Ligacoes quimicas

1.343 visualizações

Publicada em

LIGAÇÕES QUIMICAS

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
1.343
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
26
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Ligacoes quimicas

  1. 1. Ligações químicas Introdução As ligações químicas unem os átomos, porém nem todos os átomos conseguem formar ligações. Dois átomos de um gás nobre exercem entre si uma atração mútua tão fraca que não conseguem formar uma molécula. Por outro lado, a maioria dos átomos forma ligações fortes com átomos da própria espécie e com outros tipos de átomos.
  2. 2. Em busca de uma configuração estável Uma molécula só será formada se esta for mais estável e tiver menor energia do que os átomos individuais. Com exceção dos gases nobres, os demais átomos têm tendência de formar moléculas através do estabelecimento de ligações.
  3. 3. De maneira geral, a ligação química pode ser definida como uma força resultante atrativa que existe entre alguns átomos, quando estes se aproximam. Esta força mantém um conjunto de dois ou mais átomos unidos formando assim os compostos químicos. Ligações químicas
  4. 4. Características importantes da ligação química: polaridade, distância e energia. Ligações químicas
  5. 5. Diferença entre os compostos Fluorita – CaF2 Enxofre – S8 Aço – Fe + C
  6. 6. A baixa energia dos gases nobres está associada ao fato de possuírem o nível eletrônico mais externo completamente preenchido. Essa estrutura é frequentemente denominada estrutura de gás nobre. Configuração estável
  7. 7. Propriedades atômicas dos gases nobres É necessário grande quantidade de energia para desemparelhar elétrons, romper nível completamente preenchido e promover elétron para outro nível.
  8. 8. Propriedades atômicas dos gases nobres
  9. 9. Tipos de ligações 1)Primárias: São de natureza química, onde os átomos estão unidos por forças fortes (iônica,covalente e metálica). 2)Secundárias: Caracterizam-se por forças físicas. As ligações primárias são cerca de dez vezes mais fortes que as ligações secundárias.
  10. 10. Tabela 1. Propriedades físicas de alguns compostos
  11. 11. Tabela 1. Propriedades físicas de alguns compostos
  12. 12. Os átomos podem adquirir uma configuração eletrônica estável por três maneiras: -perdendo, recebendo ou compartilhando elétrons. Por isso, os elementos podem ser classificados segundo a sua eletronegatividade e eletropositividade. Tipos de ligações
  13. 13. Conceitos importantes Muitas das propriedades físicas dos materiais podem ser previstas conhecendo- se as forças interatômicas que mantêm os átomos unidos.
  14. 14. Forças e energia de ligação Forças interatômicas: 1)Força atrativa (FA) 2)Força repulsiva (FR)
  15. 15. - Quanto mais próximos os átomos maior a força atrativa entre eles, mas maior ainda são as forças repulsivas devido a sobreposição das camadas mais internas.
  16. 16. Atrações e repulsões entre dois átomos em aproximação A FA entre os átomos mantém os mesmos unidos e são responsáveis pelas ligações químicas. Essas forças ocorrem devido à atração Coulombiana entre as diferentes espécies de íons de cargas opostas, criadas nas ligações químicas.
  17. 17. A FR entre os elétrons de dois átomos, quando estão suficientemente próximos, é responsável, em conjunto com as forças de atração, pela posição de equilíbrio dos átomos na ligação química (distância interatômica). A distância interatômica é a distância de equilíbrio onde as FA e FR são iguais.
  18. 18. COMPRIMENTO DE LIGAÇÃO É a distância entre os centros de dois átomos unidos por uma ligação química: a)F-F = 0,064 nm + 0,064 nm = 0,128 nm b)H-H = 0,037 nm + 0,037 nm = 0,074 nm c) H-F = 0,037 nm + 0,064 nm = 0,101 nm
  19. 19. Forças e energias de ligação - A distância entre 2 átomos é determinada pelo balanço das forças atrativas e repulsivas. - Quando a soma das forças atrativas e repulsivas é zero, os átomos estão na chamada distância de equilíbrio.
  20. 20. FORÇA DE LIGAÇÃO É a soma das forças atrativas e repulsivas entre os átomos.
  21. 21. 1 - os dois átomos estão afastados um do outro. 2 - a esta distância internuclear, há atração entre os dois átomos. 3 - neste ponto considera-se que está estabelecida a ligação covalente. As atrações são mais fortes que as repulsões . 4 - se os átomos se aproximarem ainda mais, as repulsões entre os núcleos começam a ser maiores que as atrações elétrons-núcleos, aumentando a instabilidade da molécula e a sua energia.
