SlideShare uma empresa Scribd logo
1 de 63
Baixar para ler offline
Electron irradiation effect on Al2O3


              Kurt Sickafus
              Younes Sina
Ionization vs. Excitation
 Excitation transfers enough energy to an orbital electron to displace it
  further away from the nucleus.
                                                                        IONISATION
                            EXCITATION




  Incident electron with a specific energy


      Atomic electron absorbs energy and moves into a higher orbit
                                                         High energy incident electron
                                                                                         Ejected electron


 In ionization the electron is removed, resulting in an ion pair.
Bremsstralung (or Braking) Radiation

•High speed electrons may lose energy in the form of X-
rays when they quickly decelerate upon striking a heavy
material.
Bremsstrahlung
 Probability of bremsstrahlung production per atom is
  proportional to the square of Z of the absorber

 Energy emission via bremsstrahlung varies inversely with the
  square of the mass of the incident particle


    Protons and alpha particles produce less than one-millionth
    the amount of bremsstrahlung radiation as electrons of the
    same energy
Bremsstrahlung
Ratio of electron energy loss by bremsstrahlung production to
that lost by excitation and ionization = EZ/820



    E = kinetic energy of incident electron in MeV
    Z = atomic number of the absorber




Energy loss for Al:    Brem./ (Exc. & Ion.) = 1×13/820 = 1.58%
Charged Particle Tracks
 Electrons follow tortuous paths in matter as the result of multiple
  scattering events
   • Ionization track is sparse and nonuniform
 Larger mass of heavy charged particle results in dense and usually linear
  ionization track
 Path length is actual distance particle travels; range is actual depth of
  penetration in matter
Particle interactions

Energetic charged particles interact with matter by
 electrical forces and lose kinetic energy via:
  Excitation
  Ionization
  Radiative losses

~ 70% of charged particle energy deposition leads
 to nonionizing excitation
Dose = Absorbed Energy Density

Absorbed energy normalized by weight, volume, atoms, etc.



                            J
                  1 Gy = 1
                           kg
                                             SI units




  8
Water: heat to boiling point
      H2O              J
     cp   = 4.1813          (@ 25°C)
                     gK
     specific heat of water
T  80 K
                                        3
                              J     10 g
       c   H2O
           p     T = 334.5      
                              g       kg
                                5 J
                     3.345 10
                                 kg
                     0.3345 MGy Energy
                                    Absorbed
9
Projectile-Target Interactions




      # events
                     • • • t
<volume> or <weight>
Projectile-Target Interactions

                 atomic        cross-
                           •             •   flux    •   time
                 density       section



# events
            a  atoms    area    projectiles  t  time 
volume           volume   atom   areagtime 

# events         atoms    area    projectiles  t  time 
            w 
 weight          weight   atom   areagtime 
                         
Projectile-Target Interactions


    fluence       =      flux    •    time




  projectiles       projectiles 

  area           areag
                           time   t time 
Projectile-Target Interactions

                 atomic        cross-
                           •             •   fluence
                 density       section



# events
            a  atoms    area    projectiles 
volume           volume   atom   area 

# events         atoms    area    projectiles 
            w 
 weight          weight   atom   area 
                         
Projectile-Target Interactions

                    cross-
                              •   fluence
                    section


  # events
  volume
                 area    projectiles 
   atoms 
a volume          atom   area 
          
Projectile-Target Interactions
             Leading to Atomic Displacements

                                      displacement
                     dpa         =    cross-         •   fluence
                                      section
            # atomic displacements
                   volume
                                       area    projectiles 
                    atoms 
                 a volume               atom   area 
                            

Ballistic           displacements
                                       area    projectiles 
Dose
                         atom            atom   area 
Electron irradiation-induced amorphization
             of sapphire (Al2O3)




    1 MeV electrons
    room-temperature irradiation conditions
Electron irradiation-induced amorphization
             of sapphire (Al2O3)

 Two components of damage:

 1. electronic component
 (electron excitation/ionization; radiolysis)

 2. nuclear component
 (ballistic or displacement damage)
1. Electronic Stopping
Electron Excitation/Ionization
Bethe-Ashkin expression for ionization energy loss per unit length




H. A. Bethe, and J. Ashkin, in Experimental Nuclear Physics. Volume I, edited by E. Segrè (John Wiley &
Sons, Inc., New York, 1953), pp. 166-357.
Electron Excitation/Ionization
    Bethe-Ashkin expression for ionization energy loss per unit length
relativistic expression


                E0  2 E              
              Ln  2         2         
                   2J (1   )        

 
   dE 2 e e 
   dx
      
          4

            2 
        E0  
                                    
               2 1   2  1   2 Ln2 
                                         
                                                          
                1   2                 
                                        
                 1
                                                    
                                 2
               1  1   2             
               8
                                        
                                         
E0  me c  rest energy of the electron
         2


me  rest mass of the electron
c  speed of light




         e  14.4 eV  Å
             2
v
     
          c
     v  velocity of electron
     c  speed of light

                   2
        E0 
  1       
        E  E
            0

E0  rest energy of the electron
E  kinetic energy of the electron
e  Z  a
e  electron density
Z  atomic number
a  atomic density
0.19
     J  9.76 Z  58.5 Z    (eV)
        mean electron excitation potential


M. J. Berger, and S. M. Seltzer, Nat. Acad. Sci. / Nat. Res. Council Publ. 1133 (Washington,
1964), p. 205.
Bragg’s Rule for Additivity of Stopping Powers



W. H. Bragg, and M. A. Elder, Phil. Mag. 10, 318
(1905)
Stopping Power


                1 dE         eV  Å2 
 e  Se E                atom  e 
                a dx   e              
Bragg’s Rule for Additivity of Stopping Powers
    For binary compound with molecular unit, A B :
                                              m n

