SlideShare uma empresa Scribd logo
1 de 3
Baixar para ler offline
EJERCICIOS
                                                       INTEGRALES IMPROPIAS
En los siguientes ejercicios determinar si la integral impropia es convergente o
divergente. Si es convergente evaluar la integral.
                                                     t

                 x.2                                   x.2
                           x                                  x
                                dx  lim                             dx
   1.                                      t  
                0                                      0

                        x.2  x   1
                         ln 2 ln 2 
                lim (               2  x dx) t0
                 t  

                        x.2  x     1
                lim (                .2  x ) t0
                 t    ln 2 ln 2  2


                          t .2  t   2 t           1
                lim (                     0         )
                 t      ln 2 ln 2     2
                                                 ln 22
                      1                   t.     1
                           lim 2 t (              )
                 ln 2 t  ln 2 ln 22
                        2



               
                          1
                                                        1
                                       lim 2 t . ln 2 
                                                                  
                                                                0  
                    ln 2        2     t  
                                                         ln 2    

               
                          1
                                       lim 2 t    
                    ln 2        2       t  


                          1
                                     0
                    ln 22
                          1
               
                    ln 22
Por tanto al aplicar la regla de L` Hospital en el límite dado se obtiene la integral
converge
           0                                   0

            x.e         dx  lim              x
                     x                                 2
   2.                                                      .e x dx
                                      t  
                                             t

            lim ( x .e  2  x.e x dx) t0
                              2       x
                t  

            lim ( x 2 .e x  2( x.e x   e x dx))t0
                t  

            lim ( x 2 .e x  2( x.e x  e x ))t0
                t  

            lim (e x ( x 2  2 x  2))t0
                t  

            lim (1(0  0  2)  e t (t 2  2t  2)
                t  

            2  lim (e t (2t  2)
                         t  

            2  lim 2e t
                         t  

            2  2 lim e t
                           t  

           2
Por tanto al aplicar la regla de L` Hosp en el limite dado se obtiene la integral converge

                 4                                      t
                          dx                                     dx
       3.
                 
                 2    16  x 2
                                       lim 
                                           t 4
                                                        2    16  x 2
                                                    t
                                 x 
                  lim  sen 1  
                   t 4
                                 4  2
                                t           2 
                  lim  sen 1    sen 1  
                   t 4
                                4           4 
                                       1
                  sen 1 1  sen 1  
                                       2
                             
                         
                      2       6
                      
                 
                      3

    Por tanto la integral converge

                 1                        3                         1
       4.                 dx                       dx                     dx
                  x  3
                 4
                                  3
                                          x  3
                                          4
                                                             3
                                                                     x  3
                                                                     3
                                                                               3




    Debemos evaluar la convergencia de las dos integrales de la derecha.
            3                                 t
                  dx                                        dx
             x  3
            4
                          3
                               lim 
                                  t  3  4
                                                x  3         3

                                                    t
                           1                      
             lim                               
                                                 
                        2x  3
                                2
             t  3                                4
                                                             t
                          1      1
             lim             
                      2t  32 2 
             t  3                4
            
                  Como esta integral no diverge, la integral
1
       dx
 x  3
4
             3
                     también diverge.

       2                             t
5.
        tagxdx  lim  tagxdx
       0
                    
                    t
                             
                                 0
                         2

        lim ln sec x 0
                                 t

                
           t
                2

        lim ln sec x  1
                
           t
                2

      
     Por tanto la integral diverge.

Mais conteúdo relacionado

Destaque

Presentation at exhibitor show 2013 with kappes comments dd
Presentation at exhibitor show 2013 with kappes comments ddPresentation at exhibitor show 2013 with kappes comments dd
Presentation at exhibitor show 2013 with kappes comments dd
Christopher Kappes
 
The trade show ecosytem with kappes additions ch
The trade show ecosytem with kappes additions chThe trade show ecosytem with kappes additions ch
The trade show ecosytem with kappes additions ch
Christopher Kappes
 
Reserch methodology
Reserch methodologyReserch methodology
Reserch methodology
IIFP
 
Gn archives eps 1 lab_rats sample
Gn archives eps 1 lab_rats sampleGn archives eps 1 lab_rats sample
Gn archives eps 1 lab_rats sample
Daniel Ruke
 
History of computers in education
History of computers in educationHistory of computers in education
History of computers in education
floribc
 

Destaque (15)

Como aprender a vivir
Como aprender a vivirComo aprender a vivir
Como aprender a vivir
 
Audition
AuditionAudition
Audition
 
Law presentation ....
Law presentation ....Law presentation ....
Law presentation ....
 
