SlideShare a Scribd company logo
1 of 11
101 Things to Know About Biology
This list is something that I have composed over the years and is a work in progress (a living
 work, if you will). It is ever changing! It was based on the old "Regents Biology" syllabus,
 but it still holds true for the new Living environment Curriculum (except it contains more
than is most likely needed). Please take this list with a grain of salt and understand that my
                            humor is not the most refreshing stuff...)

1. Bio is life, the rest is just details.

2. Seven main life functions: nutrition, transport, respiration, excretion, synthesis, regulation
and growth.

3. Reproduction is a life function, but it is not necessary for individuals (only the species).

4. Kings play chess on flat glass stools = Linnaean Classification: kingdom, phylum, class, order,
family, genus, species. Genus is always capitalized and species is always lowercase. Genus and
species will make up an organisms "Scientific name".

5. Homeostasis is the key that fits the lock called life = bio-balance.

6. Five main kingdoms: Mother protests funny pink alligators = Monera, Protista, Fungi, Plants,
Animals

7. Cells are: (a) the basic unit of structure and function; and (b) come only from pre-existing
cells.

8. Exceptions to Cell Theory: (a) where did the first cell come from? (b) viruses undergo
reproduction and synthesis, but no other functions. (c) although they are organelles,
mitochondria and chloroplasts will reproduce independently of the cell.

8. Total magnification = ocular multiplied by objective

9. To adjust focus, coarse, then fine; to adjust brightness, adjust iris diaphragm.

10. Magnification increases, field of view decreases; Magnification decreases, field of view
increases.

11. Indicators and stains: Lugol's Solution - stains cellulose, turns starch blue-black. Methylene
Blue dyes most cells dark blue. Bromothymol blue turns yellow in presence of carbon dioxide,
back to blue in presence of oxygen, phenolpthalein - acid base indicator - clear in presence of
acid, pink in presence of bases.

12. 1 millimeter = 1,000 micrometers (¨µ = symbol for micrometers).

13. Plant cells are "cuboidal" and animal cells end to be more "spherical". This is due to the cell
wall (cellulose wall) that gives shape to the plant cells.

14. Two kinds of molecules: either organic (containing C and H) or inorganic (lack either C or
H)

15. Carbohydrates: CarbOHydrates always contain C:H:O in a close to 1:2:1 ratio. -starch,
sugars.

16. Lipids: Sometimes called fats - contain C:H:O ratio of 1:2:>>1 ratio. - Cholesterol, fats,
waxes, oils.

17. Proteins: Composed of building blocks called amino acids. Amino acids are composed of an
amino group (-NH2), a carboxyl group (-COOH) and another group (R=variable sidechain)

18. Enzymes - (a) each chemical reaction requires a specific enzyme. (b) enzymes modify
(speed up or slow down) the rate of reaction.

19. Just like a key fits one lock, enzymes and substrates fit together. Enzymes are effected by:
temperature, relative amounts of enzyme or substrate, and pH.

20. If it ends in -ase, it is most likely an enzyme.

21. Photo- means "light"; -synthesis means "to make". You do the math! It is the basis of
nutrition in autotrophs (those that AUTOmatically make their own food.)

22. Plants grow best at the wavelength they are not (green doesn't work, red and blue are best)

23. 6CO2 + 12H2O ---light and enzymes- C6H12O6 + 6H2O + 6O2

24. Results of Photosynthesis: glucose is formed for: (a) use as energy for cellular respiration;
(b) synthesized into other metabolic compounds. (c) converted into storage products by
dehydration synthesis and other reactions.

25. Nutrition in Heterotrophs: Ingestion (taking IN), digestion (DIviding), and egestion (Ejecting
wastes).

26. Carbohydratessimple sugars (fructose, galactose, glucose); lipidsfatty acids and
glycerol;proteinsamino acids

27. Nutrition: Fungi - rhizoids; Protozoan - pseudopods, phagocytosis, food vacuole; Hydra -
stinging cells (nematocysts), gut cavity; Earthworm - one-way, pharynx, crop, gizzard,
intestine; Grasshopper - gastric caeca, mouth parts, salivary glands, one-way; Human - one way
alimentary canal, specialized structures and glands for breakdown.

28. Cell Membrane: called a bilipid layer (protein floating between two lipid layers "floating
protein icebergs in a fatty sea"; Diffusion - movement of molecules from an area of high
concentration to an area of low concentration; Osmosis - diffusion across a semi-permeable
membrane.

29. Phagocytosis (cell eating) - engulfing of undissolved large particles by "growing" around
them and enclosing them in a vacuole; Pinocytosis (cell drinking) - vacuoles form at cell surface
"sip" large particles through the cell membrane.

30. Active transport in a "pump" (it's active) that move particles through a membrane - it
requires energy.

31. Intra- versus Inter-: Remember it this way: If you are intra, you stay inside the track (within
its' boundaries). If you are inter, you are interfering with other cells (between the cells).

32. Plants - bryophytes look like a brush - short and low with no vascular tissue. Tracheophytes
are taller because they have vascular tissue (xylem & phloem).

33. Root hairs - increase water absorption - Someone with lots of hair can have wet hair for a
long time if they don't dry it. Bald people cannot get wet hair!

34. Xylem & Phloem - Remember that water always phloes (flows) down a hill.

35. Transport in animals: Hydra-flagellated cells that assist in circulation; Earthworm-closed
circulatory system with aortic arches to help move blood that contains hemoglobin;
Grasshopper-open circulatory system and blood without hemoglobin; Human - closed
circulatory system, four chambered heart, hemoglobin rich blood.

36. Respiration - think energy release and transfer. ATP - energy molecule; aerobic - when you
do aerobics, you require a lot of oxygen. If no oxygen, then it is anaerobic (anti-aerobic, for
those of you who do not like to exercise!)

37. Fermentation-breakdown of glucose that produces lactic acid, alcohol, and or carbon
dioxide.

38. Aerobic respiration - that which uses oxygen - produces 38 ATP molecules in eukaryotic
organisms.

39. Respiratory adaptations: plants - stoma (what's stomata wit' you?) and lenticels; hydra - gas
exchange in watery environment; earthworm - moist skin air exchange (worms don't last long
on a hot sunny day on the pavement!!); grasshopper-tracheal tubes that "ship" oxygen directly
to tissues; human - moist membranes inside lungs - exchange gases by diffusion across moist
membranes.

40. Excretion - What's waste? - carbon dioxide, water, mineral salts, nitrogenous wastes (most
toxic is ammoniamoderately toxic is urealeast toxic is uric acid)

41. Adaptations: protista - contractile vacuoles; plants - excrete and recycle; hydra-depends on
watery environment; earthworm-carbon dioxide through skin...most nitrogenous wastes
through nephridia; grasshopper water and bodily fluids through tracheal tubes, uric acid
through Malphigian tubules; human - excretion through lungs, excretion of nitrogenous wastes
through nephrons.