   Am Bn
    e
             m e  n e
                        A               B

where m is the number of A atoms in molecule A B
                                              m n
and n is the number of B atoms in molecule A B
                                            m n
One can show that:
            Am Bn                                   A        B
    dE                                            dE    dE
                          Am Bn
                            m          Am Bn
                                                     
    dx      e
                                        e
                                                  dx e dx    e
    where 
                Am Bn
                  is the molecular density of A B
                m                              m n
    molecules in the compound.
Ionization stopping in Al2O3
E = 1000 keV= 1 MeV



     dE/dx (E = 1 MeV) = -0.0377 eV/Å . e-


            thickness = 1000 Å
            TEM sample thickness


Total ionization energy
                           = 37.7 eV/e- = 6.032x10-18 J/e-
loss over sample thickness
Electron fluence:
Φ=1×1028 e/m2=1×108 e/Ȧ2




Irradiation time= t= 2 hr = 7200 s
φ= 1.38×104 e-/Ȧ2s
dE
Areal Energy Density =                     
                       dx     electronic

                                  J    11
                 3.504 10
 =37.7×108 eV/Ȧ2= 3.77×10-10 J/Ȧ2Å 2



                           Areal Energy Density
Total Energy Density   =
                                 thickness
                                           14   J
                        3.504 10                 3
        =3.77×10-13 J/Ȧ3                         Å
ρAl2O3= 3980 Kg/m3



Dose= 94.72×1012 J/Kg= 94.7 TGy



    Magnitude of dose: TeraGray !!
2. Nuclear Stopping
Electron displacement damage calculation

Primary damage cross-section after Seitz & Koehler (1956):
F. Seitz, and J. S. Koehler, in Solid State Physics: Advances in Research & Applications, edited by F.
Seitz, and D. Turnbull (Academic Press, 1956), pp. 305-448.




Based on the relativistic electron cross-section expression derived by McKinley & Feshbach (1948):
W. A. McKinley, Jr., and H. Feshbach, Physical Review 74, 1759 (1948).




Total cross-section (primary plus secondaries) after Oen (1973):
O. S. Oen, (Oak Ridge National Laboratory, Oak Ridge, TN, 1973), pp. 204.
Differential displacement cross-section, dσ

             b 2        T         T   T   dT
d (T )        T 1  2             2
              4 m       Tm         Tm Tm   T
                                              

     where T is the kinetic energy of the electron

                                2
                     E0 
       v / c  1 
                     E0 E 
                            

        Z
     where  is the fine structure constant (~1/137)

Tm  maximum energy transfer from e to target atom
           4 me M             E 
   Tm                  E  1
          me  M         2 E0 
                    2
                                 
   where E is the incident electron energy

                          O
                                           Ca
2
         e    2
                   1
b  4 Z  
  2         2

          E0   4  2
where
        1
=
      1 2
Primary displacement cross-section:

               Tm       area  
 p (E)   d  (T ) 
           Ed
                       atom    
where E d is the displacement threshold energy
Cascade cross-section:
                Tm              area  
 tot (E)    (T ) d  (T ) 
             Ed
                               atom    
where  (T ) is the number of secondary displacements,
given most simply by the Kinchin-Pease expression:
 (T )  0; T < Ed
 (T )  1; Ed  T < 2Ed
           T
 (T )       ; T  2Ed
          2Ed
E = 1000 keV


ZO = 8           TmO =271

ZAl = 13         TmAl =161

ZAve =10        TmAve =227
Ed = 20 eV


ZO = 8           EtO = 129,000

ZAl = 13         EtAl = 205,000

Zave =10         EtAve = 159,400
Ed = 40 eV


ZO= 8              EO= 238,000

ZAl= 13            EAl= 365,000

ZAve=10
Ed = 50 eV


ZO= 8                EO = 290,000

ZAl= 13              EAl = 430,000

ZAve=10
E=1 MeV
          Ed=40 eV

ZO= 8          EtO= 290,000 eV

ZAl= 13        EtAl= 430,000 eV

ZAve=10
               TmAve=227 eV

                2Ed=80 eV
α-Al2O3

E=1 MeV
Ed=40 eV
σp @ 1 MeV =2.18 barns
E  300 keV
powellite (CaMoO4)                    Ed  25 eV


      Z   ave
                 15.67        Ethreshold  295 keV
                                 ave



                                Tm  25.54 eV
                                 ave



                                2Ed  50 eV

                                                        2
                                                       Å
   tot (E)   p (E)  0.588 barns = 5.88 10   9

                                                      atom
52
53
22
     28
          41
where  (T ) is the number of secondary displaceme
     given most simply by the Kinchin-Pease expression
      (T )  0; TmT < Ed          area  
    tot (E)    (T ) d  (T ) 
      (T )  1; EdEd  T < 2Ed atom      
   where  (TT is the number of secondary displacemen
                 )
      (T )        ; T  2Ed
   given most simply by the Kinchin-Pease expression:
              2Ed
    (T )  0; T < Ed
    section Ed  T < for
Cross(T )  1; calculation 2EdAl (Ed=20 eV):
              T
    (T )         ; T  2Ed
             2Ed
σ =42 barns/atom= 4.2×10-7 Å2/atom
 tot



       1 barn = 10-24 cm 2  10 8 Å2
Electron fluence:
 Φ=1×1028 e/m2=1×108 e/Å2
 Irradiation time, t = 2 hr = 7200 s
 φ= 1.38×104 e-/Å2s
displacements per atom =  tot 
                                   Å2       e
  σtot=42 barns/atom= 4.2×10-7 Å2/atom310 6 2
                      5.88 10 6      
                                  atom      Å
                     = 0.018 dpa

  dpa=(4.2×10-7 Å2/e).(1×108 e/Å2)   = 42
RADIATION DAMAGE OF α-Al2O3 IN THE HVEM
II. Radiation damage at high temperature and high dose
G.P. PELLS and D.C. PHILLIPS
C. L. Chen, H. Furusho and H. Mori


•     The decomposition of α- Al2O3 under 200 keV
      (Ultra High Vacuum) electron irradiation

•     Aluminum precipitated from α- Al2O3 under 200
      keV electron irradiation for less than 1 min over
      the temperature range 700 to 1273 K.

