ 2, x,  Pi, Pi

                                        1.0



                                        0.5




         3        2        1                       1        2        3



                                       0.5



                                       1.0

       Show, PlotRange   1, 2, Frame  True

        2.0


        1.5


        1.0


        0.5


        0.0


       0.5


       1.0
              3        2        1              0       1        2    3

       f1  Plotx  Sin2 x  Pi, x, 0, 4 Pi;
       f2  Plotx  Cos2 x, x, 0, 4 Pi;
       Showf1, f2


        10



         5




                    2        4                6       8       10       12


        5



       10
1st.nb   25




ShowGraphicsArray, f1, , f2

 10                              10
  5                               5

      2   4   6   8   10   12         2   4   6   8   10   12
5                              5
10                             10

 10                              10
  5                               5

      2   4   6   8   10   12         2   4   6   8   10   12
5                              5
10                             10


t1  Plot3DSinx  y  Cosx  y, x, 0, 4, y, 0, 4
26   1st.nb




       Show, PlotRange   0, 0.5




       Showt1, AxesLabel  "time", "depth", "Value", FaceGrids  All
1st.nb   27




Showt1, Axes  False, Boxed  False




Showt1, Mesh  None
28   1st.nb




       Plot3DSinx  y  Cosx  y, x, 0, 4, y, 0, 4, Mesh  None




mesh          plot3D      shading               lighting       false

       Plot3DSinx  y  Cosx  y, x, 0, 4, y, 0, 4, Shading  False

       Plot3D::optx : Unknown option Shading in Plot3DSinx  y Cosx  y, x, 0, 4, y, 0, 4, Shading  False. 

       Plot3DSinx  y Cosx  y, x, 0, 4, y, 0, 4, Shading  False

       Plot3DSinx  y  Cosx  y, x, 0, 4, y, 0, 4, Lighting  None
1st.nb     29




 TableSinx  y  RandomReal,  0.15, 0.15, x, 0, 3 Pi  2, Pi  15, y, 0, 3 Pi  2, Pi  15
MyTable :

ListPlot3DMyTable




ParametricPlot3D3 Cos4 t  1, Cos2 t  3, 4 Cos2 t  5, t, 0, Pi
                   1.0
             0.5         2
       0.0
   0.5                        0
1.0
                                              2


                                                                 4




                                                             2




                                                         0




                                                     2




                                                    4
30   1st.nb




        r, Exp r ^ 2 Cos4 r ^ 2  Cost, Exp r ^ 2 Cos4 r ^ 2  Sint, r,  1, 1, t, 0, 2 Pi
       ParametricPlot3D




       LimitSqrtx ^ 2  2  3 x  6, x  Infinity

        1
        3

       LimitSinx ^ 2  x ^ 2, x  0

       1

       LimitLogx  x, x  0, Direction   1

       

       DExpx  Sinx, x

       x Cosx  x Sinx

       DExpx  Sinx, x, 2

       2 x Cosx

       DSina  x, x

       a Cosa x
1st.nb   31




DSina  x, x, NonConstants  a

Cosa x a  x Da, x, NonConstants  a

fx_, y_  x ^ 2  y  y ^ 2

x2 y  y2

Dfx, y, x

2xy

Dfx, y, y

x2  2 y

Dfx, y, x, 2

2y

Dfx, y, y, 2

2

Dfx, y, x, y

2x

Dx  f3x, x

f3x  x f3 x

Df3f4x, x

f3 f4x f4 x

DExpx  Sinx, x . x  2

2 Cos2  2 Sin2

Dtx ^ 2  y ^ 2, x

2 x  2 y Dty, x

Dfx ^ 2  y ^ 2

Dfx2  y2 

Dtx ^ 2  xy ^ 3  yz, Constants  z

2 x Dtx, Constants  z  3 xy2 Dtxy, Constants  z  Dtyz, Constants  z

Dtx ^ 2  xyx  yx z

2 x Dtx  Dtz yx  Dtx xy x  z Dtx y x




        u   1  u2
                     u
        2  11 u2


                                                     1  u2 
    1                                       1
            11   1  u2  3   11 ArcTanh       11
121                                         3
32   1st.nb




        SinSinx  Sinx

       Integrate::ivar : Sinx is not a valid variable. 

        SinSinx  Sinx


        SinSinx  x


        SinSinx  x


        a  x  b  x  c  x
               2



                     b x2        a x3
       cx                   
                        2         3


        x e x
            6
          2 ax
         4

        280 eax
                3


       
                1
                        x
         1      x4
        1
        3


       
                  1
                        x
         1       xp

                                               , Integratexp , x, 1, , Assumptions  Rep  1
                                        1
       IfRep  1,
                                      1  p

       NIntegrateSinSinx, x, 0, Pi

       1.78649

       NIntegrate1  SqrtAbsx, x,  1, 0, 1

       4.

       NIntegrateExp x ^ 2, x, 0, Infinity

       0.886227

       DSinx  y ^ 2, x, x, y

        2 x y5 Cosx y2   4 y3 Sinx y2 

       DSinx  y ^ 2, x, 2, y

        2 x y5 Cosx y2   4 y3 Sinx y2 

       Dx ^ 2  y ^ 2, x, NonConstants  y

       2 x  2 y Dy, x, NonConstants  y
1st.nb   33




Dtx2 y3 

2 x y3 Dtx  3 x2 y2 Dty

z  x3 y  x2 y2  3 x  y2 ;
Dtz

3 x2 y Dtx  3 y2 Dtx  2 x y2 Dtx  x3 Dty  6 x y Dty  2 x2 y Dty

CollectDtz, Dtx, Dty

3 x2 y  3 y2  2 x y2  Dtx  x3  6 x y  2 x2 y Dty

 . Dtx  dx, Dty  dy

dy x3  6 x y  2 x2 y  dx 3 x2 y  3 y2  2 x y2 

Dtz, x

3 x2 y  3 y2  2 x y2  x3 Dty, x  6 x y Dty, x  2 x2 y Dty, x

 . Dty, x  0

3 x2 y  3 y2  2 x y2

Dt5  y ^ 2  Siny  x ^ 2, x

10 y Dty, x  Cosy Dty, x  2 x

Solve, Dty, x


Dty, x                       
                         2x
                  10 y  Cosy