42. Regulation - coordination; Hydra-nerve net; earthworm; cerebral ganglion, ventral nerve
cord; grasshopper-fused ganglion ("brain"); human - use your brain (and spinal cord).

43. Chemical control in Plants - lean towards the source of the answer!!! (ie. geotropism -
attraction to ground, phototropism - attraction towards light, hydrotropism - attraction
towards water, etc...) - all due to the concentration of auxins (plant hormones).

44. Chemical control in animals - endocrine glands secrete hormones. Principle use in insects is
metamorphosis (change in the body).

45. Locomotion - NOT a dance step!!!! why do you need it? increased opportunities to obtain
food, seek shelter, avoid predators, move away from toxic wastes, find a mate (kind of like
getting your license allows you to go to McDonald's, get out of the rain, get away from the big
guy that is trying to beat you up, get away from the landfill that stinks, and go pick up your
girlfriend/boyfriend.)

46. Adaptation for locomotion - protista, flagella, pseudopods, or cilia; hydra - mostly sessile,
can somersault or bubble float; earthworm-setae and longitudinal muscles; grasshopper -
jumpers and walkers, occasionally fly; human-endoskeleton that allows them to walk.

47. Nutrition in humans - needed for the energy, growth, repair and maintenance of tissues -
includes water, minerals, fats, carbohydrates, and proteins - foods move via peristalsis -
rhythmic contraction.

48. Starts in mouth - mechanical digestion to increase surface area and chemical digestion of
amylose and simple starch starts here as well. passes through esophagus, into stomach where
protein digestion starts and acid is added to the food, now known as chyme. Into the small
intestine, where in the first foot or so bile (manufactured by liver and stored in gall bladder) is
squirted in to start emulsification of fats and pancreatic juices start to react with the sugars.
Much of the absorption occurs here as the villi (which house the lacteals) absorb dissolved
nutrients directly into the bloodstream. Then, it passes to the large intestine, where it is
compacted, water is removed and recycled, and is passed from the body as feces.

49. Hydrolysis: chemical breakdown of large molecules to small molecules; maltose+water2
glucose; proteins+wateramino acids; lipids+water3 fatty acids and 1 glycerol

50. Malfunctions: constipation - dry fecal mass doesn't pass; diarrhea - loose watery fecal mass
that will pass too easily; appendicitis-inflammation of appendix due to infection; gallstones-
solidification of bile and cholesterol deposits in the gall bladder.

51. Transport - circulatory system: Transport media known as blood - has plasma (liquid), red
blood cells (hemoglobin oxygen carriers), platelets (cell fragments) that trap to form clots.
White blood cells - prevent disease and fight infection; active immunity - antigen-antibody
reaction such as a vaccination; passive immunity-medicines and the like - give temporary
immunity from disease.

52. Transport through the body - occurs in arteries - carry away from heart, veins - carry
towards the heart, and capillaries, connect the arteries and veins - also a site for oxygen and
carbon dioxide to exchange between blood and cells. - Deoxy blood returns to heart through
inferior and superior vena cava to the right atrium. Passes through the Rt. AV valve into the
right ventricle and out to the L and R lungs where it picks up oxygen. Returns to the heart
through the pulmonary veins and empties into the L atrium. It then passes to the L ventricle,
the strongest chamber, where it is then pumped out to the rest of the body through the aorta.
Four types of circulation: coronary - circ to heart muscle; hepatic - circ. to the liver;
pulmonary - circ. to the lungs; and systemic - circ. to entire body.

53. Malfunctions include: high BP (hypertension)-increased arterial pressure that compromises
the elasticity of the vessels; Heart attack-thrombosis-blockage of vessels and subsequent
oxygen deprivation; angina pectoris - heart or chest pain caused by narrowing of vessels and
oxygen deprivation; anemia-impairment of oxygen carrying capability; leukemia-cancer of bone
marrow, the cell producing tissues of the system; AIDS-virus which is blood borne that destroys
disease fighting systems of the body.
54. Respiration - respiratory system: involves the processes of cellular respiration and gas
exchange and the conversion of chemical bond energy from foods into usable energy (ATP) in
human cells. Also referred to as breathing - the diffusion of gases into and out of the blood
across moist membranes after inhalation and expiration of environmental gases.

55. Air Flow - where does it go? In through nose (nasal cavity) and mouth (oral cavity) into the
trachea. Trachea is protected from food entering trachea because of the epiglottis. Passes
through the bronchi, two large tubes that split to each lung. Gradually the "tubes" get smaller:
bronchi become bronchioles, become alveoli (the smallest) and these are surrounded by
capillaries for air exchange. Breathing rate is regulated by carbon dioxide concentration in the
blood which in turn lowers the pH of the blood. Common malfunctions are: bronchitis-
inflammation of the bronchi from dust or other inhalants; asthma-allergic response which
narrows respiratory passages; emphysema-change in structure of lungs characterized by
degeneration of tissues (caused by pollution and cigarette smoke).

56. Excretion-ridding the body of the metabolic wastes. Lungs - get rid of heat, water, and
carbon dioxide. Liver-breakdown and deamination of amino acids, recycling of usable
materials, and destruction of old, worn-out red blood cells. Urinary system - elimination of
urea and unneeded body fluids through kidneys - pass through kidney where blood is filtered,
into the ureter which leads to the bladder-collects and is eliminated through the urethra.
Malfunctions: kidney disease-results from damage to or disease of the kidney - result is buildup
of toxic wastes in blood stream. Gout - inflammation of joints associated with a buildup of uric
acid crystals which lead to arthritic-like painful attacks.

57. Regulation-the nervous system. Organized into a series of neurons (nerve cells) which relay
an electrochemical message from cell to cell. Divided into two parts: CNS (central nervous
system) which includes brain and spinal cord and PNS (peripheral nervous system) which
includes all other nervous tissues. Further extended into the somatic NS to control voluntary
actions and the autonomic NS which controls the automatic or reflex actions of the body.
Malfunctions: meningitis - inflammation of the membranes surrounding brain and spinal cord;
Stroke-caused by cerebral hemorrhage (burst blood vessel) resulting in brain damage; Polio-
viral disease resulting in paralysis (uncommon now since we are all immunized against it).

58. Endocrine system - system of ductless glands that helps to regulate body functions - uses
chemical messages to hit target tissues. Hypothalamus-influences master gland; Pituitary
gland-master gland that governs all other glands, produce Growth stimulating hormone; thyroid
gland - influences metabolism; parathyroid glands - produce parathormone needed for control
of blood calcium levels; adrenal glands influence metabolism, reabsorption of sodium and
chloride ions and adrenalin (fight or flight; Islets of Langerhans-produce insulin and glucagon to
regulate blood sugar levels; Gonads (testes and ovaries) control influence of secondary sex
characteristics.