•     φ (electron dose rate)= 1023 e m-2s-1
•     Vacuum level < 3×10-8 Pa
Model:
   Thermally activated atom movement
 Forced atom displacement ( knock-on collision)
RADIATION DAMAGE OF α-Al2O3 IN THE HVEM
II. Radiation damage at high temperature and high dose
G.P. PELLS and D.C. PHILLIPS



 Single-crystal α-Al2O3 irradiated with 1 MeV electrons in a high-voltage
  electron microscope at several fixed temperatures in the range 320-
  1070 K.
• At 770 K and below the nature of the observed damage could not be
  resolved.
• At 870 K and above island-like surface features rapidly formed followed
  by dislocations which grew to form a dense network.
• After high doses (>l0 dpa) precipitates were observed.
• The associated diffraction patterns and their temperature dependence
  suggested that the precipitates were of aluminum metal.
Cryogenic radiation response of sapphire
R. Devanathan, W.J. Weber, K.E. Sickafus, M. Nastasi, L.M. Wang, S.X. Wang


Sapphire (a-Al2O3) irradiated by heavy-ion and electron at cryogenic
temperatures using a high-voltage electron microscope.
1.5 MeV Xe
1 MeV Kr
Dual beam of 1 MeV Kr and 900 keV electrons
T=20 to 100 K
At 20 K, α-alumina is amorphized by 1.5 MeV Xe about 3.8 (dpa)
Critical temperature for amorphization is about 170 K
The material remains crystalline when irradiated at 26 K with a dual beam
of heavy ions and electrons.

Electron irradiation can promote damage annealing, even at cryogenic
temperatures, by causing the migration of point-defects produced in
ceramics by ion irradiation.
Effects of ionizing radiation in ceramics
R. Devanathan ,K.E. Sickafus, W.J. Weber, M. Nastasi


α-Al2O3 was irradiated with 1 MeV Kr+ or 1.5 MeV Xe+ and 1
MeV electrons in a high-voltage electron microscope interfaced
to an ion accelerator that enabled the in situ observation of the
structural changes.

The results indicate that simultaneous electron irradiation can
retard or prevent amorphization by heavy ions.

Comparison with similar experiments in metals suggests that
highly ionizing radiation can anneal damage to the crystal lattice
in ceramics by enhancing the mobility of point defects.
High flux e-


                                               O2
            ~1000 Å      heat




                                  Al ppt.



                                  Vacuum

>40 dpa
Long time
Surface at high stress

Mais conteúdo relacionado

Mais procurados

Mri basic principle and sequences
Mri basic principle and sequencesMri basic principle and sequences
Mri basic principle and sequencesPawan Maurya
 
QC Gamma Camera
QC Gamma CameraQC Gamma Camera
QC Gamma CameraHelbert
 
STUDY OF LINEARITY OF GAMMA RAY SPECTROMETER
STUDY OF LINEARITY OF GAMMA RAY SPECTROMETERSTUDY OF LINEARITY OF GAMMA RAY SPECTROMETER
STUDY OF LINEARITY OF GAMMA RAY SPECTROMETERJustin George
 
Dosimetric calculations
Dosimetric calculationsDosimetric calculations
Dosimetric calculationsCSULB
 
Measurement of absorbed dose
Measurement of absorbed doseMeasurement of absorbed dose
Measurement of absorbed dosePurvi Rathod
 
Basics of mri physics Dr. Muhammad Bin Zulfiqar
Basics of mri physics Dr. Muhammad Bin ZulfiqarBasics of mri physics Dr. Muhammad Bin Zulfiqar
Basics of mri physics Dr. Muhammad Bin ZulfiqarDr. Muhammad Bin Zulfiqar
 
25 -radiation_detection_&_measurement_i
25  -radiation_detection_&_measurement_i25  -radiation_detection_&_measurement_i
25 -radiation_detection_&_measurement_imurty61
 
Magnetic resonance (mr) spectroscopy
Magnetic resonance (mr) spectroscopyMagnetic resonance (mr) spectroscopy
Magnetic resonance (mr) spectroscopyMaajid Mohi ud din
 
Basic principle of ct and ct generations
Basic principle of ct and ct generationsBasic principle of ct and ct generations
Basic principle of ct and ct generationsTarun Goyal
 
Basics of MRI Physics
Basics of MRI PhysicsBasics of MRI Physics
Basics of MRI Physicsyasna kibria
 
Mri physics PART-1
Mri physics PART-1Mri physics PART-1
Mri physics PART-1Deepak Garg
 
Clinical Radiotherapy Planning basics for beginners
Clinical Radiotherapy Planning basics for beginnersClinical Radiotherapy Planning basics for beginners
Clinical Radiotherapy Planning basics for beginnersDina Barakat
 
20 1 radioactivity
20 1 radioactivity20 1 radioactivity
20 1 radioactivitySteve Bishop
 
MRI physics basic concepts
MRI physics basic conceptsMRI physics basic concepts
MRI physics basic conceptsSaurabh Joshi
 
Radiation Dose Units and Dose Limits- Avinesh Shrestha
Radiation Dose Units and Dose Limits- Avinesh ShresthaRadiation Dose Units and Dose Limits- Avinesh Shrestha
Radiation Dose Units and Dose Limits- Avinesh ShresthaAvinesh Shrestha
 

Mais procurados (20)