  22. 22. Dependendo do caráter eletropositivo ou eletronegativo dos átomos envolvidos, três tipos de ligações químicas primárias podem ser formadas:
  23. 23. Em todos os tipos de ligação química as forças de ligação são essencialmente eletrostáticas (ou de Coulomb). Ligações químicas Charles Augustin Coulomb (1785)
  24. 24. Ligação iônica -Transferência de elétrons entre elemento eletropositivo (metal) e eletronegativo (não metal). - Formação de íons de cargas opostas (força eletrostática). - Resulta da atração eletrostática entre cátions e ânions.
  25. 25. Ligação iônica Exemplo: Formação de cloreto de sódio.
  26. 26. Formação de cloreto de sódio.
  27. 27. Retículo cristalino - As forças atrativas eletrostáticas entre os átomos é não-direcional → os átomos num material iônico arranjam-se de forma que todos os íons positivos têm como vizinho mais próximo íons negativos.
  28. 28. A estrutura cristalina de um sólido é o resultado da forma ordenada com se encontram os átomos num composto iônico ou molecular. Por outro lado, estruturas amorfas são formadas por arranjos atômicos aleatórios, sem simetria ou ordenação. Estrutura cristalina e amorfa
  29. 29. A ligação iônica e os sólidos iônicos Os íons se ordenam, regularmente, dando lugar a unidades que repetem nas três direções do espaço, dando lugar a uma estrutura cristalina (célula unitária). TiO2 NaCl
  30. 30. Estrutura cristalina
  31. 31. A estrutura interna dos cristais
  32. 32. A estrutura interna dos cristais
  33. 33. A estrutura interna dos cristais A estrutura interna dos cristais 1) Sistema cúbico, ou isométrico 2) Sistema tetragonal 3) Hexagonal 4) Hexagonal compacta
  34. 34. 5) Romboédrico, A estrutura interna dos cristais 6) Monoclínico 7) Triclínico 8) Ortorrômbico
  35. 35. A ligação iônica e os sólidos iônicos
  36. 36. É a energia requerida para separar um mol de um composto sólido iônico em íons gasosos (U ou H > 0) ou a energia liberada por mol de íons gasosos quando eles se unem e formam um mol do sólido (U ou H < 0). Energia de rede ou reticular ou de coesão ou de estabilidade (U) Na rede cristalina  maior o ânion, menor é a energia de rede ou de estabilidade.
  37. 37. A energia de rede aumenta quando:
  38. 38. Estrutura de Lewis Gilbert N. Lewis em 1916 inventou uma forma der mostrar os elétrons de valência.
  39. 39. - São sólidos nas condições ambiente; - Apresentam altos pontos de fusão e ebulição; - São condutores de eletricidade quando fundidos ou dissolvidos em água; - A maioria dos compostos são solúveis em água. Propriedades dos compostos iônicos
  40. 40. Propriedades dos compostos iônicos
  41. 41. Segundo Gilbert Newton Lewis, 1916, na formação de compostos pouco polares ou apolares dois átomos com tendências parecidas de ganhar elétrons se mantêm ligados pelo compartilhamento de um par de elétrons, de modo que cada átomo complete seu grupo de oito elétrons na camada mais externa. Ligação covalente
  42. 42. Postulados de Lewis de 1916 1) Em todos os átomos existe um núcleo positivo que permanece inalterado durante as transformações químicas; 2) O átomo é composto de um núcleo e camadas, que, no caso do átomo neutro, contêm um número de elétrons negativos igual ao número de cargas positivas no núcleo. O número de elétrons na camada mais externa pode variar entre 0 e 8 durante as transformações químicas;
  43. 43. 3) O átomo tende a exibir um número par de elétrons nas camadas e especialmente exibir oito elétrons, que são normalmente arranjados simetricamente nos oito vértices de um cubo; 4) As camadas de dois átomos são mutuamente interpenetráveis;
  44. 44. 5) Elétrons podem ordinariamente ocupar outras posições na camada mais externa com menos de oito elétrons de um átomo. 6) As forças elétricas entre partículas subatômicas que estão muito próximas não obedecem às leis da eletrostática. Postulados de Lewis de 1916