59. Humans have an ENDOskeleton - this means it is inside. It consists of bones(internal
support); cartilage (cushions bones); tendons(hold muscle to bone); and ligaments(hold bone to
bone). It also has muscle (movement tissue) which is divided into three different type: visceral
(those of the digestive system); cardiac (the heart); and skeletal (pretty self-explanatory).
They work in pairs - one that flexes (flexors) and one that extends(extensors). basic
malfunctions include arthritis (pain associated with swelling around he bones) and
tendinitis(inflammation of the tendons).

60. Two different types of reproduction exist: Asexual (without sex) and sexual(meaning with
sex). Remember, sex is not an act, in the biological sense, but rather a conjoining of the actual
male and female reproductive cells.

61. Asexual: most organisms that are asexual reproduce by means of mitosis - the replication of
nuclear material that is followed by cytokinesis (splitting of the cytoplasm). It is characterized
by 4 stages: prophase, metaphase, anaphase, and telophase. It differs between animal and
plant cells because plant cells for a cell plate. If cells continue to grow at an irregular and
uncontrollable rate, it is called metastasis (cancer).

62. 5 main types of asexual reproduction in organisms. 1. binary fission - bi- means two, so
think of an organism splitting equally into two distinct parts; 2. budding - incomplete division
of cytoplasm, equal division of nuclear material; 3. sporulation-spores, need we say more, drift
off of the mother plant and create new life; 4. Regeneration - re-means again, generation
means to make; so put the two together and we get the answer: the making of new material (it
is a bit more involved, but that's for you to look up.) and lastly 5. Vegetative propagation - the
reproduction of new veggies: think of the different plants, some are bulbs, some have runners,
some are grafted (where do the seeds for seedless orange trees come from?), some are
cuttings.

63. Sexual reproduction - literally the joining (fertilization or fusion) of specialized sex cells
(gametes) to create a fertilized egg (zygote) that will undergo a series of divisions (cleavages)
in which the number of cells increases, but the mass stays the same. Then, the "cell ball"
gastrulates and starts to differentiate and increase in mass and area.

64. These gametes are formed by gametogenesis (genesis means beginning). Oogenesis makes
the egg (ovum, ova, etc) cells and spermatogenesis makes the sperm (male) sex cells.

65. This brings us to meiosis (not the same as mitosis). It occurs in two distinct stages and is
sometimes referred to as reduction division (I know, a math flashback, AAUUGGHHHH!!!!!). In
Meiosis 1, each single stranded chromosome replicates and forms sister chromatids. These
sister chromatids join together, a process called synapsis, having a total of 4n the normal
number of chromosomes. After this, they align at the equator of the cell and then tear apart
into two different cells. Meiosis 2 begins with the alignment of these sister chromatids (now 2n
since it has undergone cytoplasmic division)once again at the center of the two new cells. Once
again, the sister chromatids replicate and then begin to migrate towards the end of the poles.
When cytoplasmic division occurs this time, however, each resulting cell has only the "n"
number of chromosomes. Meiosis in a nutshell is: 2n4n2n & 2n: 2n &2nn & n & n & n. This
produces: in oogenesis - 1 mature egg cell and 3 polar bodies and in spermatogenesis 4 viable
sperm cells.

66. Fertilization and development: to fertilize, you will need 1 "n" male gamete and 1 "n"
female gamete. When you join these two together, you get one fertilized egg (called a zygote)
(Note: Regardless of what your math teacher says, 1+1 does equal 1. However in their defense,
n+n=2n)

67. Fertilization happens either internally, as in humans and most mammals, or externally, as
is the case with fish and amphibians. There are some exceptions to this rule.

68. As far as cleavage (see #63), this cleaving or splitting ball of cells will start to differentiate.
This means it forms new layers that will start to get distinct functions. The ectoderm (outside)
forms the skin and nervous system. The mesoderm (middle) forms the muscles, circulatory
system, skeleton, excretory system, and gonads. The endoderm forms the lining of the
respiratory and digestive systems and portions of the liver and pancreas.

69. A marsupial is a mammal that is nonplacental in which the young are born very prematurely
and get their nutrition from the mammary glands of a mother organism (usually in some form
of pouch as the kangaroo has.

70. The human reproductive system is pretty much the same as most other mammals. The male
system consists mainly of a pair of testes, sperm producing glands, that are held outside the
body in an outpocketing of skin called the scrotum. It is necessary to produce sperm cells and
to deposit the cells into the female reproductive system. The female system is important not
only for reproduction, but also for the development of the young. It consists of a hollow
muscular tube called the vagina, which accepts the penis during intercourse. It is joined
internally by the uterus, the holding place for a developing embryo. In most mammals, the
lining of the uterus is shed periodically to replenish the lining (this is the menstrual cycle). It
consists of 4 stages: follicle stage, ovulation, corpus luteum, and the menstruation. It is
entirely controlled and regulated by hormones, including FSH follicle stimulating hormone, LH-
leutenizing hormone, estrogen, and progesterone. All of these are governed by a negative
feedback system, much the same as the thermostat in your house that regulates temperature.

71. Reproduction in flowering plants: Male flower parts - called the stamen - composed of
anther which produces pollen grains, and the filament - a stalk like structure that holds the
anther at or above the level of the female parts. Female flower parts -commonly called the
pistil is composed of the stigma, the style, and the ovary.

72. Pollination - two types: self - plants use their own pollen to fertilize their own ovule OR
cross - plants use the pollen of other plants to fertilize ovule. The latter increases plant variety
as a result of the recombination of genes.

73. Three parts of a seed - the hypocotyl develops into the root and lower portions of the stem;
the epicotyl which develops into the leaves and upper portions of the stem; and the cotyledon
which is the greatest portion of the plant seed - it is the food for the developing seedling.

74. Three factors for successful germination: sufficient moisture, sufficient temperature and
sufficient oxygen. After it has germinated (sprouted) however, it no longer needs a great deal
of oxygen since it will carry out photosynthesis. As it grows, the regions of growth are
concentrated at the apical meristem (which elongates root and shoot tips) and at the lateral
meristem, which regulates the thickness (girth) of the plant.

75. Foundations of Genetics - genetics studies father - Gregor Mendel - came up with theories
by studying pea plants. Three principles: dominance-some traits can be masked by others;
segregation-there are so many possibilities because genes can recombine in many different
ways; and independent assortment-some traits can be inherited while others are not.

76. Mendel's work lead to the gene-chromosome theory which states that two genes associated
with a specific characteristics are known as alleles and are located on homologous
chromosomes.