Dtx ^ 2  y ^ 2  z ^ 2, x, Constants  z

2 x  2 y Dty, x, Constants  x3 y  3 x y2  x2 y2 

Dtz, x, y

3 x2  6 y  4 x y  6 x y Dtx, y  2 y2 Dtx, y  6 x Dty, x  2 x2 Dty, x 
 3 x2 Dtx, y Dty, x  6 y Dtx, y Dty, x  4 x y Dtx, y Dty, x


  x ^ 2  y ^ 2  x  y
    a   b

 0      0


     a b a2  b2 
1
3

NIntegrateSqrtx  y, x, 0, 2, y, 0, Sqrtx  2

4.65557

NIntegrateSqrtx ^ 2  z ^ 2, x,  2, 2, y, x ^ 2, 4, z,  Sqrty  x ^ 2, Sqrty  x ^ 2

26.8083

y .; DSolvey 'x  2 yx, yx, x

yx  2 x C1
34     1st.nb




            yx  y0  y 'x . 


            2 x C1  y0  y x

     y[x]                                         y[x]                       y’[x] y[0]                    y[x]

            DSolvey 'x  2 yx, y, x

            y  Functionx, 2 x C1

            yx  y0  y 'x . 

            C1  3 2 x C1

       y          y

            y .; z .; DSolveyx   z 'x, zx   y 'x, y, z, x


            z  Functionx,                   x 1  2 x  C1               x  1  2 x  C2,
                                             1                                    1
                                             2                                    2

                                                      x  1  2 x  C1              x 1  2 x  C2
                                                  1                                    1
                  y  Functionx, 
                                                  2                                    2

            y .; z .; DSolveyx   z 'x, zx   y 'x, yx, zx, x


            zx          x 1  2 x  C1                x  1  2 x  C2,
                         1                                  1
                         2                                  2

                                   x  1  2 x  C1             x 1  2 x  C2
                             1                                     1
                  yx  
                             2                                     2

            DSolvey 'x  yx, y0  5, yx, x

            yx  5 x 

            s1  NDSolvey 'x  1  2  yx, y0.01  0.1, y, x, 0.01, 1

            y  InterpolatingFunction0.01, 1., 

            PlotEvaluateyx . s1, x, 0.01, 1, AxesOrigin  0, 0

            1.0


            0.8


            0.6


            0.4


            0.2



                             0.2            0.4             0.6             0.8               1.0

            t  10

            10
1st.nb   35




        Modulet, t  8; Printt

8

        t

        10

        fv_ : Modulet, t  1  v ^ 2; Expandt; fa

        1  2 a  a2

        t

        10

        gu_ : Modulet  u, t  t  t  1  u;
        ga  b
                  ab
        ab
                 1ab

        x^2  1

        1  x2

        Blockx  a  1, 

        1  1  a2

        x

        x

        m  i^2

        i2

        Blocki  a, i  m

        a  a2

        Modulei  a, i  m

        a  i2

        Removeg

        gx_ : 1 ; x  0
        gx_ :  1 ; x  0

        ?g


    Global`g

gx_ : 1 ; x  0

gx_ :  1 ; x  0

        Removeh; hx_ : Whichx  0, 1, x  0, 0, x  0.  1
36   1st.nb




         h 1, h0, h3

         h 1, h0, h3

         qx_ : SwitchModx, 3, 0, a, 1, b, 2, c

         q17

         c

If[x==y,a,b,c]      If                     ,
                     ,
         Ife  f, a, b, c

         c

         TrueQe  f

         False

         e  f

         False

Mathematica                                             ,

         DoPrinti  i ^ 2, i, 1, 4

2

6

12

20

         DoPrinti, j, i, 4, j, i  1

2, 1

3, 1

3, 2

4, 1

4, 2

4, 3

         t  67;
         DoPrintt; t  Floort  2, 3
67

33

16

         n  25;
         Whilen  Floorn  3  0, Printn
1st.nb   37




8

2

         Fori  1, i  5, i , Printi

1

2

3

4

         x .; Fori  1; t  x, i ^ 2  10, i , t  t ^ 2  i; Printt

1  x2

2  1  x2 
                2



3  2  1  x2  
                         2 2



         Nestf, x, 5

         fffffx

         NestFunctiont, 1  Sqrt1  t ^ 2, x, 2

                1

                     1
             1
                    1x2


         FixedPointFunctiont, Printt; Floort  3, 67

67

22

7

2

0

         0

         t  1;
         Dot  k; Printt; Ift  20, Break, k, 10
1

2

6

24

         t  1;
         Dot  k; Printt; Ift  3, Continue; t  2, k, 5
38    1st.nb




1

2

6

32

170

        Removef

        fx_ : Ifx  5, Returnbig; t  x ^ 3; Returnt  7

        f3

        big

        f5

        118

        hx_ : Ifx  0, Throwerror, x 

        Catchh3

        6

(         error                Catch                    )

        Catchh 3

        error




        Residuefz  z ^ 5, z, 0

        0

        Residue1  Sinz ^ 5, z, 0

         3
         8

        SeriesExpx, x, 0, 10

                  x2       x3       x4       x5        x6         x7         x8            x9             x10
        1x                                                                                                Ox11
                  2        6        24       120       720       5040       40 320       362 880       3 628 800

        Seriesx ^ x, x, 0, 4

                                1                       1                      1
        1  Logx x               Logx2 x2             Logx3 x3            Logx4 x4  Ox5
                                2                       6                     24

        Normal

                                1                       1                      1
        1  x Logx               x2 Logx2             x3 Logx3            x4 Logx4
                                2                       6                     24
1st.nb   39




Sum1  2 n  1  2 n  1, n, 1, Infinity

1
2

SumLogn  1  n, n, 1, Infinity

Sum::div : Sum does not converge. 