  45. 45. Ligação covalente A ligação covalente entre átomos ocorre quando dois átomos eletronegativos se aproximam. Nesse caso os átomos compartilham elétrons para atingir a configuração eletrônica de gás nobre. Atração recíproca dos dois núcleos pelos elétrons
  46. 46. Valência de um átomo é o número máximo de ligações químicas que ele pode efetuar. A valência de um átomo é igual ao número de elétrons usado na formação de ligações químicas. Uma ligação covalente envolve o compartilhamento de um par de elétrons de valência de dois átomos. VALÊNCIA
  47. 47. Teoria da ligação de valência (TLV) Dois átomos que possuem um orbital com um elétron desemparelhado, aproximam-se até que ocorra uma sobreposição, ou interpenetração, destes orbitais. Ligação covalente
  48. 48. - Orbitais atômicos semipreenchidos sobrepõem- se para formar ligações; - O n° total de elétrons não é maior que 2; Linus Pauling
  49. 49. TLV
  50. 50. Distância internuclear e energia
  51. 51. Orbitais s e p
  52. 52. 1) Ligações sigma (σ): São aquelas que os orbitais atômicos interpenetram no mesmo eixo. a)H – H: b)(σ) σ (s-s); Ligação covalente
  53. 53. b) H – Cl: σ (s-p); c) Cl – Cl: σ (p-p);
  54. 54. 2) Ligação dupla (ligação pi - ) O2  O = O Ligação covalente
  55. 55. 3) Ligação tripla N2  N ≡ N Ligação covalente
  56. 56. Ressonância Os elétrons envolvidos em estruturas de ressonância são ditos deslocalizados. Apenas os elétrons mudam de posição na molécula.
  57. 57. Ressonância Molécula do gás ozônio Fórmula estrutural Fórmula molecular Fórmula de Lewis
  58. 58. Exercícios Mostrar se há ressonância na estrutura do: a)Dióxido de carbono b)Monóxido de carbono c) Trióxido de enxofre d) Carbonato e) Nitrito f)Nitrato g)Acetato
  59. 59. 1) Conte os elétrons de valência; Estrutura de Lewis - Espécies poliatômicas 2) Escreva os arranjos mais prováveis; 3) Coloque um par de elétrons entre cada par de átomos ligados; 4) Complete o octeto (ou o dublete, no caso do H) colocando os pares de elétrons remanescentes de cada átomo. Se não existirem pares de elétrons suficientes, forme ligações múltiplas; 5) Represente cada par de elétrons ligados por uma linha. Verifique se cada átomo tem um o octeto ou um dublete.
  60. 60. Representa o número de elétrons que um átomo ganharia ou perderia na formação de uma ligação covalente pura com outros átomos. Carga formal (CF) A carga de um átomo, em uma molécula ou íon, é calculada assumindo um igual compartilhamento dos elétrons de ligação. O valor da carga formal é utilizado para definir a fórmula estrutural mais estável de uma molécula.
  61. 61. CF= EV – [EPI + ½(EPL) CF= Carga Formal EV= Número de elétrons de valência EPI= Número de elétrons contidos nos pares isolados EPL= Númerode elétrons contidos nos pares de ligação Carga formal (CF) Ou CF = Diferença entre o número de elétrons de valência e o número de elétrons representados nas estrutura de Lewis.
  62. 62. Carga formal (CF) A estrutura mais estável tem: • a carga formal mais baixa em cada átomo; • a carga formal mais negativa nos átomos mais eletronegativos.
  63. 63. Considere: Para o C: • Existem 4 elétrons de valência (pela tabela periódica). • Na estrutura de Lewis, existem 2 elétrons não- ligantes e 3 da ligação tripla. Há 5 elétrons pela estrutura de Lewis. • Carga formal: 4 - 5 = -1.
  64. 64. Para o N: • Existem 5 elétrons de valência. • Na estrutura de Lewis, existem 2 elétrons não-ligantes e 3 da ligação tripla. Há 5 elétrons pela estrutura de Lewis. • Carga formal = 5 - 5 = 0. Escrevemos:
  65. 65. 1) Íon nitrônio (NO2+) Qual estrutura é mais estável? a) Satisfaça o octeto usando ligações múltiplas b) Determine a carga formal
  66. 66. Calculando a CF para CNO- Qual estrutura é mais estável?
  67. 67. Calculando a CF para o (SO4)2- Qual estrutura é mais estável?