77. 8 important words for genetics: homozygous - means alike alleles are present (TT or tt or
GG or gg) sometimes referred to as pure; heterozygous - two different alleles exist, although
the recessive may be hidden by the dominant (Tt or Gg) sometimes referred to as hybrid;
dominant - the expressed gene, rather it is located in an allelic pair that is homozygous or
heterozygous; recessive - the masked gene that is covered by the dominant, only present when
the organism is said to be homozygous (pure) recessive (gg or tt). Filial (F1) - means the
offspring of the parental generation (these are the ones that fill up the boxes in a Punnett
square. Parental (P1) - these are the breeding offspring that are giving the experimenter the
alleles for the outside of the Punnett Square (which is a way of predicting the possible
outcomes from a breeding).

78. Dominance and recessiveness are relative terms - they do not always work. For instance, in
an incomplete dominance cross, the heterozygous offspring are phenotypically different than
their homozygous parents. This is evident in organisms like the Japanese Four-O-Clock's

(red flowers X white flowers = pink flowers).

79. Co-dominance is a condition that exists when both dominant alleles are expressed (that of
each parent) and "blending" occurs. For instance, in some species of cattle, red coat is
dominant and in some species, white coat is dominant. When these species are bred, both
homozygous for their respective coat color, the offspring will be roan colored (a mix of red and
white). The same is true of blood groups in humans.

80. Crossing over - during synapsis in meiosis 1, the chromatids in a homologous pair of
chromosomes often twist around each other and break off, exchanging segments. This results in
a rearrangement of linked genes and increases in variability.

81. Multiple alleles - much like the co-dominance we talked about in #79. Best example is
blood groups in humans. The following are the possible genotypes and phenotypes for blood
groups in humans:

Genotype Phenotype Antigens made

IAIA A A only

IAi A A only

IBIB B B only

IBi B B only

IAIB AB Both A and B

ii O Neither A nor B

82. Sex determination - as most people know, there are two predominant sexes: male or
female. This is because upon fertilization, the female contributes either an X or and X. The
male, however, can contribute either an X or a Y chromosome. Therefore, the MALE
determines the sex of the offspring (at least in humans).

83. Mutations: Let's keep this to a minimum (no pun intended). Mutation is a change in the
genetic material - plain and simple. Mutations that occur only in body cells will not be passed
on to offspring. However, those that occur in sex cells may possibly be passed on to offspring.

84. Chromosomal alteration mutations are a change in the number or structure of
chromosomes. Failure of chromosomes to separate during meiosis 1 (nondisjunction) is another
form. This most commonly results in offspring having too many or too few chromosomes. It is
also the cause of Down's syndrome (nondisjunction of chromosome #21).

85. Translocation - transfer of a section of a chromosome from one chromosome to a
nonhomologous chromosome; addition - the gain of a portion of a chromosome; deletion - loss
of a portion of a chromosome.

86. Description and detection of genetic disorders: PKU - absence of a enzyme necessary for
the metabolism of phenylalanine, characterized by the development of mental retardation;
Sickle-cell anemia - homozygous condition resulting in the formation of abnormal hemoglobin
prevalent in African Americans; Tay-Sachs - recessive genetic disorder characterized by
malfunction of the nervous system due to accumulation of fatty deposits along the axon of
nerve cells. Detection: Screening - chemical analysis of body fluids to detect presence or
absence of such disorders; karyotyping - enlarged photograph of chromosomes which may show
chromosome abnormalities; amniocentesis - removal of amniotic fluid from fluid around fetus
for cellular or chemical analysis.

87. Modern Genetics - DNA and RNA. In 1940, Oswald Avery, Colin McLeod, and Maclyn McCarty
found that DNA is the genetic material found in cells and is passed on from generation to
generation. DNA is structured so that small subunits called nucleotides are arranged, each with
three main parts: a phosphate group, a deoxyribose group, and a nitrogenous base (adenine,
guanine, cytosine, or thymine). In 1953, James Watson and Francis Crick developed the first
model of DNA, a double helix (twisted ladder). This molecule will replicate (when needed as in
cellular reproduction).

88. RNA is slightly different from DNA. It is a nucleic acid, that's for sure, but the three main
differences are: RNA is a single chain of nucleotides, Ribose is substituted for deoxyribose, and
uracil will always replace thymine. It exists in three forms: messenger RNA (mRNA) which
carries the DNA message from the DNA in the nucleus to the ribosomes; transfer (tRNA) which
transports amino acids within the cytoplasm to the ribosomes, and Ribosomal (rRNA) which
makes up the identification code of each ribosome for specific protein manufacturing.

89. Evolution - a series of changes over a period of time. Believe what you want theologically,
but understand what is here biologically. We call it organic evolution. It is supported by: 1.
geologic record - fossils are our window into what once was; 2. comparative biochemistry -
nucleic acids and other chemicals and their functions closely relate animals that are currently
living, although they may not look like each other or act like each other; 3. comparative
cytology - organelles and organisms have similar anatomy and physiology now as they did years
ago; 4. comparative anatomy - different animals and organisms have similar structures (7 neck
vertebrae in humans, whales, mice, and giraffes); 5. comparative embryology - similar
appearance of different embryos as they develop.

90. Theories of Evolution - LaMarck (1809) had two main ideas (1) Use and Disuse - new organs
will arise when they are needed and their size will be determined by their need. (2)
Transmission of Acquired Traits - Useful characteristics that you acquire during your lifetime
will be passed on to your children. Darwin - based all theories on variation and natural
selection - encompassed the following tenets: overproduction (more are born than can possibly
survive); competition (there is a struggle for existence among all creatures); survival of the
fittest (only the most fit will survive long enough to breed); reproduction (if you live long
enough, you will most likely breed at one time or another); and speciation - if characteristics
help you to survive, your chances to reproduce are greater, therefore the trait that you had
will appear more often)
91. Time Frame for evolution - either gradual (as the name implies - things happen at a slow
and steady rate) or punctuated (large change in a very brief amount of time).

92. Heterotroph Hypothesis - developing earth was a volatile place with a lot of inorganic
compounds that existed naturally. Over time, these compounds, with the help of severe rains
and storms, started to cool and condense into the seas. Intense sunlight, radiation, and more
storms (mostly electrical) started to change the structure of the molecules and make them
become, somehow, organic. These organics soon changed again and became life - that's our
best guess and it was proven by Miller and Urey's experiment.

93. Over time, these molecules (from #92) started to carry on some primitive form of
photosynthesis and then started to produce oxygen. This allowed other organisms that were
formerly anaerobic to start using oxygen in ways that we still don't understand and this may
have lead to the first autotrophic organisms.

94. Ecology is a science. It investigates the interactions of all life (biotic) with all of the non-
living (abiotic) forces that exist in our environment. It has a "step-up" approach: populations
are all of one certain species in a given area at a given time, communities are all of the
different populations in a given area at a given time, an ecosystem is all of the communities in
a certain are at a given time, and a biosphere is basically everything on Earth working together
and against each other to achieve a living and nonliving equilibrium.