 Log         
        1n

n1       n

Mais conteúdo relacionado

Mais procurados

201-bai-tap-phuong-trinh-vi-phan
 201-bai-tap-phuong-trinh-vi-phan 201-bai-tap-phuong-trinh-vi-phan
201-bai-tap-phuong-trinh-vi-phanSơn DC
 
Www.mathvn.com bt-mu logarit-mathvn.com
Www.mathvn.com bt-mu logarit-mathvn.comWww.mathvn.com bt-mu logarit-mathvn.com
Www.mathvn.com bt-mu logarit-mathvn.comhao5433
 
Limit dan kontinuan
Limit dan kontinuanLimit dan kontinuan
Limit dan kontinuansidesty
 
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
Sistemi kvadratmih jednacina_sa%20dve%20nepoynateSistemi kvadratmih jednacina_sa%20dve%20nepoynate
Sistemi kvadratmih jednacina_sa%20dve%20nepoynateJelena Dobrivojevic
 
Solusi ukk mat ips 2015 2016
Solusi ukk mat ips 2015 2016Solusi ukk mat ips 2015 2016
Solusi ukk mat ips 2015 2016Al Frilantika
 
Integrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamatIntegrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamatinesperezz
 
Logaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacineLogaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacineJelena Dobrivojevic
 
Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Qwerty1293
 
Operacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazimaOperacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazimaJelena Dobrivojevic
 
ứNg dụng tích phân tính diện tích và thể tích
ứNg dụng tích phân tính diện tích và thể tíchứNg dụng tích phân tính diện tích và thể tích
ứNg dụng tích phân tính diện tích và thể tíchThế Giới Tinh Hoa
 
Tema 3 (Cálculo de derivadas)
Tema 3  (Cálculo de derivadas)Tema 3  (Cálculo de derivadas)
Tema 3 (Cálculo de derivadas)jhbenito
 
Bảng công thức tích phân + mũ lôga
Bảng công thức tích phân + mũ lôgaBảng công thức tích phân + mũ lôga
Bảng công thức tích phân + mũ lôgaPhương Thảo Nguyễn
 
1ª lista de exercicios de cálculo I limites
1ª lista de exercicios de cálculo I   limites1ª lista de exercicios de cálculo I   limites
1ª lista de exercicios de cálculo I limitesmarcelotorraca
 
Limites trigonometricos1
Limites trigonometricos1Limites trigonometricos1
Limites trigonometricos1orvy
 
Rで解く最適化問題 線型計画問題編
Rで解く最適化問題   線型計画問題編 Rで解く最適化問題   線型計画問題編
Rで解く最適化問題 線型計画問題編 Hidekazu Tanaka
 
Sistema de ecuaciones no lineales
Sistema de ecuaciones no linealesSistema de ecuaciones no lineales
Sistema de ecuaciones no linealeselizabethzuniga1
 

Mais procurados (20)

201-bai-tap-phuong-trinh-vi-phan
 201-bai-tap-phuong-trinh-vi-phan 201-bai-tap-phuong-trinh-vi-phan
201-bai-tap-phuong-trinh-vi-phan
 
Www.mathvn.com bt-mu logarit-mathvn.com
Www.mathvn.com bt-mu logarit-mathvn.comWww.mathvn.com bt-mu logarit-mathvn.com
Www.mathvn.com bt-mu logarit-mathvn.com
 
Wiris edu ardo
Wiris edu ardoWiris edu ardo
Wiris edu ardo
 
Limit dan kontinuan
Limit dan kontinuanLimit dan kontinuan
Limit dan kontinuan
 
Integral definida clase2
Integral definida clase2Integral definida clase2
Integral definida clase2
 
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
Sistemi kvadratmih jednacina_sa%20dve%20nepoynateSistemi kvadratmih jednacina_sa%20dve%20nepoynate
Sistemi kvadratmih jednacina_sa%20dve%20nepoynate
 
Solusi ukk mat ips 2015 2016
Solusi ukk mat ips 2015 2016Solusi ukk mat ips 2015 2016
Solusi ukk mat ips 2015 2016
 
Integrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamatIntegrales resueltas 370 371 conamat
Integrales resueltas 370 371 conamat
 
Logaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacineLogaritamske jednacine i_nejednacine
Logaritamske jednacine i_nejednacine
 
Bpt mu-logarit-1
Bpt mu-logarit-1Bpt mu-logarit-1
Bpt mu-logarit-1
 
Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)Serie de maclaurin para 1/(1-x)
Serie de maclaurin para 1/(1-x)
 
Operacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazimaOperacije sa racionalnim_algebarskim_izrazima
Operacije sa racionalnim_algebarskim_izrazima
 
ứNg dụng tích phân tính diện tích và thể tích
ứNg dụng tích phân tính diện tích và thể tíchứNg dụng tích phân tính diện tích và thể tích
ứNg dụng tích phân tính diện tích và thể tích
 
Tema 3 (Cálculo de derivadas)
Tema 3  (Cálculo de derivadas)Tema 3  (Cálculo de derivadas)
Tema 3 (Cálculo de derivadas)
 
Bảng công thức tích phân + mũ lôga
Bảng công thức tích phân + mũ lôgaBảng công thức tích phân + mũ lôga
Bảng công thức tích phân + mũ lôga
 
Kunci Sukino 3A Bab 1
Kunci Sukino 3A Bab 1Kunci Sukino 3A Bab 1
Kunci Sukino 3A Bab 1
 
1ª lista de exercicios de cálculo I limites
1ª lista de exercicios de cálculo I   limites1ª lista de exercicios de cálculo I   limites
1ª lista de exercicios de cálculo I limites
 
Limites trigonometricos1
Limites trigonometricos1Limites trigonometricos1
Limites trigonometricos1
 