Internal radiation dosimetry
Internal radiation dosimetryInternal radiation dosimetry
Internal radiation dosimetry
 
Mri basic principle and sequences
Mri basic principle and sequencesMri basic principle and sequences
Mri basic principle and sequences
 
QC Gamma Camera
QC Gamma CameraQC Gamma Camera
QC Gamma Camera
 
STUDY OF LINEARITY OF GAMMA RAY SPECTROMETER
STUDY OF LINEARITY OF GAMMA RAY SPECTROMETERSTUDY OF LINEARITY OF GAMMA RAY SPECTROMETER
STUDY OF LINEARITY OF GAMMA RAY SPECTROMETER
 
Scintillation Detector.pptx
Scintillation Detector.pptxScintillation Detector.pptx
Scintillation Detector.pptx
 
Dosimetric calculations
Dosimetric calculationsDosimetric calculations
Dosimetric calculations
 
Measurement of absorbed dose
Measurement of absorbed doseMeasurement of absorbed dose
Measurement of absorbed dose
 
Basics of mri physics Dr. Muhammad Bin Zulfiqar
Basics of mri physics Dr. Muhammad Bin ZulfiqarBasics of mri physics Dr. Muhammad Bin Zulfiqar
Basics of mri physics Dr. Muhammad Bin Zulfiqar
 
25 -radiation_detection_&_measurement_i
25  -radiation_detection_&_measurement_i25  -radiation_detection_&_measurement_i
25 -radiation_detection_&_measurement_i
 
Magnetic resonance (mr) spectroscopy
Magnetic resonance (mr) spectroscopyMagnetic resonance (mr) spectroscopy
Magnetic resonance (mr) spectroscopy
 
Basic principle of ct and ct generations
Basic principle of ct and ct generationsBasic principle of ct and ct generations
Basic principle of ct and ct generations
 
Mri physics
Mri physicsMri physics
Mri physics
 
Basics of MRI Physics
Basics of MRI PhysicsBasics of MRI Physics
Basics of MRI Physics
 
Mri physics PART-1
Mri physics PART-1Mri physics PART-1
Mri physics PART-1
 
Clinical Radiotherapy Planning basics for beginners
Clinical Radiotherapy Planning basics for beginnersClinical Radiotherapy Planning basics for beginners
Clinical Radiotherapy Planning basics for beginners
 
20 1 radioactivity
20 1 radioactivity20 1 radioactivity
20 1 radioactivity
 
Nuclear imaging
Nuclear imagingNuclear imaging
Nuclear imaging
 
MRI physics basic concepts
MRI physics basic conceptsMRI physics basic concepts
MRI physics basic concepts
 
Radiation Dose Units and Dose Limits- Avinesh Shrestha
Radiation Dose Units and Dose Limits- Avinesh ShresthaRadiation Dose Units and Dose Limits- Avinesh Shrestha
Radiation Dose Units and Dose Limits- Avinesh Shrestha
 
Mri 3
Mri 3Mri 3
Mri 3
 

Destaque

Kalcijum i jedinjenja kalcijuma
Kalcijum i jedinjenja kalcijumaKalcijum i jedinjenja kalcijuma
Kalcijum i jedinjenja kalcijumamiluskaprsic
 
Chimie 2016-17 cours 02 ; révision modèle atomique
Chimie 2016-17 cours 02 ; révision modèle atomique Chimie 2016-17 cours 02 ; révision modèle atomique
Chimie 2016-17 cours 02 ; révision modèle atomique Jean-Philippe Lehoux
 
Glazes Theory And Practice Bryant Hudson
Glazes Theory And Practice Bryant HudsonGlazes Theory And Practice Bryant Hudson
Glazes Theory And Practice Bryant HudsonBryant Hudson
 
Phase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemPhase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemYounes Sina
 
Inclusion control for clean steel
Inclusion control for clean steelInclusion control for clean steel
Inclusion control for clean steelSANTOSH KUMAR
 
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental materialDENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental materialDr-Faisal Al-Qahtani
 
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDSNATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDSAlagappapandian M
 
carbon compound
carbon compoundcarbon compound
carbon compoundMiz Malinz
 
Nouveau microsoft word document
Nouveau microsoft word documentNouveau microsoft word document
Nouveau microsoft word documentkarimfpk
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing processShreenath Bohra
 
Sozialpolitik Kanada Und Australien
Sozialpolitik Kanada Und AustralienSozialpolitik Kanada Und Australien
Sozialpolitik Kanada Und Australienbolkovac
 
01 fonction stockage_la_batterie
01 fonction stockage_la_batterie01 fonction stockage_la_batterie
01 fonction stockage_la_batterieAbdellah HILALI
 
Metabolisme des lipides
Metabolisme des lipidesMetabolisme des lipides
Metabolisme des lipideskillua zoldyck
 
Brochure Meca-19102016-bd
Brochure Meca-19102016-bdBrochure Meca-19102016-bd
Brochure Meca-19102016-bdCamille Volant
 
Protection des métaux contre la corrosion
Protection des métaux contre la corrosionProtection des métaux contre la corrosion
Protection des métaux contre la corrosionCHTAOU Karim
 
effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
 effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g... effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...Noël Djobo
 
Présentation de la plate-forme d'éco-conception CORINE
Présentation de la plate-forme d'éco-conception CORINEPrésentation de la plate-forme d'éco-conception CORINE
Présentation de la plate-forme d'éco-conception CORINEBrice Kosinski
 
Animation obtention, conversion et séparation des aromatiques
Animation obtention, conversion et séparation des aromatiquesAnimation obtention, conversion et séparation des aromatiques
Animation obtention, conversion et séparation des aromatiquesTarik Taleb Bendiab
 

Destaque (20)

Kalcijum i jedinjenja kalcijuma
Kalcijum i jedinjenja kalcijumaKalcijum i jedinjenja kalcijuma
Kalcijum i jedinjenja kalcijuma
 