95. Ecosystems are the level of ecological organization that is commonly talked about in the
news media. It has very basic requirements: (2) it must have a constant energy source and a
living system capable of incorporating the energy in these compounds into organic energy and
(2) it must be able to cycle and recycle these materials between the organisms and the
environment.

96. Biotic versus abiotic: biotic factors include things like trees, algae, deer, bacteria, protists,
birds, etc... Essentially, everything that is alive. Abiotic factors are everything that is not living
like rocks, water, temperature, sunlight, humidity, gases, pH, etc...

97. Biotic factors also depend on some sort of Nutritional relationships. The include:
(1)autotrophs - any organism (not just plants) that can synthesize their own food from
inorganic molecules and a usable energy source. Commonly referred to as autotrophs and in
some instances chemotrophs. (2) Heterotrophs - are organisms that rely on autotrophs and
other heterotrophs for their energy source. based on this, these are any organism that is
described in #98.

98. The different types of heterotrophs are: (1)saprophytes - organisms of decay, including
nongreen plants, fungi and bacteria. These are the janitors of the planet, converting waste and
dead material back into usable energy. (2)Herbivores - as the name implies, these are the plant
eaters. Around here, people think of things like cows and deer as being the only herbivores.
However, one of the largest scale herbivores on the planet is insects, closely followed by
humans. Can a human be an herbivore - of course. In a sense we all are. Since a cow eats
grasses, and we eat the cow, we are basically eating grass that has been converted into meat!
(3)Carnivores - are those animals that eat only other animals. They are divided into two
separate categories (a) predators, which actively hunt and kill their prey such as eagles and
wolves; and (b) scavengers which live off the "leftovers" from the predators, hoping that the
predator didn't strip the bones of what it killed bare (these include vultures and crabs.)

99. All or at least most of these animals live in some sort of symbiotic (dependent)
relationship. The three different types are: (1) Commensalism - commonly referred to as a +,0
relationship. This means that one organism benefits from the interaction and one is
unaffected. (2)Mutualism - is commonly called a +,+ relationship in which both organisms
benefit from the interaction; and (3)Parasitism - is commonly called a +,- relationship because
one organism benefits and the other is negatively affected.

100. Food Chains and Succession - A food chain is just that - a chain. The grass grows, the
insect eat the grass, the frog eats the insect, the fox eats the frog, the car biffs the fox, the
bacteria consume the fox carcass, and this in turn fertilizes the soil so that the grass grows
again. A web is slightly more complex. In the web, a linear fashion is not followed. At any of
the above stages in a web, other organisms can "sneak in" and upset the balance of the chain.
For instance, maybe the bear eats half the frogs and humans eat some. But, a human caught
off guard gets eaten by a bear and the fox comes in to finish off the carcass (kinda gruesome, I
know). See, everything is related as far as this is concerned. I suggest watching the Disney
movie "The Lion King". When Mufasa explains the prideland to Simba - he does a better job
than any textbook ever could - get it and watch it! Also, there are distinct regions on our plant
where materials are recycled - look back into your review book and you will see these cycles -
once again - the old saying "What goes around comes around" holds true. Lastly, these regions
have certain flora (plants) and fauna (animals) that exist at certain latitudes and altitudes. The
biomes, as they are called, are somewhat like biological homes (thus the word biomes) where
certain conditions exist that will allow only certain species to live at certain conditions. They
are: tundra (like upper reaches of Canada), taiga (like Alaska), temperate deciduous forest
(most of New York State), tropical forest (Central America), grassland (such as the savanna
plains of the states of Wyoming and Nebraska), and desert (kind of like Arizona).

101. The most important bit of wisdom I can pass on is: "If you know half the world, you
automatically know the other half" -M. Fenlon - my favorite Jefferson Community College
professor(ex. black - ; right - ; cold- ) See what I mean!

More Related Content

What's hot

Plot analysis of last leaf
Plot analysis of last leafPlot analysis of last leaf
Plot analysis of last leafChidhambaram Mal
 
05 the structure and function of large biological molecules
05 the structure and function of large biological molecules05 the structure and function of large biological molecules
05 the structure and function of large biological moleculeskindarspirit
 
E 105 bonsai - synecdoche
E 105 bonsai - synecdocheE 105 bonsai - synecdoche
E 105 bonsai - synecdocheThea Leyva
 
Langston Hughes Powerpoint.Doc
Langston Hughes Powerpoint.DocLangston Hughes Powerpoint.Doc
Langston Hughes Powerpoint.Docleb75990
 
Socio5 11 reformist works in europe
Socio5   11 reformist works in europeSocio5   11 reformist works in europe
Socio5 11 reformist works in europeYvan Gumbao
 
Henri Matisse
Henri MatisseHenri Matisse
Henri Matissemrfortiz
 
Wagner Powerpoint pdf
Wagner Powerpoint   pdfWagner Powerpoint   pdf
Wagner Powerpoint pdftrinapowers
 
THE GIFT OF THE MAGI
THE GIFT OF THE MAGITHE GIFT OF THE MAGI
THE GIFT OF THE MAGICarmen Lima
 
Analysis: Rice by Manuel Arguilla
Analysis: Rice by Manuel ArguillaAnalysis: Rice by Manuel Arguilla
Analysis: Rice by Manuel ArguillaSungwoonie
 
French lit
French litFrench lit
French littech wuo
 
A rose for emily .ppt
A rose for emily .pptA rose for emily .ppt
A rose for emily .pptfarrah partol
 
Chambers of the Sea (Full Story)
Chambers of the Sea (Full Story)Chambers of the Sea (Full Story)
Chambers of the Sea (Full Story)Chelbert Yuto
 

What's hot (20)

Plot analysis of last leaf
Plot analysis of last leafPlot analysis of last leaf
Plot analysis of last leaf
 
The Doll - Egmidio Enriquez
The Doll - Egmidio EnriquezThe Doll - Egmidio Enriquez
The Doll - Egmidio Enriquez
 
05 the structure and function of large biological molecules
05 the structure and function of large biological molecules05 the structure and function of large biological molecules
05 the structure and function of large biological molecules
 
E 105 bonsai - synecdoche
E 105 bonsai - synecdocheE 105 bonsai - synecdoche
E 105 bonsai - synecdoche
 
Langston Hughes Powerpoint.Doc
Langston Hughes Powerpoint.DocLangston Hughes Powerpoint.Doc
Langston Hughes Powerpoint.Doc
 
The small key
The small keyThe small key
The small key
 
Socio5 11 reformist works in europe
Socio5   11 reformist works in europeSocio5   11 reformist works in europe
Socio5 11 reformist works in europe
 
Henri Matisse
Henri MatisseHenri Matisse
Henri Matisse
 
A rose for Emily
A rose for EmilyA rose for Emily
A rose for Emily
 
Rizal's controversy
Rizal's controversyRizal's controversy
Rizal's controversy
 
Consumed by gambling
Consumed by gamblingConsumed by gambling
Consumed by gambling
 