Rで解く最適化問題 線型計画問題編
Rで解く最適化問題   線型計画問題編 Rで解く最適化問題   線型計画問題編
Rで解く最適化問題 線型計画問題編
 
Sistema de ecuaciones no lineales
Sistema de ecuaciones no linealesSistema de ecuaciones no lineales
Sistema de ecuaciones no lineales
 

Destaque

Home work: Multiple Bifurcations of Sample Dynamical Systems
Home work: Multiple Bifurcations of Sample Dynamical SystemsHome work: Multiple Bifurcations of Sample Dynamical Systems
Home work: Multiple Bifurcations of Sample Dynamical Systemsyuejia2001
 
Power station 1(vauxhall) new
Power station 1(vauxhall) newPower station 1(vauxhall) new
Power station 1(vauxhall) newdami11
 
Presentation1 Eval (2)
Presentation1 Eval (2)Presentation1 Eval (2)
Presentation1 Eval (2)dami11
 
My project: Multiple Bifurcations of Sample Dynamical Systems
My project: Multiple Bifurcations of Sample Dynamical SystemsMy project: Multiple Bifurcations of Sample Dynamical Systems
My project: Multiple Bifurcations of Sample Dynamical Systemsyuejia2001
 
CD COVER MOCK UPS FRONT AND BACK
CD COVER MOCK UPS FRONT AND BACKCD COVER MOCK UPS FRONT AND BACK
CD COVER MOCK UPS FRONT AND BACKdami11
 
Pbe 11'
Pbe 11'Pbe 11'
Pbe 11'caipor
 
Power station 1(vauxhall)]
Power station 1(vauxhall)]Power station 1(vauxhall)]
Power station 1(vauxhall)]dami11
 
Raspberry falls dangers of water wells in limestone karst geology-final
Raspberry falls dangers of water wells in limestone karst geology-finalRaspberry falls dangers of water wells in limestone karst geology-final
Raspberry falls dangers of water wells in limestone karst geology-finalbrillmrtk
 
Presentation1 eval (2)
Presentation1 eval (2)Presentation1 eval (2)
Presentation1 eval (2)dami11
 
Unit 6 keynote
Unit 6 keynoteUnit 6 keynote
Unit 6 keynotecaipor
 
Power station 1(vauxhall)
Power station 1(vauxhall)Power station 1(vauxhall)
Power station 1(vauxhall)dami11
 
Presentation2
Presentation2Presentation2
Presentation2dami11
 
final result : Multiple Bifurcations of Sample Dynamical Systems
final result : Multiple Bifurcations of Sample Dynamical Systemsfinal result : Multiple Bifurcations of Sample Dynamical Systems
final result : Multiple Bifurcations of Sample Dynamical Systemsyuejia2001
 
Hirsch s.w., smale s. differential equations, dynamical systems and linear ...
Hirsch s.w., smale s.   differential equations, dynamical systems and linear ...Hirsch s.w., smale s.   differential equations, dynamical systems and linear ...
Hirsch s.w., smale s. differential equations, dynamical systems and linear ...yuejia2001
 

Destaque (16)

Home work: Multiple Bifurcations of Sample Dynamical Systems
Home work: Multiple Bifurcations of Sample Dynamical SystemsHome work: Multiple Bifurcations of Sample Dynamical Systems
Home work: Multiple Bifurcations of Sample Dynamical Systems
 
Power station 1(vauxhall) new
Power station 1(vauxhall) newPower station 1(vauxhall) new
Power station 1(vauxhall) new
 
Presentation1 Eval (2)
Presentation1 Eval (2)Presentation1 Eval (2)
Presentation1 Eval (2)
 
My project: Multiple Bifurcations of Sample Dynamical Systems
My project: Multiple Bifurcations of Sample Dynamical SystemsMy project: Multiple Bifurcations of Sample Dynamical Systems
My project: Multiple Bifurcations of Sample Dynamical Systems
 
CD COVER MOCK UPS FRONT AND BACK
CD COVER MOCK UPS FRONT AND BACKCD COVER MOCK UPS FRONT AND BACK
CD COVER MOCK UPS FRONT AND BACK
 
Pbe 11'
Pbe 11'Pbe 11'
Pbe 11'
 
Power station 1(vauxhall)]
Power station 1(vauxhall)]Power station 1(vauxhall)]
Power station 1(vauxhall)]
 
Raspberry falls dangers of water wells in limestone karst geology-final
Raspberry falls dangers of water wells in limestone karst geology-finalRaspberry falls dangers of water wells in limestone karst geology-final
Raspberry falls dangers of water wells in limestone karst geology-final
 
El arte
El arteEl arte
El arte
 
Presentation1 eval (2)
Presentation1 eval (2)Presentation1 eval (2)
Presentation1 eval (2)
 
Unit 6 keynote
Unit 6 keynoteUnit 6 keynote
Unit 6 keynote
 
Power station 1(vauxhall)
Power station 1(vauxhall)Power station 1(vauxhall)
Power station 1(vauxhall)
 
Presentation2
Presentation2Presentation2
Presentation2
 
final result : Multiple Bifurcations of Sample Dynamical Systems
final result : Multiple Bifurcations of Sample Dynamical Systemsfinal result : Multiple Bifurcations of Sample Dynamical Systems
final result : Multiple Bifurcations of Sample Dynamical Systems
 
Hirsch s.w., smale s. differential equations, dynamical systems and linear ...
Hirsch s.w., smale s.   differential equations, dynamical systems and linear ...Hirsch s.w., smale s.   differential equations, dynamical systems and linear ...
Hirsch s.w., smale s. differential equations, dynamical systems and linear ...
 