Conversition Webinar Integrated Social Media Research 11th April 2012
Conversition Webinar  Integrated Social Media Research   11th April 2012Conversition Webinar  Integrated Social Media Research   11th April 2012
Conversition Webinar Integrated Social Media Research 11th April 2012
 
Presentation at exhibitor show 2013 with kappes comments dd
Presentation at exhibitor show 2013 with kappes comments ddPresentation at exhibitor show 2013 with kappes comments dd
Presentation at exhibitor show 2013 with kappes comments dd
 
The trade show ecosytem with kappes additions ch
The trade show ecosytem with kappes additions chThe trade show ecosytem with kappes additions ch
The trade show ecosytem with kappes additions ch
 
ใบงานสำรวจตนเองM607 23
ใบงานสำรวจตนเองM607 23ใบงานสำรวจตนเองM607 23
ใบงานสำรวจตนเองM607 23
 
Facing col writ.2ppt
Facing col writ.2pptFacing col writ.2ppt
Facing col writ.2ppt
 
Reserch methodology
Reserch methodologyReserch methodology
Reserch methodology
 
Tc sales direct
Tc sales directTc sales direct
Tc sales direct
 
Se démarquer et convertir rapidement grâce au print connecté et à la réalité ...
Se démarquer et convertir rapidement grâce au print connecté et à la réalité ...Se démarquer et convertir rapidement grâce au print connecté et à la réalité ...
Se démarquer et convertir rapidement grâce au print connecté et à la réalité ...
 
Ps argumentation
Ps argumentationPs argumentation
Ps argumentation
 
Gn archives eps 1 lab_rats sample
Gn archives eps 1 lab_rats sampleGn archives eps 1 lab_rats sample
Gn archives eps 1 lab_rats sample
 
Historical geology
Historical geologyHistorical geology
Historical geology
 
History of computers in education
History of computers in educationHistory of computers in education
History of computers in education
 

Ejercicios

  • 1. EJERCICIOS INTEGRALES IMPROPIAS En los siguientes ejercicios determinar si la integral impropia es convergente o divergente. Si es convergente evaluar la integral.  t  x.2  x.2 x x dx  lim dx 1. t   0 0 x.2  x 1 ln 2 ln 2   lim (  2  x dx) t0 t   x.2  x 1  lim (  .2  x ) t0 t   ln 2 ln 2  2 t .2  t 2 t 1  lim (  0 ) t   ln 2 ln 2  2 ln 22 1 t. 1   lim 2 t (  ) ln 2 t  ln 2 ln 22 2  1   1  lim 2 t . ln 2    0  ln 2 2 t    ln 2   1  lim 2 t   ln 2 2 t   1  0 ln 22 1  ln 22 Por tanto al aplicar la regla de L` Hospital en el límite dado se obtiene la integral converge 0 0  x.e dx  lim x x 2 2. .e x dx t    t  lim ( x .e  2  x.e x dx) t0 2 x t    lim ( x 2 .e x  2( x.e x   e x dx))t0 t    lim ( x 2 .e x  2( x.e x  e x ))t0 t    lim (e x ( x 2  2 x  2))t0 t    lim (1(0  0  2)  e t (t 2  2t  2) t    2  lim (e t (2t  2) t    2  lim 2e t t    2  2 lim e t t   2
  • 2. Por tanto al aplicar la regla de L` Hosp en el limite dado se obtiene la integral converge 4 t dx dx 3.  2 16  x 2  lim  t 4 2 16  x 2 t   x   lim  sen 1   t 4   4  2  t  2   lim  sen 1    sen 1   t 4  4  4  1  sen 1 1  sen 1   2     2 6   3 Por tanto la integral converge 1 3 1 4. dx dx dx  x  3 4 3   x  3 4 3   x  3 3 3 Debemos evaluar la convergencia de las dos integrales de la derecha. 3 t dx dx  x  3 4 3  lim  t  3  4  x  3 3 t  1   lim        2x  3 2 t  3   4 t  1 1  lim       2t  32 2  t  3   4  Como esta integral no diverge, la integral 1 dx  x  3 4 3 también diverge.
  • 3. 2 t 5.  tagxdx  lim  tagxdx 0  t  0 2  lim ln sec x 0 t  t 2  lim ln sec x  1  t 2  Por tanto la integral diverge.