  68. 68. Calculando a CF para o (PO4)3- A estrutura b é a mais provável, pois apresenta menor CF para os átomos. Qual estrutura é mais estável?
  69. 69. Qual estrutura é mais estável?
  70. 70. Qual estrutura é mais estável?
  71. 71. Exceções à regra do octeto Octeto incompleto BF3
  72. 72. Camada de valência expandida
  73. 73. Camada de valência expandida
  74. 74. Camada de valência expandida
  75. 75. Geometria de alguns íons
  76. 76. A ligação metálica ocorre entre átomos de um mesmo metal ou entre átomos de metais diferentes (ligas). LIGAÇÃO METÁLICA MODELO: Íons positivos num mar de elétrons móveis
  77. 77. Retículo de esferas rígidas (cátions) mantidos coesos por elétrons que podem se mover livremente – elétrons livres (“mar de elétrons”). Elétrons mais externos se encontram muito longe do núcleo. Os metais possuem baixa energia de ionização – tornam-se cátions facilmente. A força de coesão seria resultante da atração entre os cátions no reticulado e a nuvem eletrônica.
  78. 78. Ligas metálicas - Amálgama dental: Hg + Ag + Sn - Bronze: Cu + Sn; - Aço inoxidável: C + Fe + Cr + Ni - Ouro 18 quilates: Au + Cu + Ag - Latão : Cu + Zn
  79. 79. Caráter da ligação química Quando a diferença de eletronegatividade, entre os átomos ligantes, for ≥ 1,7 a ligação iônica.
  80. 80. Polaridade das ligações covalentes 1- Apolar: é aquela que não constitui dipolo elétrico (momento dipolar,  = zero). As eletronegatividades dos átomos ligados são iguais ou muito próximas. H2; F2 ; O2 ; N2 ; Cl2. Cl Cl Orbitais moleculares:
  81. 81. 2) Polar: Formada pela ligação entre átomos de eletronegatividade diferentes. A molécula com extremidades com cargas é uma molécula com dipolo e que possui um momento de dipolo (). Ex. HCl; HF. Polaridade das ligações covalentes
  82. 82. Ligação covalente polar
  83. 83. Escala de eletronegatividade de Pauling Valores para alguns elementos: F= 4,0; O= 3,5; N= 3,0; Cl = 3,0; Br= 2,96; I= 2,66; S = 2,58; C= 2,5; H = 2,1; P = 2,1; Na= 0,8; Fr = 0,7.
  84. 84. É o arranjo tridimensional dos átomos numa molécula, que é determinado pela orientação relativa das suas ligações covalentes. Esta estrutura é mantida quer a substância seja sólida, líquida ou gasosa. É um parâmetro fundamental para a previsão da polaridade da molécula; Permite inferir sobre o tipo e intensidade das interações intermoleculares e como tal prever as propriedades físicas e químicas dos compostos. Geometria molecular
  85. 85. Geometria molecular Teoria da repulsão eletrônica dos pares de elétrons da camada de valência Prediz a geometria de uma molécula com base na repulsão eletrostática entre pares de elétrons (ligantes e não ligantes). Depende: - Disposição espacial dos núcleos dos átomos. - Repulsão dos pares eletrônicos das ligações ou pares livres nos átomos.
  86. 86. Previsão da geometria molecular Repulsão por pares de elétrons de valência RPEV
  87. 87. Geometria molecular
  88. 88. 1) Molécula formada por 2 átomos: - Geometria linear. Ex: HBr, HCl, H2, N2 ,O2. Geometria molecular 2) Molécula formada por 3 átomos: a) Geometria linear - Se o átomo central não apresentar par de elétrons livre. Ex: CO2,CS2, N2O, HCN.
  89. 89. Geometria molecular b) Geometria angular. Se o átomo central possuir par de elétrons emparelhados disponíveis. Ex: H2O (ângulo de 104,5º). Ex: H2S; SO2; NOCl
  90. 90. 3) Molécula formada por 4 átomos a) Trigonal plana: Átomo central não possuir elétrons livres. SO3; CH2O; COCl2; NO2Cl. Geometria molecular
  91. 91. Geometria molecular b) Piramidal ou pirâmide trigonal: Átomo central possuir elétrons livres. Ex: NH3; NCl3; Pl3; SOCl2. Ângulo: 1070.
  92. 92. NH3
  93. 93. Geometria molecular 4) Molécula formada por 5 átomos Geometria tetraédrica independente dos átomos envolvidos. Ex: CH4; CHCl3; SiCl4; POCl3.