Guy de Maupassant
Guy de Maupassant Guy de Maupassant
Guy de Maupassant
 
Wagner Powerpoint pdf
Wagner Powerpoint   pdfWagner Powerpoint   pdf
Wagner Powerpoint pdf
 
THE GIFT OF THE MAGI
THE GIFT OF THE MAGITHE GIFT OF THE MAGI
THE GIFT OF THE MAGI
 
Dead Stars
Dead StarsDead Stars
Dead Stars
 
Analysis: Rice by Manuel Arguilla
Analysis: Rice by Manuel ArguillaAnalysis: Rice by Manuel Arguilla
Analysis: Rice by Manuel Arguilla
 
French lit
French litFrench lit
French lit
 
PYRAMUS AND THISBE
PYRAMUS AND THISBEPYRAMUS AND THISBE
PYRAMUS AND THISBE
 
A rose for emily .ppt
A rose for emily .pptA rose for emily .ppt
A rose for emily .ppt
 
Chambers of the Sea (Full Story)
Chambers of the Sea (Full Story)Chambers of the Sea (Full Story)
Chambers of the Sea (Full Story)
 

Viewers also liked

Biology - Facts you need to know to pass the living environment regents exam
Biology - Facts you need to know to pass the living environment regents examBiology - Facts you need to know to pass the living environment regents exam
Biology - Facts you need to know to pass the living environment regents examMr. Walajtys
 
Biology - What you absolutely must know to pass the living environment regents
Biology - What you absolutely must know to pass the living environment regentsBiology - What you absolutely must know to pass the living environment regents
Biology - What you absolutely must know to pass the living environment regentsMr. Walajtys
 
Who wants to be a millionaire review game
Who wants to be a millionaire review gameWho wants to be a millionaire review game
Who wants to be a millionaire review gameniall highland
 
Living environment syllabus 2008
Living environment syllabus 2008Living environment syllabus 2008
Living environment syllabus 2008Mr. Walajtys
 
Biology - Part D Regents Review - Beaks of the Finches
Biology - Part D Regents Review - Beaks of the FinchesBiology - Part D Regents Review - Beaks of the Finches
Biology - Part D Regents Review - Beaks of the FinchesMr. Walajtys
 
Living Environment Lab Review
Living Environment Lab ReviewLiving Environment Lab Review
Living Environment Lab Reviewkatiemc124
 
Chpter9 requiredlabs
Chpter9 requiredlabsChpter9 requiredlabs
Chpter9 requiredlabsLexume1
 

Viewers also liked (8)

Biology - Facts you need to know to pass the living environment regents exam
Biology - Facts you need to know to pass the living environment regents examBiology - Facts you need to know to pass the living environment regents exam
Biology - Facts you need to know to pass the living environment regents exam
 
Biology - What you absolutely must know to pass the living environment regents
Biology - What you absolutely must know to pass the living environment regentsBiology - What you absolutely must know to pass the living environment regents
Biology - What you absolutely must know to pass the living environment regents
 
Regents Review
Regents ReviewRegents Review
Regents Review
 
Who wants to be a millionaire review game
Who wants to be a millionaire review gameWho wants to be a millionaire review game
Who wants to be a millionaire review game
 
Living environment syllabus 2008
Living environment syllabus 2008Living environment syllabus 2008
Living environment syllabus 2008
 
Biology - Part D Regents Review - Beaks of the Finches
Biology - Part D Regents Review - Beaks of the FinchesBiology - Part D Regents Review - Beaks of the Finches
Biology - Part D Regents Review - Beaks of the Finches
 
Living Environment Lab Review
Living Environment Lab ReviewLiving Environment Lab Review
Living Environment Lab Review
 
Chpter9 requiredlabs
Chpter9 requiredlabsChpter9 requiredlabs
Chpter9 requiredlabs
 

Similar to Biology - 101 things to know about biology

Biology capsule for SSC CGL by StudyIQ
Biology capsule for SSC CGL by StudyIQBiology capsule for SSC CGL by StudyIQ
Biology capsule for SSC CGL by StudyIQStudyIQ
 
6 LIFE PROCESSES.pptx
6  LIFE PROCESSES.pptx6  LIFE PROCESSES.pptx
6 LIFE PROCESSES.pptxnamita das
 
6-LIFE PROCESSES ppt.pdf
6-LIFE PROCESSES ppt.pdf6-LIFE PROCESSES ppt.pdf
6-LIFE PROCESSES ppt.pdfKaniMozhi577208
 
X biology full notes chapter 1
X biology full notes chapter 1X biology full notes chapter 1
X biology full notes chapter 1neeraj_enrique
 
X biology full notes chapter 1
X biology full notes chapter 1X biology full notes chapter 1
X biology full notes chapter 1neeraj_enrique
 
10_science_notes_06_Life_Processes_1 (2).pdf
10_science_notes_06_Life_Processes_1 (2).pdf10_science_notes_06_Life_Processes_1 (2).pdf
10_science_notes_06_Life_Processes_1 (2).pdfPuneetAggarwal48
 
Animal_Kingdom_ 2.pdf
Animal_Kingdom_ 2.pdfAnimal_Kingdom_ 2.pdf
Animal_Kingdom_ 2.pdfGayatriHande1
 
Animal kingdom comparative anatomy
Animal kingdom comparative anatomyAnimal kingdom comparative anatomy
Animal kingdom comparative anatomyveterinaria_urp
 
Life Processes Class 10th PPT
Life Processes Class 10th PPTLife Processes Class 10th PPT
Life Processes Class 10th PPTShanu Jain
 
Biology unit 2 cells exam everything you need to know and extra review questions
Biology unit 2 cells exam everything you need to know and extra review questionsBiology unit 2 cells exam everything you need to know and extra review questions
Biology unit 2 cells exam everything you need to know and extra review questionsrozeka01
 
IGCSE Biology Revision Notes 2
IGCSE Biology Revision Notes 2IGCSE Biology Revision Notes 2
IGCSE Biology Revision Notes 2Rahul Jose
 
Phylum Annelida - Class Polychaeta, Class Oligochaeta, Class Hirudinea
Phylum Annelida - Class Polychaeta, Class Oligochaeta, Class HirudineaPhylum Annelida - Class Polychaeta, Class Oligochaeta, Class Hirudinea
Phylum Annelida - Class Polychaeta, Class Oligochaeta, Class HirudineaMartin Arnaiz
 

Similar to Biology - 101 things to know about biology (20)

Biology capsule for SSC CGL by StudyIQ
Biology capsule for SSC CGL by StudyIQBiology capsule for SSC CGL by StudyIQ
Biology capsule for SSC CGL by StudyIQ
 