Management 2011-12
Management 2011-12Management 2011-12
Management 2011-12
 

Multiple Bifurcations of Sample Dynamical Systems

  • 1. 11 2 Expandx  y5  x5  5 x4 y  10 x3 y2  10 x2 y3  5 x y4  y5 Abs 4 4 Sin 0 Cos 1 Log 1 Log10, 100 2 comment Plot[f[x], {x, xmin, xmax}]; Solve[eqn,x]; D[f[x],x] PlotSinx, x,  10, 10 1.0 0.5 10 5 5 10 0.5 1.0 x  2  3 x  y  x  w x : ctrl   2 x2 : ctrl  ^ x : ctrl  2 then x x2 : ctrl  _ 2100 1 267 650 600 228 229 401 496 703 205 376 12 345  5555 2469 1111
  • 2. 2 1st.nb 0.239998 0.239998 0.12  10 ^ 11 1.2  1010 1 2  0.5 4 2.75 2  1  4  0.5 2.75 3  0.7 i 3  0.7 i N[x] x Rationalize[x] x NPi, 11 3.1415926536 Rationalize, 0.000001 355 113 Pi  E  Degree ° i i Infinity   Infinity 
  • 3. 1st.nb 3 NGoldenRatio 1.61803 NumberForm[expr, n] n expr ScientificForm[expr] expr EngineeringForm[expr] expr NPi ^ 30, 30 8.21289330402749581586503585434  1014 NumberFormNPi ^ 30 8.21289  1014 ScientificFormNPi ^ 30 8.21289  1014 EngineeringFormNPi ^ 30, 7 821.2893  1012 x3 3 x^2  2 11 u, v, w  1, 2, 3 1, 2, 3 2u3vw 11 u . 2u3vw 92u x . f  x21 x 1 2 f . x  1 3 2
  • 4. 4 1st.nb f . x  2 2 f . f  x  y x  y ^ 2 . x  3, y  1  a 4  a 2  a2 f . fx_  x  Sinx  x ^ 2 x2  x Sinx f3 9  3 Sin3 Plotft, t, 0, 2 5 4 3 2 1 0.5 1.0 1.5 2.0 Clearf Plotft, t, 0, 2 1.0 0.8 0.6 0.4 0.2 0.5 1.0 1.5 2.0 Removef
  • 5. 1st.nb 5 Plotft, t, 0, 2 1.0 0.8 0.6 0.4 0.2 0.5 1.0 1.5 2.0 fx_, y_  x  y  y  Cosx x y  y Cosx f2, 3 6  3 Cos2 f . fx_, y_ : x  y  y  Cosx f2, 3 6  3 Cos2 f . fx_ : x  1 ; x  0 fx_ : x ^ 2 ; x   1 && x  0 fx_ : Sinx ; x   1 Plotfx, x,  2, 2 1.0 0.5 2 1 1 2 0.5 1.0
  • 6. 6 1st.nb Ifx  0, x  1, Ifx   1, Sinx, x ^ 2; Plotfx, x,  2, 2 1.0 0.5 2 1 1 2 0.5 1.0 1, 2, 3 1, 2, 3 1   x  x^ 1  2 x, 1  2 x  x2 , 1  3 x  x3  D, x 2, 2  2 x, 3  3 x2   . x  1 2, 4, 6 Tablex  i, i, 2, 6 2 x, 3 x, 4 x, 5 x, 6 x Tablex ^ 2, 4 x2 , x2 , x2 , x2  Range10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 Range8, 20, 2 8, 10, 12, 14, 16, 18, 20 t  Table2  i  j, i, 1, 3, j, 3, 5 5, 6, 7, 7, 8, 9, 9, 10, 11 TableFormt 5 6 7 7 8 9 9 10 11
  • 7. 1st.nb 7 t2 7, 8, 9 Expandx  y ^ 4 x  y ^ 2 x5  4 x4 y  6 x3 y2  x4 y2  4 x2 y3  4 x3 y3  x y4  6 x2 y4  4 x y5  y6 Factor x  y4 x  y2  ShortExpand1  x ^ 30 1  30 x  435 x2  4060 x3  27 405 x4  142 506 x5  593 775 x6  17  593 775 x24  142 506 x25  27 405 x26  4060 x27  435 x28  30 x29  x30 Short, 3 1  30 x  435 x2  4060 x3  27 405 x4  142 506 x5  593 775 x6  2 035 800 x7  5 852 925 x8  14 307 150 x9  30 045 015 x10  54 627 300 x11  86 493 225 x12  5  86 493 225 x18  54 627 300 x19  30 045 015 x20  14 307 150 x21  5 852 925 x22  2 035 800 x23  593 775 x24  142 506 x25  27 405 x26  4060 x27  435 x28  30 x29  x30 x  2; y  9; xy False 3^2  y  1 True LogicalExpand3 xx ^ 2  yy  1 && 3 ^ 2  yy yy  9 && 3 xx2  1  yy && || Xor If x . SimplifyExpand2  x ^ 4 1  x ^ 4 3  x ^ 3 3  x3 2  3 x  x2  4 p1  a ^ 2  3 a  2; p2  a  1; p1  p2 3  4 a  a2 p1  p2 1  2 a  a2
  • 8. 8 1st.nb p1  p2 1  a 2  3 a  a2  p1  p2 2  3 a  a2 1a Cancelp1  p2 2a PolynomialQuotientx ^ 2  2 x  2, x  1, x 1x PolynomialRemainderx ^ 2  2 x  2, x  1, x 1 Rootsx ^ 2  3 x  2  0, x x  1  x  2 Solve x  1, x  2 FindRoot3  Cosx  Logx, x, 1 x  1.44726 FindRoot3  Cosx  Logx, x, 5 x  5.30199 Plot3  Cosx, Logx, x, 0, 10 2 2 4 6 8 10 2 4 6 8