Chimie 2016-17 cours 02 ; révision modèle atomique
Chimie 2016-17 cours 02 ; révision modèle atomique Chimie 2016-17 cours 02 ; révision modèle atomique
Chimie 2016-17 cours 02 ; révision modèle atomique
 
Glazes Theory And Practice Bryant Hudson
Glazes Theory And Practice Bryant HudsonGlazes Theory And Practice Bryant Hudson
Glazes Theory And Practice Bryant Hudson
 
Phase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 SystemPhase Diagram, ZrO2 and Al2O3 System
Phase Diagram, ZrO2 and Al2O3 System
 
Inclusion control for clean steel
Inclusion control for clean steelInclusion control for clean steel
Inclusion control for clean steel
 
Al2O3 Nanofluid
Al2O3 NanofluidAl2O3 Nanofluid
Al2O3 Nanofluid
 
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental materialDENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
DENTAL CERAMICS Dental Porcelain All-CERAMIC RESTORATIONS dental material
 
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDSNATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
NATURAL CONVECTIVE HEAT TRANSFER BY Al2O3 &PbO NANOFLUIDS
 
carbon compound
carbon compoundcarbon compound
carbon compound
 
Nouveau microsoft word document
Nouveau microsoft word documentNouveau microsoft word document
Nouveau microsoft word document
 
Cement manufacturing process
Cement manufacturing processCement manufacturing process
Cement manufacturing process
 
Sozialpolitik Kanada Und Australien
Sozialpolitik Kanada Und AustralienSozialpolitik Kanada Und Australien
Sozialpolitik Kanada Und Australien
 
01 fonction stockage_la_batterie
01 fonction stockage_la_batterie01 fonction stockage_la_batterie
01 fonction stockage_la_batterie
 
Metabolisme des lipides
Metabolisme des lipidesMetabolisme des lipides
Metabolisme des lipides
 
Brochure Meca-19102016-bd
Brochure Meca-19102016-bdBrochure Meca-19102016-bd
Brochure Meca-19102016-bd
 
Protection des métaux contre la corrosion
Protection des métaux contre la corrosionProtection des métaux contre la corrosion
Protection des métaux contre la corrosion
 
effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
 effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g... effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
effet de l'incorporation d'ajuvant minéraux sur les propriétés des ciments g...
 
Présentation de la plate-forme d'éco-conception CORINE
Présentation de la plate-forme d'éco-conception CORINEPrésentation de la plate-forme d'éco-conception CORINE
Présentation de la plate-forme d'éco-conception CORINE
 
L’oxydation
L’oxydationL’oxydation
L’oxydation
 
Animation obtention, conversion et séparation des aromatiques
Animation obtention, conversion et séparation des aromatiquesAnimation obtention, conversion et séparation des aromatiques
Animation obtention, conversion et séparation des aromatiques
 

Semelhante a Electron irradiation effect on Al2O3

Quantum physics
Quantum physicsQuantum physics
Quantum physicsJFG407
 
interaction of radiation with matter modified.pptx
interaction of radiation with matter modified.pptxinteraction of radiation with matter modified.pptx
interaction of radiation with matter modified.pptxGeet501819
 
Materials_Ch2.pdf
Materials_Ch2.pdfMaterials_Ch2.pdf
Materials_Ch2.pdfsabry said
 
Structure of atom
Structure of atom Structure of atom
Structure of atom sahil9100
 
INTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTERINTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTERVinay Desai
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effectutpal sarkar
 
Facultyetsuedublantonlecture3radiationppt3714
Facultyetsuedublantonlecture3radiationppt3714Facultyetsuedublantonlecture3radiationppt3714
Facultyetsuedublantonlecture3radiationppt3714Michel Tamira
 
All you need_to_know_about_additional_science[2]
All you need_to_know_about_additional_science[2]All you need_to_know_about_additional_science[2]
All you need_to_know_about_additional_science[2]mcconvillezoe
 
Chapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear ChemistryChapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear ChemistryMary Beth Smith
 
All you need_to_know_about_additional_science[1]
All you need_to_know_about_additional_science[1]All you need_to_know_about_additional_science[1]
All you need_to_know_about_additional_science[1]lucywalshaw
 
Chemchapt5 101015131345-phpapp01
Chemchapt5 101015131345-phpapp01Chemchapt5 101015131345-phpapp01
Chemchapt5 101015131345-phpapp01Cleophas Rwemera
 
Radioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - SachinRadioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - SachinSACHINS700327
 
Physics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
Physics dictionary for CBSE, ISCE, Class X Students by Arun UmraoPhysics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
Physics dictionary for CBSE, ISCE, Class X Students by Arun Umraossuserd6b1fd
 
Dictionary of physics
Dictionary of physicsDictionary of physics
Dictionary of physicsArun Umrao
 
Plasma Chemistry CH2
Plasma Chemistry CH2Plasma Chemistry CH2
Plasma Chemistry CH2SITHUHan3
 
Plasma Chemistry CH2_part2
Plasma Chemistry CH2_part2Plasma Chemistry CH2_part2
Plasma Chemistry CH2_part2SITHUHan3
 

Semelhante a Electron irradiation effect on Al2O3 (20)

Radiation detectors
Radiation detectorsRadiation detectors
Radiation detectors
 
Quantum physics
Quantum physicsQuantum physics
Quantum physics
 
interaction of radiation with matter modified.pptx
interaction of radiation with matter modified.pptxinteraction of radiation with matter modified.pptx
interaction of radiation with matter modified.pptx
 
Materials_Ch2.pdf
Materials_Ch2.pdfMaterials_Ch2.pdf
Materials_Ch2.pdf
 
Electron beam therapy
Electron beam therapyElectron beam therapy
Electron beam therapy
 