6 LIFE PROCESSES.pptx
6  LIFE PROCESSES.pptx6  LIFE PROCESSES.pptx
6 LIFE PROCESSES.pptx
 
6-LIFE PROCESSES ppt.pdf
6-LIFE PROCESSES ppt.pdf6-LIFE PROCESSES ppt.pdf
6-LIFE PROCESSES ppt.pdf
 
6-LIFE PROCESSES.pdf
6-LIFE PROCESSES.pdf6-LIFE PROCESSES.pdf
6-LIFE PROCESSES.pdf
 
Life Process Class-X
Life Process Class-XLife Process Class-X
Life Process Class-X
 
X biology full notes chapter 1
X biology full notes chapter 1X biology full notes chapter 1
X biology full notes chapter 1
 
X biology full notes chapter 1
X biology full notes chapter 1X biology full notes chapter 1
X biology full notes chapter 1
 
Life processes
Life processesLife processes
Life processes
 
10_science_notes_06_Life_Processes_1 (2).pdf
10_science_notes_06_Life_Processes_1 (2).pdf10_science_notes_06_Life_Processes_1 (2).pdf
10_science_notes_06_Life_Processes_1 (2).pdf
 
Animal_Kingdom_ 2.pdf
Animal_Kingdom_ 2.pdfAnimal_Kingdom_ 2.pdf
Animal_Kingdom_ 2.pdf
 
Animal kingdom comparative anatomy
Animal kingdom comparative anatomyAnimal kingdom comparative anatomy
Animal kingdom comparative anatomy
 
Life Processes Class 10th PPT
Life Processes Class 10th PPTLife Processes Class 10th PPT
Life Processes Class 10th PPT
 
cds nda biology.pptx
cds nda biology.pptxcds nda biology.pptx
cds nda biology.pptx
 
cell ebrate science.pptx
cell ebrate science.pptxcell ebrate science.pptx
cell ebrate science.pptx
 
LIFE PROCESSES
LIFE PROCESSESLIFE PROCESSES
LIFE PROCESSES
 
Biology unit 2 cells exam everything you need to know and extra review questions
Biology unit 2 cells exam everything you need to know and extra review questionsBiology unit 2 cells exam everything you need to know and extra review questions
Biology unit 2 cells exam everything you need to know and extra review questions
 
IGCSE Biology Revision Notes 2
IGCSE Biology Revision Notes 2IGCSE Biology Revision Notes 2
IGCSE Biology Revision Notes 2
 
Phylum Annelida - Class Polychaeta, Class Oligochaeta, Class Hirudinea
Phylum Annelida - Class Polychaeta, Class Oligochaeta, Class HirudineaPhylum Annelida - Class Polychaeta, Class Oligochaeta, Class Hirudinea
Phylum Annelida - Class Polychaeta, Class Oligochaeta, Class Hirudinea
 
Life processes
Life processesLife processes
Life processes
 
Human biology-edexcel-igcse
Human biology-edexcel-igcseHuman biology-edexcel-igcse
Human biology-edexcel-igcse
 

More from Mr. Walajtys

Chemistry syllabus 2008
Chemistry syllabus 2008Chemistry syllabus 2008
Chemistry syllabus 2008Mr. Walajtys
 
Living environment syllabus 2008
Living environment syllabus 2008Living environment syllabus 2008
Living environment syllabus 2008Mr. Walajtys
 
Chemistry syllabus 2008
Chemistry syllabus 2008Chemistry syllabus 2008
Chemistry syllabus 2008Mr. Walajtys
 
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPointChemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPointMr. Walajtys
 
Chemistry - Chp 19 - Acids, Bases, and Salt - PowerPoints
Chemistry - Chp 19 - Acids, Bases, and Salt - PowerPointsChemistry - Chp 19 - Acids, Bases, and Salt - PowerPoints
Chemistry - Chp 19 - Acids, Bases, and Salt - PowerPointsMr. Walajtys
 
Chemistry - Chp 13 - States of Matter
Chemistry - Chp 13 - States of MatterChemistry - Chp 13 - States of Matter
Chemistry - Chp 13 - States of MatterMr. Walajtys
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointMr. Walajtys
 
Chemistry - Chp 11 - Chemical Reactions - PowerPoint
Chemistry - Chp 11 - Chemical Reactions - PowerPointChemistry - Chp 11 - Chemical Reactions - PowerPoint
Chemistry - Chp 11 - Chemical Reactions - PowerPointMr. Walajtys
 
Chemistry - Chp 10 - Chemical Quantities - PowerPoint
Chemistry - Chp 10 - Chemical Quantities - PowerPointChemistry - Chp 10 - Chemical Quantities - PowerPoint
Chemistry - Chp 10 - Chemical Quantities - PowerPointMr. Walajtys
 
Chemistry - Chapter 2 matter and change
Chemistry - Chapter 2 matter and changeChemistry - Chapter 2 matter and change
Chemistry - Chapter 2 matter and changeMr. Walajtys
 
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPointChemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPointMr. Walajtys
 
Chemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPointChemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPointMr. Walajtys
 
Chemistry - Chp 8 - Covalent Bonding - Study Guide
Chemistry - Chp 8 - Covalent Bonding - Study GuideChemistry - Chp 8 - Covalent Bonding - Study Guide
Chemistry - Chp 8 - Covalent Bonding - Study GuideMr. Walajtys
 
Chemistry - Chp 12 - Stoichiometry - Study Guide
Chemistry - Chp 12 - Stoichiometry - Study GuideChemistry - Chp 12 - Stoichiometry - Study Guide
Chemistry - Chp 12 - Stoichiometry - Study GuideMr. Walajtys
 
Chemistry - Chp 13 - States of Matter - Study Guide
Chemistry - Chp 13 - States of Matter - Study GuideChemistry - Chp 13 - States of Matter - Study Guide
Chemistry - Chp 13 - States of Matter - Study GuideMr. Walajtys
 
Chemistry - Chp 3 - Scientific Measurement - Study Guide
Chemistry - Chp 3 - Scientific Measurement - Study Guide Chemistry - Chp 3 - Scientific Measurement - Study Guide
Chemistry - Chp 3 - Scientific Measurement - Study Guide Mr. Walajtys
 
Chemistry - Chp 14 - The Behavior of Gases - Study Guide
Chemistry - Chp 14 - The Behavior of Gases - Study GuideChemistry - Chp 14 - The Behavior of Gases - Study Guide
Chemistry - Chp 14 - The Behavior of Gases - Study GuideMr. Walajtys
 
Chemistry - Chp 20 - Oxidation Reduction - Study Guide
Chemistry - Chp 20 - Oxidation Reduction - Study GuideChemistry - Chp 20 - Oxidation Reduction - Study Guide
Chemistry - Chp 20 - Oxidation Reduction - Study GuideMr. Walajtys
 