  • 9. 1st.nb 9 Solvex ^ 3  5 x  3  0, x   27  2229  13 x   5 , 13 1 2 2 3  27  2229   323 1   3   27  2229  5 1   3  13 x   , 1 2 223 3  27  2229   2 323 13 1   3   27  2229  5 1   3  13 x    1 2 3  27  2229   2 323 223 13 N x   0.5641, x  0.28205  2.28881 , x  0.28205  2.28881  x .; y .; NSolve2 x  y  0, x  3 y  3  0, x, y x   0.6, y  1.2 Solvea  x ^ 2  b  x  c  0, x x  , x   b  b2  4 a c b  b2  4 a c 2a 2a Reducea  x ^ 2  b  x  c  0, x  x   b  b2  4 a c b  b2  4 a c a  0 && x  2a 2a  c  0 && b  0 && a  0 c a  0 && b  0 && x   b Solve, Roots Reduce Sc  x ^ 2  y x2  y
  • 10. 10 1st.nb Solvex ^ 4  b  x ^ 2  c  0, Sc, x, y y  , y  , 1 b  b2  4 c 1 b  b2  4 c b  b2  4 c ,x b  b2  4 c ,x 2 2 2 2 y  b2  4 c , 1 b 1 b  b2  4 c ,x   2 2 2 y  b2  4 c  1 b 1 b  b2  4 c ,x   2 2 2 Sc . Sc  Sinx ^ 2  Cosx ^ 2  1 Cosx2  Sinx2  1 SolveCosx  2 Sinx  1, Sc, Sinx, Cosx Sinx  0, Cosx  1, Sinx   4 3 , Cosx   5 5 Sumi, i, 1, 9, 2 25 Sum2 i  1, i, 1, 5 25 Sumi  j, i, 1, 5, j, 1, 5 225 Producti  j, i, 1, 5, j, 1, 5 619 173 642 240 000 000 000 NSum1  i ^ 2, i, 1, Infinity 1.64493 NSum1  i ^ 2, i, 1, Infinity, 2 1.2337 NProduct1  i ^ 2, i, 1, Infinity, 2 0.
  • 11. 1st.nb 11 gx_  Sinx ^ 2  1  x Plotgx, x, 0, 2 Pi Sinx2  1x 0.4 0.3 0.2 0.1 1 2 3 4 5 6 0.1 0.2 0.3 Plotgx, x, 0, 2 Pi, AspectRatio  1  2 0.4 0.3 0.2 0.1 1 2 3 4 5 6 0.1 0.2 0.3 Plotgx, x, 0, 2 Pi, Ticks  none
  • 12. 12 1st.nb Plotgx, x, 0, 2 Pi, AxesLabel  "time", "height" height 0.4 0.3 0.2 0.1 time 1 2 3 4 5 6 0.1 0.2 0.3 Plotgx, x, 0, 2 Pi, AxesOrigin  3, 0, PlotLabel  "Decay Waves" Decay Waves 0.4 0.3 0.2 0.1 0 1 2 4 5 6 0.1 0.2 0.3 Plotgx, x, 0, 2 Pi, Ticks  0, Pi  2, 3 Pi  2, 2 Pi, Automatic 0.4 0.3 0.2 0.1  3 2 2 2 0.1 0.2 0.3
  • 13. 1st.nb 13 Plotgx, x, 0, 2 Pi, PlotRange   0.6, 0.6 0.6 0.4 0.2 1 2 3 4 5 6 0.2 0.4 0.6 g1  Plotgx, x, 0, 2 Pi; g2  Plotx  Cosx  12, x, 0, 2 Pi; Showg1, g2 0.4 0.3 0.2 0.1 1 2 3 4 5 6 0.1 0.2 0.3 ListPlot[{y1, y2, … ..}] x 1 2… y1, y2, … ListPlot[{{x1, y1}, {x2, y2}, … ..}] xi, yi ListPlot[List, PlotJoined -> True] ParametricPlot[{fx,fy},{t,tmin,tmax}] ParametricPlot[{{fx,fy},{gx,gy},….},{t,tmin,tmax}] ParametricPlot[{fx,fy},{t,tmin,tmax},AspectRatio->Automatic]
  • 14. 14 1st.nb ParametricPlotSin3 t Cost, Sin3 t Sint, t, 0, 2 Pi 0.5 0.5 0.5 0.5 1.0 ParametricPlotSin3 t Cost, Sin3 t Sin2 t, Sint, Cost, t, 0, 2 Pi, AspectRatio  Automatic 1.0 0.5 1.0 0.5 0.5 1.0 0.5 1.0 List1  Tablei ^ 3  i, i, 10 2, 10, 30, 68, 130, 222, 350, 520, 738, 1010
  • 15. 1st.nb 15 ListPlotList1 1000 800 600 400 200 2 4 6 8 10 ListPlotList1, PlotJoined  True 1000 800 600 400 200 2 4 6 8 10 g1  GraphicsText"left",  1, 0, Text"right", 1, 0, Text"above", 0, 1, Text"below", 0,  1, PointSize0.4, Point0, 0, PlotRange  All above left right below
  • 16. 16 1st.nb LineTablen,  1 ^ n, n, 6 Line1,  1, 2, 1, 3,  1, 4, 1, 5,  1, 6, 1 Graphics ShowGraphics, Axes  True 1.0 0.5 2 3 4 5 6 0.5 1.0 St : TableRectanglex, 0, x  0.08, Sinx, x, 0, 2 Pi, 0.15 ShowGraphicsSt, Axes  True 1.0 0.5 1 2 3 4 5 6 0.5 1.0
  • 17. 1st.nb 17 GraphicsCircle0, 0, 1, Axes  True 1.0 0.5 1.0 0.5 0.5 1.0 0.5 1.0 ShowGraphicsCircle0, 0, 5, 3, Axes  True 3 2 1 4 2 2 4 1 2 3
  • 18. 18 1st.nb GraphicsCircle0, 0, 1, 0, Pi  2, Axes  True 1.0 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0 ShowGraphicsCircle0, 0, 5, 3, Pi  2, 3  Pi  2, Axes  True, AspectRatio  Automatic 3 2 1 5 4 3 2 1 1 2 3