Structure of atom
Structure of atom Structure of atom
Structure of atom
 
Wave particle duality
Wave particle dualityWave particle duality
Wave particle duality
 
INTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTERINTERACTION OF IONIZING RADIATION WITH MATTER
INTERACTION OF IONIZING RADIATION WITH MATTER
 
Optical properties and hall effect
Optical properties and hall effectOptical properties and hall effect
Optical properties and hall effect
 
Facultyetsuedublantonlecture3radiationppt3714
Facultyetsuedublantonlecture3radiationppt3714Facultyetsuedublantonlecture3radiationppt3714
Facultyetsuedublantonlecture3radiationppt3714
 
Electron arrangements
Electron arrangementsElectron arrangements
Electron arrangements
 
All you need_to_know_about_additional_science[2]
All you need_to_know_about_additional_science[2]All you need_to_know_about_additional_science[2]
All you need_to_know_about_additional_science[2]
 
Chapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear ChemistryChapter 21 Lecture- Nuclear Chemistry
Chapter 21 Lecture- Nuclear Chemistry
 
All you need_to_know_about_additional_science[1]
All you need_to_know_about_additional_science[1]All you need_to_know_about_additional_science[1]
All you need_to_know_about_additional_science[1]
 
Chemchapt5 101015131345-phpapp01
Chemchapt5 101015131345-phpapp01Chemchapt5 101015131345-phpapp01
Chemchapt5 101015131345-phpapp01
 
Radioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - SachinRadioactivity and production of X-rays - Sachin
Radioactivity and production of X-rays - Sachin
 
Physics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
Physics dictionary for CBSE, ISCE, Class X Students by Arun UmraoPhysics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
Physics dictionary for CBSE, ISCE, Class X Students by Arun Umrao
 
Dictionary of physics
Dictionary of physicsDictionary of physics
Dictionary of physics
 
Plasma Chemistry CH2
Plasma Chemistry CH2Plasma Chemistry CH2
Plasma Chemistry CH2
 
Plasma Chemistry CH2_part2
Plasma Chemistry CH2_part2Plasma Chemistry CH2_part2
Plasma Chemistry CH2_part2
 

Mais de Younes Sina

Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes SinaYounes Sina
 
ICDIM 2012 presentation
ICDIM 2012 presentationICDIM 2012 presentation
ICDIM 2012 presentationYounes Sina
 
Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Younes Sina
 
توسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدتوسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدYounes Sina
 
Nuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesNuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesYounes Sina
 
Ion implantation effects in sapphire-Poster for advisory meeting at utk
Ion implantation effects in sapphire-Poster for advisory meeting at utkIon implantation effects in sapphire-Poster for advisory meeting at utk
Ion implantation effects in sapphire-Poster for advisory meeting at utkYounes Sina
 

Mais de Younes Sina (20)

Physics by Younes Sina
Physics by Younes SinaPhysics by Younes Sina
Physics by Younes Sina
 
Chapter 14
Chapter 14Chapter 14
Chapter 14
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
Chapter 9
Chapter 9Chapter 9
Chapter 9
 
Chapter 8
Chapter 8Chapter 8
Chapter 8
 
Chapter 7
Chapter 7Chapter 7
Chapter 7
 
Chapter 6
Chapter 6Chapter 6
Chapter 6
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
ICDIM 2012 presentation
ICDIM 2012 presentationICDIM 2012 presentation
ICDIM 2012 presentation
 
Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)Line Spectra (Rydberg’s Constant)
Line Spectra (Rydberg’s Constant)
 
توسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصدتوسعه روش شكست سنجي براي تعيين درصد
توسعه روش شكست سنجي براي تعيين درصد
 
Nuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclidesNuclear Radiation, the chart of nuclides
Nuclear Radiation, the chart of nuclides
 
Ion implantation effects in sapphire-Poster for advisory meeting at utk
Ion implantation effects in sapphire-Poster for advisory meeting at utkIon implantation effects in sapphire-Poster for advisory meeting at utk
Ion implantation effects in sapphire-Poster for advisory meeting at utk
 
RBS
RBSRBS
RBS
 

Último

TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 

Último (20)

TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 

Electron irradiation effect on Al2O3

  • 1. Electron irradiation effect on Al2O3 Kurt Sickafus Younes Sina
  • 2. Ionization vs. Excitation  Excitation transfers enough energy to an orbital electron to displace it further away from the nucleus. IONISATION EXCITATION Incident electron with a specific energy Atomic electron absorbs energy and moves into a higher orbit High energy incident electron Ejected electron In ionization the electron is removed, resulting in an ion pair.
  • 3. Bremsstralung (or Braking) Radiation •High speed electrons may lose energy in the form of X- rays when they quickly decelerate upon striking a heavy material.
  • 4. Bremsstrahlung  Probability of bremsstrahlung production per atom is proportional to the square of Z of the absorber  Energy emission via bremsstrahlung varies inversely with the square of the mass of the incident particle Protons and alpha particles produce less than one-millionth the amount of bremsstrahlung radiation as electrons of the same energy
  • 5. Bremsstrahlung Ratio of electron energy loss by bremsstrahlung production to that lost by excitation and ionization = EZ/820 E = kinetic energy of incident electron in MeV Z = atomic number of the absorber Energy loss for Al: Brem./ (Exc. & Ion.) = 1×13/820 = 1.58%
  • 6. Charged Particle Tracks  Electrons follow tortuous paths in matter as the result of multiple scattering events • Ionization track is sparse and nonuniform  Larger mass of heavy charged particle results in dense and usually linear ionization track  Path length is actual distance particle travels; range is actual depth of penetration in matter
  • 7. Particle interactions Energetic charged particles interact with matter by electrical forces and lose kinetic energy via: Excitation Ionization Radiative losses ~ 70% of charged particle energy deposition leads to nonionizing excitation
  • 8. Dose = Absorbed Energy Density Absorbed energy normalized by weight, volume, atoms, etc. J 1 Gy = 1 kg SI units 8
  • 9. Water: heat to boiling point H2O J cp = 4.1813 (@ 25°C) gK specific heat of water T  80 K 3 J 10 g c H2O p T = 334.5  g kg 5 J  3.345 10 kg  0.3345 MGy Energy Absorbed 9
  • 10.
  • 11. Projectile-Target Interactions # events • • • t <volume> or <weight>
  • 12. Projectile-Target Interactions atomic cross- • • flux • time density section # events  a  atoms    area    projectiles  t  time  volume  volume   atom   areagtime  # events  atoms    area    projectiles  t  time   w  weight  weight   atom   areagtime  
  • 13. Projectile-Target Interactions fluence = flux • time  projectiles   projectiles    area      areag  time   t time 
  • 14. Projectile-Target Interactions atomic cross- • • fluence density section # events  a  atoms    area    projectiles  volume  volume   atom   area  # events  atoms    area    projectiles   w  weight  weight   atom   area  
  • 15. Projectile-Target Interactions cross- • fluence section # events volume   area    projectiles   atoms  a volume  atom   area   
  • 16. Projectile-Target Interactions Leading to Atomic Displacements displacement dpa = cross- • fluence section # atomic displacements volume   area    projectiles   atoms  a volume  atom   area    Ballistic displacements   area    projectiles  Dose atom  atom   area 
  • 17. Electron irradiation-induced amorphization of sapphire (Al2O3) 1 MeV electrons room-temperature irradiation conditions
  • 18. Electron irradiation-induced amorphization of sapphire (Al2O3) Two components of damage: 1. electronic component (electron excitation/ionization; radiolysis) 2. nuclear component (ballistic or displacement damage)
  • 20. Electron Excitation/Ionization Bethe-Ashkin expression for ionization energy loss per unit length H. A. Bethe, and J. Ashkin, in Experimental Nuclear Physics. Volume I, edited by E. Segrè (John Wiley & Sons, Inc., New York, 1953), pp. 166-357.
  • 21. Electron Excitation/Ionization Bethe-Ashkin expression for ionization energy loss per unit length relativistic expression   E0  2 E   Ln  2 2     2J (1   )    dE 2 e e  dx  4 2  E0     2 1   2  1   2 Ln2     1   2    1   2  1  1   2   8   
  • 22. E0  me c  rest energy of the electron 2 me  rest mass of the electron c  speed of light e  14.4 eV  Å 2
  • 23. v  c v  velocity of electron c  speed of light 2  E0    1    E  E 0 E0  rest energy of the electron E  kinetic energy of the electron
  • 24. e  Z  a e  electron density Z  atomic number a  atomic density
  • 25. 0.19 J  9.76 Z  58.5 Z (eV)  mean electron excitation potential M. J. Berger, and S. M. Seltzer, Nat. Acad. Sci. / Nat. Res. Council Publ. 1133 (Washington, 1964), p. 205.
  • 26. Bragg’s Rule for Additivity of Stopping Powers W. H. Bragg, and M. A. Elder, Phil. Mag. 10, 318 (1905)
  • 27. Stopping Power 1 dE  eV  Å2   e  Se E    atom  e  a dx e  
  • 28. Bragg’s Rule for Additivity of Stopping Powers For binary compound with molecular unit, A B : m n  Am Bn e  m e  n e A B where m is the number of A atoms in molecule A B m n and n is the number of B atoms in molecule A B m n One can show that: Am Bn A B dE dE dE  Am Bn m  Am Bn   dx e e dx e dx e where  Am Bn is the molecular density of A B m m n molecules in the compound.
  • 30. E = 1000 keV= 1 MeV dE/dx (E = 1 MeV) = -0.0377 eV/Å . e- thickness = 1000 Å TEM sample thickness Total ionization energy = 37.7 eV/e- = 6.032x10-18 J/e- loss over sample thickness
  • 31. Electron fluence: Φ=1×1028 e/m2=1×108 e/Ȧ2 Irradiation time= t= 2 hr = 7200 s φ= 1.38×104 e-/Ȧ2s
  • 32. dE Areal Energy Density =  dx electronic J 11  3.504 10 =37.7×108 eV/Ȧ2= 3.77×10-10 J/Ȧ2Å 2 Areal Energy Density Total Energy Density = thickness 14 J  3.504 10 3 =3.77×10-13 J/Ȧ3 Å