  94. 94. CH4
  95. 95. Geometria molecular 5) Molécula formada por 6 átomos: Bipirâmide trigonal ou bipirâmide triangular. PCl5; PI5. 6) Molécula formada por 7 átomos: Octaédrica. Ex: SF6.
  96. 96. Resumo – Ligações simples C, Si N, P O, S F, Cl, Br, I
  97. 97. C2H6
  98. 98. C2H4
  99. 99. C2H2
  100. 100. Geometria Macromolécula
  101. 101. Dicloro metano CH2Cl2: - estrutura tetraédrica; - molécula polar. Geometria e polaridade das moléculas Metano CH4: - estrutura tetraédrica; - molécula apolar.
  102. 102. Forças de ligações secundárias → Forças de fraca intensidade, por exemplo: HCl(l) → HCl(v) EV = 16kJ, enquanto que: HCl(g) → H(g + Cl(g) Edissociação = 431 kJ; → Agem quando as moléculas estão próximas; → São responsáveis pelas diferenças nas propriedades físicas dos compostos, como ponto de fusão ebulição.
  103. 103. Forças de ligações secundárias Aumento da intensidade das forças intermoleculares A coesão da matéria nos estados físicos, sólido, líquido e gasoso é consequência da atracção entre moléculas através das ligações intermoleculares.
  104. 104. Forças de ligações secundárias Forças de Van der Waals Forças intermoleculares Existem entre Exemplos Forças de dispersão de London Todos os tipos de moléculas Principal- mente apolares Dipolo permanente (Forças de Debye) Moléculas polares HCl Dipolo-dipolo (Forças de Keesom) Moléculas polares HCl ; CH3CH2OH
  105. 105. A mais fraca de todas as forças intermoleculares. • Também chamadas de forças dipolo induzido-dipolo induzido. • O núcleo de uma molécula (ou átomo) atrai os elétrons da molécula adjacente (ou átomo). • Por um instante, as nuvens eletrônicas ficam distorcidas. • Nesse instante, forma-se um dipolo (denominado dipolo instantâneo). 1) Forças de dispersão de London
  106. 106. 1) Forças de dispersão de London A nuvem eletrônica distribui-se de uma forma esférica à volta do núcleo. O movimento do elétron, provoca num determinado instante um dipolo instantâneo. Molécula apolar Dipolo instantâneo + -
  107. 107. 1) Forças de dispersão de London + - A B Dipolo instantâneo Molécula apolar + - A - + Dipolo induzido Esta polarização é induzida resultando as forças de atração entre as moléculas.
  108. 108. 1) Forças de dispersão de London Dependem: - do número de elétrons; - do tamanho da molécula; - da forma da molécula. À medida que o raio atômico aumenta (aumento do nº de elétrons) as forças de dispersão de London são mais fortes.
  109. 109. 1) Forças de dispersão de London Composto Massa molecular (U) PE (Kelvin) F2 38 85,1 Cl2 71 238,6 Br2 159,8 332,0 I2 253,8 457,6 He 4,0 4,6 Ne 20,2 27,3 Ar 39,9 87,5 Kr 83,8 120,9 Xe 131,3 166,1
  110. 110. São responsáveis pela atração existente entre moléculas polares. São forças de natureza elétrica de natureza média. 2) Forças dipolo-dipolo ou dipolo permanente (Forças de Keesom)
  111. 111. Qual das molécula é mais polar? C H3C H3C + O - C H3C H3C + O - C H3C H3C + O - + - + - - + + + + - - - Forças atrativas dipolo-dipolo Ex: Butanona + -
  112. 112. 3) Ligação de Hidrogênio Caso especial de forças dipolo-dipolo. • Os pontos de ebulição de compostos com ligações H-F, H-O e H-N são altos, indicando que as interações intermoleculares são elevadas.
  113. 113. Ligação de Hidrogênio
  114. 114. São atrações eletrostáticas entre os íons, sendo bem organizado no estado sólido. Uma grande quantidade de energia térmica é necessária para quebrar a estrutura organizada do sólido e levá-la para a estrutura líquida. Sais orgânicos, por exemplo, apresentam elevados PF e PE. Exemplo: Acetato de sódio (CH3CO2Na), PF = 324ºC, PE = Decomposição antes da evaporação. 4) Força Íon-Íon

×