  • 19. 1st.nb 19 GraphicsDisk0, 0, 1, Axes  True 1.0 0.5 1.0 0.5 0.5 1.0 0.5 1.0 GraphicsRaster0, 0, 1, 0, 1, 0, 1, 0, 0
  • 20. 20 1st.nb PlotSinx, Sin2 x, Sin3 x, x, 0, 2 Pi, PlotStyle  RGBColor0.9, 0, 0, RGBColor0, 0.9, 0, RGBColor0, 0, 0.9 1.0 0.5 1 2 3 4 5 6 0.5 1.0 v1   1, 0, 0, 1, 1, 0, 0,  1  1, 0, 0, 1, 1, 0, 0,  1 ShowGraphicsHue0.2, Polygon3  v1, Hue0.4, Polygon2  v1, Hue0.9, Polygonv1, AspectRatio  Automatic TablePointn ^ 2, Primen, n, 5;
  • 21. 1st.nb 21 ShowGraphicsPointSize0.1, , PlotRange  All TableGraphicsAbsolutePointSized, Point0, 0, d, 0.5, 2, 7, 15  ,
  • 22. 22 1st.nb , , 
  • 23. 1st.nb 23  Show  Graphics AbsoluteThicknessd, Line0, 0, 1, d, d, 5, Table Line0, 5, 1, 0   
  • 24. 24 1st.nb PlotSinx ^ 2, x,  Pi, Pi 1.0 0.5 3 2 1 1 2 3 0.5 1.0 Show, PlotRange   1, 2, Frame  True 2.0 1.5 1.0 0.5 0.0 0.5 1.0 3 2 1 0 1 2 3 f1  Plotx  Sin2 x  Pi, x, 0, 4 Pi; f2  Plotx  Cos2 x, x, 0, 4 Pi; Showf1, f2 10 5 2 4 6 8 10 12 5 10
  • 25. 1st.nb 25 ShowGraphicsArray, f1, , f2 10 10 5 5 2 4 6 8 10 12 2 4 6 8 10 12 5 5 10 10 10 10 5 5 2 4 6 8 10 12 2 4 6 8 10 12 5 5 10 10 t1  Plot3DSinx  y  Cosx  y, x, 0, 4, y, 0, 4
  • 26. 26 1st.nb Show, PlotRange   0, 0.5 Showt1, AxesLabel  "time", "depth", "Value", FaceGrids  All
  • 27. 1st.nb 27 Showt1, Axes  False, Boxed  False Showt1, Mesh  None
  • 28. 28 1st.nb Plot3DSinx  y  Cosx  y, x, 0, 4, y, 0, 4, Mesh  None mesh plot3D shading lighting false Plot3DSinx  y  Cosx  y, x, 0, 4, y, 0, 4, Shading  False Plot3D::optx : Unknown option Shading in Plot3DSinx  y Cosx  y, x, 0, 4, y, 0, 4, Shading  False.  Plot3DSinx  y Cosx  y, x, 0, 4, y, 0, 4, Shading  False Plot3DSinx  y  Cosx  y, x, 0, 4, y, 0, 4, Lighting  None
  • 29. 1st.nb 29 TableSinx  y  RandomReal,  0.15, 0.15, x, 0, 3 Pi  2, Pi  15, y, 0, 3 Pi  2, Pi  15 MyTable : ListPlot3DMyTable ParametricPlot3D3 Cos4 t  1, Cos2 t  3, 4 Cos2 t  5, t, 0, Pi 1.0 0.5 2 0.0 0.5 0 1.0 2 4 2 0 2 4
  • 30. 30 1st.nb r, Exp r ^ 2 Cos4 r ^ 2  Cost, Exp r ^ 2 Cos4 r ^ 2  Sint, r,  1, 1, t, 0, 2 Pi ParametricPlot3D LimitSqrtx ^ 2  2  3 x  6, x  Infinity 1 3 LimitSinx ^ 2  x ^ 2, x  0 1 LimitLogx  x, x  0, Direction   1  DExpx  Sinx, x x Cosx  x Sinx DExpx  Sinx, x, 2 2 x Cosx DSina  x, x a Cosa x
  • 31. 1st.nb 31 DSina  x, x, NonConstants  a Cosa x a  x Da, x, NonConstants  a fx_, y_  x ^ 2  y  y ^ 2 x2 y  y2 Dfx, y, x 2xy Dfx, y, y x2  2 y Dfx, y, x, 2 2y Dfx, y, y, 2 2 Dfx, y, x, y 2x Dx  f3x, x f3x  x f3 x Df3f4x, x f3 f4x f4 x DExpx  Sinx, x . x  2 2 Cos2  2 Sin2 Dtx ^ 2  y ^ 2, x 2 x  2 y Dty, x Dfx ^ 2  y ^ 2 Dfx2  y2  Dtx ^ 2  xy ^ 3  yz, Constants  z 2 x Dtx, Constants  z  3 xy2 Dtxy, Constants  z  Dtyz, Constants  z Dtx ^ 2  xyx  yx z 2 x Dtx  Dtz yx  Dtx xy x  z Dtx y x  u 1  u2 u 2  11 u2 1  u2  1 1 11 1  u2  3 11 ArcTanh 11 121 3
  • 32. 32 1st.nb  SinSinx  Sinx Integrate::ivar : Sinx is not a valid variable.   SinSinx  Sinx  SinSinx  x  SinSinx  x  a  x  b  x  c  x 2 b x2 a x3 cx  2 3  x e x 6 2 ax 4 280 eax 3   1 x 1 x4 1 3   1 x 1 xp , Integratexp , x, 1, , Assumptions  Rep  1 1 IfRep  1, 1  p NIntegrateSinSinx, x, 0, Pi 1.78649 NIntegrate1  SqrtAbsx, x,  1, 0, 1 4. NIntegrateExp x ^ 2, x, 0, Infinity 0.886227 DSinx  y ^ 2, x, x, y  2 x y5 Cosx y2   4 y3 Sinx y2  DSinx  y ^ 2, x, 2, y  2 x y5 Cosx y2   4 y3 Sinx y2  Dx ^ 2  y ^ 2, x, NonConstants  y 2 x  2 y Dy, x, NonConstants  y