  • 33. ρAl2O3= 3980 Kg/m3 Dose= 94.72×1012 J/Kg= 94.7 TGy Magnitude of dose: TeraGray !!
  • 35. Electron displacement damage calculation Primary damage cross-section after Seitz & Koehler (1956): F. Seitz, and J. S. Koehler, in Solid State Physics: Advances in Research & Applications, edited by F. Seitz, and D. Turnbull (Academic Press, 1956), pp. 305-448. Based on the relativistic electron cross-section expression derived by McKinley & Feshbach (1948): W. A. McKinley, Jr., and H. Feshbach, Physical Review 74, 1759 (1948). Total cross-section (primary plus secondaries) after Oen (1973): O. S. Oen, (Oak Ridge National Laboratory, Oak Ridge, TN, 1973), pp. 204.
  • 36. Differential displacement cross-section, dσ  b 2 T  T T   dT d (T )  T 1  2      2 4 m Tm  Tm Tm   T  where T is the kinetic energy of the electron 2  E0    v / c  1   E0 E      Z where  is the fine structure constant (~1/137)
  • 37.  Tm  maximum energy transfer from e to target atom 4 me M  E  Tm  E  1 me  M   2 E0  2  where E is the incident electron energy O Ca
  • 38.
  • 39.
  • 40.
  • 41. 2 e  2 1 b  4 Z   2 2  E0   4  2 where 1 = 1 2
  • 42. Primary displacement cross-section: Tm   area    p (E)   d  (T )  Ed  atom   where E d is the displacement threshold energy Cascade cross-section: Tm   area    tot (E)    (T ) d  (T )  Ed  atom   where  (T ) is the number of secondary displacements, given most simply by the Kinchin-Pease expression:  (T )  0; T < Ed  (T )  1; Ed  T < 2Ed T  (T )  ; T  2Ed 2Ed
  • 43. E = 1000 keV ZO = 8 TmO =271 ZAl = 13 TmAl =161 ZAve =10 TmAve =227
  • 44. Ed = 20 eV ZO = 8 EtO = 129,000 ZAl = 13 EtAl = 205,000 Zave =10 EtAve = 159,400
  • 45. Ed = 40 eV ZO= 8 EO= 238,000 ZAl= 13 EAl= 365,000 ZAve=10
  • 46. Ed = 50 eV ZO= 8 EO = 290,000 ZAl= 13 EAl = 430,000 ZAve=10
  • 47. E=1 MeV Ed=40 eV ZO= 8 EtO= 290,000 eV ZAl= 13 EtAl= 430,000 eV ZAve=10 TmAve=227 eV 2Ed=80 eV
  • 48.
  • 49. α-Al2O3 E=1 MeV Ed=40 eV σp @ 1 MeV =2.18 barns
  • 50. E  300 keV powellite (CaMoO4) Ed  25 eV Z ave  15.67 Ethreshold  295 keV ave Tm  25.54 eV ave 2Ed  50 eV 2 Å  tot (E)   p (E)  0.588 barns = 5.88 10 9 atom
  • 51.
  • 52. 52
  • 53. 53
  • 54. 22 28 41
  • 55. where  (T ) is the number of secondary displaceme given most simply by the Kinchin-Pease expression  (T )  0; TmT < Ed   area    tot (E)    (T ) d  (T )   (T )  1; EdEd  T < 2Ed atom   where  (TT is the number of secondary displacemen )  (T )  ; T  2Ed given most simply by the Kinchin-Pease expression: 2Ed  (T )  0; T < Ed  section Ed  T < for Cross(T )  1; calculation 2EdAl (Ed=20 eV): T  (T )  ; T  2Ed 2Ed σ =42 barns/atom= 4.2×10-7 Å2/atom tot 1 barn = 10-24 cm 2  10 8 Å2
  • 56. Electron fluence: Φ=1×1028 e/m2=1×108 e/Å2 Irradiation time, t = 2 hr = 7200 s φ= 1.38×104 e-/Å2s displacements per atom =  tot  Å2 e σtot=42 barns/atom= 4.2×10-7 Å2/atom310 6 2  5.88 10 6  atom Å = 0.018 dpa dpa=(4.2×10-7 Å2/e).(1×108 e/Å2) = 42
  • 57. RADIATION DAMAGE OF α-Al2O3 IN THE HVEM II. Radiation damage at high temperature and high dose G.P. PELLS and D.C. PHILLIPS
  • 58. C. L. Chen, H. Furusho and H. Mori • The decomposition of α- Al2O3 under 200 keV (Ultra High Vacuum) electron irradiation • Aluminum precipitated from α- Al2O3 under 200 keV electron irradiation for less than 1 min over the temperature range 700 to 1273 K. • φ (electron dose rate)= 1023 e m-2s-1 • Vacuum level < 3×10-8 Pa Model: Thermally activated atom movement  Forced atom displacement ( knock-on collision)
  • 59.
  • 60. RADIATION DAMAGE OF α-Al2O3 IN THE HVEM II. Radiation damage at high temperature and high dose G.P. PELLS and D.C. PHILLIPS  Single-crystal α-Al2O3 irradiated with 1 MeV electrons in a high-voltage electron microscope at several fixed temperatures in the range 320- 1070 K. • At 770 K and below the nature of the observed damage could not be resolved. • At 870 K and above island-like surface features rapidly formed followed by dislocations which grew to form a dense network. • After high doses (>l0 dpa) precipitates were observed. • The associated diffraction patterns and their temperature dependence suggested that the precipitates were of aluminum metal.
  • 61. Cryogenic radiation response of sapphire R. Devanathan, W.J. Weber, K.E. Sickafus, M. Nastasi, L.M. Wang, S.X. Wang Sapphire (a-Al2O3) irradiated by heavy-ion and electron at cryogenic temperatures using a high-voltage electron microscope. 1.5 MeV Xe 1 MeV Kr Dual beam of 1 MeV Kr and 900 keV electrons T=20 to 100 K At 20 K, α-alumina is amorphized by 1.5 MeV Xe about 3.8 (dpa) Critical temperature for amorphization is about 170 K The material remains crystalline when irradiated at 26 K with a dual beam of heavy ions and electrons. Electron irradiation can promote damage annealing, even at cryogenic temperatures, by causing the migration of point-defects produced in ceramics by ion irradiation.
  • 62. Effects of ionizing radiation in ceramics R. Devanathan ,K.E. Sickafus, W.J. Weber, M. Nastasi α-Al2O3 was irradiated with 1 MeV Kr+ or 1.5 MeV Xe+ and 1 MeV electrons in a high-voltage electron microscope interfaced to an ion accelerator that enabled the in situ observation of the structural changes. The results indicate that simultaneous electron irradiation can retard or prevent amorphization by heavy ions. Comparison with similar experiments in metals suggests that highly ionizing radiation can anneal damage to the crystal lattice in ceramics by enhancing the mobility of point defects.
  • 63. High flux e- O2 ~1000 Å heat Al ppt. Vacuum >40 dpa Long time Surface at high stress