  • 33. 1st.nb 33 Dtx2 y3  2 x y3 Dtx  3 x2 y2 Dty z  x3 y  x2 y2  3 x  y2 ; Dtz 3 x2 y Dtx  3 y2 Dtx  2 x y2 Dtx  x3 Dty  6 x y Dty  2 x2 y Dty CollectDtz, Dtx, Dty 3 x2 y  3 y2  2 x y2  Dtx  x3  6 x y  2 x2 y Dty  . Dtx  dx, Dty  dy dy x3  6 x y  2 x2 y  dx 3 x2 y  3 y2  2 x y2  Dtz, x 3 x2 y  3 y2  2 x y2  x3 Dty, x  6 x y Dty, x  2 x2 y Dty, x  . Dty, x  0 3 x2 y  3 y2  2 x y2 Dt5  y ^ 2  Siny  x ^ 2, x 10 y Dty, x  Cosy Dty, x  2 x Solve, Dty, x Dty, x   2x 10 y  Cosy Dtx ^ 2  y ^ 2  z ^ 2, x, Constants  z 2 x  2 y Dty, x, Constants  x3 y  3 x y2  x2 y2  Dtz, x, y 3 x2  6 y  4 x y  6 x y Dtx, y  2 y2 Dtx, y  6 x Dty, x  2 x2 Dty, x  3 x2 Dtx, y Dty, x  6 y Dtx, y Dty, x  4 x y Dtx, y Dty, x   x ^ 2  y ^ 2  x  y a b 0 0 a b a2  b2  1 3 NIntegrateSqrtx  y, x, 0, 2, y, 0, Sqrtx  2 4.65557 NIntegrateSqrtx ^ 2  z ^ 2, x,  2, 2, y, x ^ 2, 4, z,  Sqrty  x ^ 2, Sqrty  x ^ 2 26.8083 y .; DSolvey 'x  2 yx, yx, x yx  2 x C1
  • 34. 34 1st.nb yx  y0  y 'x .  2 x C1  y0  y x y[x] y[x] y’[x] y[0] y[x] DSolvey 'x  2 yx, y, x y  Functionx, 2 x C1 yx  y0  y 'x .  C1  3 2 x C1 y y y .; z .; DSolveyx   z 'x, zx   y 'x, y, z, x z  Functionx, x 1  2 x  C1  x  1  2 x  C2, 1 1 2 2 x  1  2 x  C1  x 1  2 x  C2 1 1 y  Functionx,  2 2 y .; z .; DSolveyx   z 'x, zx   y 'x, yx, zx, x zx  x 1  2 x  C1  x  1  2 x  C2, 1 1 2 2 x  1  2 x  C1  x 1  2 x  C2 1 1 yx   2 2 DSolvey 'x  yx, y0  5, yx, x yx  5 x  s1  NDSolvey 'x  1  2  yx, y0.01  0.1, y, x, 0.01, 1 y  InterpolatingFunction0.01, 1.,  PlotEvaluateyx . s1, x, 0.01, 1, AxesOrigin  0, 0 1.0 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1.0 t  10 10
  • 35. 1st.nb 35 Modulet, t  8; Printt 8 t 10 fv_ : Modulet, t  1  v ^ 2; Expandt; fa 1  2 a  a2 t 10 gu_ : Modulet  u, t  t  t  1  u; ga  b ab ab 1ab x^2  1 1  x2 Blockx  a  1,  1  1  a2 x x m  i^2 i2 Blocki  a, i  m a  a2 Modulei  a, i  m a  i2 Removeg gx_ : 1 ; x  0 gx_ :  1 ; x  0 ?g Global`g gx_ : 1 ; x  0 gx_ :  1 ; x  0 Removeh; hx_ : Whichx  0, 1, x  0, 0, x  0.  1
  • 36. 36 1st.nb h 1, h0, h3 h 1, h0, h3 qx_ : SwitchModx, 3, 0, a, 1, b, 2, c q17 c If[x==y,a,b,c] If , , Ife  f, a, b, c c TrueQe  f False e  f False Mathematica , DoPrinti  i ^ 2, i, 1, 4 2 6 12 20 DoPrinti, j, i, 4, j, i  1 2, 1 3, 1 3, 2 4, 1 4, 2 4, 3 t  67; DoPrintt; t  Floort  2, 3 67 33 16 n  25; Whilen  Floorn  3  0, Printn
  • 37. 1st.nb 37 8 2 Fori  1, i  5, i , Printi 1 2 3 4 x .; Fori  1; t  x, i ^ 2  10, i , t  t ^ 2  i; Printt 1  x2 2  1  x2  2 3  2  1  x2   2 2 Nestf, x, 5 fffffx NestFunctiont, 1  Sqrt1  t ^ 2, x, 2 1 1 1 1x2 FixedPointFunctiont, Printt; Floort  3, 67 67 22 7 2 0 0 t  1; Dot  k; Printt; Ift  20, Break, k, 10 1 2 6 24 t  1; Dot  k; Printt; Ift  3, Continue; t  2, k, 5
  • 38. 38 1st.nb 1 2 6 32 170 Removef fx_ : Ifx  5, Returnbig; t  x ^ 3; Returnt  7 f3 big f5 118 hx_ : Ifx  0, Throwerror, x  Catchh3 6 ( error Catch ) Catchh 3 error Residuefz  z ^ 5, z, 0 0 Residue1  Sinz ^ 5, z, 0 3 8 SeriesExpx, x, 0, 10 x2 x3 x4 x5 x6 x7 x8 x9 x10 1x          Ox11 2 6 24 120 720 5040 40 320 362 880 3 628 800 Seriesx ^ x, x, 0, 4 1 1 1 1  Logx x  Logx2 x2  Logx3 x3  Logx4 x4  Ox5 2 6 24 Normal 1 1 1 1  x Logx  x2 Logx2  x3 Logx3  x4 Logx4 2 6 24
  • 39. 1st.nb 39 Sum1  2 n  1  2 n  1, n, 1, Infinity 1 2 SumLogn  1  n, n, 1, Infinity Sum::div : Sum does not converge.   Log   1n n1 n