Chemistry- Chp 18 - Reaction Rates and Equilibrium - Study Guide
Chemistry- Chp 18 - Reaction Rates and Equilibrium - Study GuideChemistry- Chp 18 - Reaction Rates and Equilibrium - Study Guide
Chemistry- Chp 18 - Reaction Rates and Equilibrium - Study GuideMr. Walajtys
 
Chemistry - Energy of Bonding - Regents Review
Chemistry - Energy of Bonding - Regents ReviewChemistry - Energy of Bonding - Regents Review
Chemistry - Energy of Bonding - Regents ReviewMr. Walajtys
 

More from Mr. Walajtys (20)

Chemistry syllabus 2008
Chemistry syllabus 2008Chemistry syllabus 2008
Chemistry syllabus 2008
 
Living environment syllabus 2008
Living environment syllabus 2008Living environment syllabus 2008
Living environment syllabus 2008
 
Chemistry syllabus 2008
Chemistry syllabus 2008Chemistry syllabus 2008
Chemistry syllabus 2008
 
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPointChemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
 
Chemistry - Chp 19 - Acids, Bases, and Salt - PowerPoints
Chemistry - Chp 19 - Acids, Bases, and Salt - PowerPointsChemistry - Chp 19 - Acids, Bases, and Salt - PowerPoints
Chemistry - Chp 19 - Acids, Bases, and Salt - PowerPoints
 
Chemistry - Chp 13 - States of Matter
Chemistry - Chp 13 - States of MatterChemistry - Chp 13 - States of Matter
Chemistry - Chp 13 - States of Matter
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPoint
 
Chemistry - Chp 11 - Chemical Reactions - PowerPoint
Chemistry - Chp 11 - Chemical Reactions - PowerPointChemistry - Chp 11 - Chemical Reactions - PowerPoint
Chemistry - Chp 11 - Chemical Reactions - PowerPoint
 
Chemistry - Chp 10 - Chemical Quantities - PowerPoint
Chemistry - Chp 10 - Chemical Quantities - PowerPointChemistry - Chp 10 - Chemical Quantities - PowerPoint
Chemistry - Chp 10 - Chemical Quantities - PowerPoint
 
Chemistry - Chapter 2 matter and change
Chemistry - Chapter 2 matter and changeChemistry - Chapter 2 matter and change
Chemistry - Chapter 2 matter and change
 
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPointChemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
 
Chemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPointChemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPoint
 
Chemistry - Chp 8 - Covalent Bonding - Study Guide
Chemistry - Chp 8 - Covalent Bonding - Study GuideChemistry - Chp 8 - Covalent Bonding - Study Guide
Chemistry - Chp 8 - Covalent Bonding - Study Guide
 
Chemistry - Chp 12 - Stoichiometry - Study Guide
Chemistry - Chp 12 - Stoichiometry - Study GuideChemistry - Chp 12 - Stoichiometry - Study Guide
Chemistry - Chp 12 - Stoichiometry - Study Guide
 
Chemistry - Chp 13 - States of Matter - Study Guide
Chemistry - Chp 13 - States of Matter - Study GuideChemistry - Chp 13 - States of Matter - Study Guide
Chemistry - Chp 13 - States of Matter - Study Guide
 
Chemistry - Chp 3 - Scientific Measurement - Study Guide
Chemistry - Chp 3 - Scientific Measurement - Study Guide Chemistry - Chp 3 - Scientific Measurement - Study Guide
Chemistry - Chp 3 - Scientific Measurement - Study Guide
 
Chemistry - Chp 14 - The Behavior of Gases - Study Guide
Chemistry - Chp 14 - The Behavior of Gases - Study GuideChemistry - Chp 14 - The Behavior of Gases - Study Guide
Chemistry - Chp 14 - The Behavior of Gases - Study Guide
 
Chemistry - Chp 20 - Oxidation Reduction - Study Guide
Chemistry - Chp 20 - Oxidation Reduction - Study GuideChemistry - Chp 20 - Oxidation Reduction - Study Guide
Chemistry - Chp 20 - Oxidation Reduction - Study Guide
 
Chemistry- Chp 18 - Reaction Rates and Equilibrium - Study Guide
Chemistry- Chp 18 - Reaction Rates and Equilibrium - Study GuideChemistry- Chp 18 - Reaction Rates and Equilibrium - Study Guide
Chemistry- Chp 18 - Reaction Rates and Equilibrium - Study Guide
 
Chemistry - Energy of Bonding - Regents Review
Chemistry - Energy of Bonding - Regents ReviewChemistry - Energy of Bonding - Regents Review
Chemistry - Energy of Bonding - Regents Review
 

Recently uploaded

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 

Recently uploaded (20)

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 

Biology - 101 things to know about biology

  • 1. 101 Things to Know About Biology This list is something that I have composed over the years and is a work in progress (a living work, if you will). It is ever changing! It was based on the old "Regents Biology" syllabus, but it still holds true for the new Living environment Curriculum (except it contains more than is most likely needed). Please take this list with a grain of salt and understand that my humor is not the most refreshing stuff...) 1. Bio is life, the rest is just details. 2. Seven main life functions: nutrition, transport, respiration, excretion, synthesis, regulation and growth. 3. Reproduction is a life function, but it is not necessary for individuals (only the species). 4. Kings play chess on flat glass stools = Linnaean Classification: kingdom, phylum, class, order, family, genus, species. Genus is always capitalized and species is always lowercase. Genus and species will make up an organisms "Scientific name". 5. Homeostasis is the key that fits the lock called life = bio-balance. 6. Five main kingdoms: Mother protests funny pink alligators = Monera, Protista, Fungi, Plants, Animals 7. Cells are: (a) the basic unit of structure and function; and (b) come only from pre-existing cells. 8. Exceptions to Cell Theory: (a) where did the first cell come from? (b) viruses undergo reproduction and synthesis, but no other functions. (c) although they are organelles, mitochondria and chloroplasts will reproduce independently of the cell. 8. Total magnification = ocular multiplied by objective 9. To adjust focus, coarse, then fine; to adjust brightness, adjust iris diaphragm. 10. Magnification increases, field of view decreases; Magnification decreases, field of view increases. 11. Indicators and stains: Lugol's Solution - stains cellulose, turns starch blue-black. Methylene Blue dyes most cells dark blue. Bromothymol blue turns yellow in presence of carbon dioxide, back to blue in presence of oxygen, phenolpthalein - acid base indicator - clear in presence of acid, pink in presence of bases. 12. 1 millimeter = 1,000 micrometers (¨µ = symbol for micrometers). 13. Plant cells are "cuboidal" and animal cells end to be more "spherical". This is due to the cell wall (cellulose wall) that gives shape to the plant cells. 14. Two kinds of molecules: either organic (containing C and H) or inorganic (lack either C or H) 15. Carbohydrates: CarbOHydrates always contain C:H:O in a close to 1:2:1 ratio. -starch,
  • 2. sugars. 16. Lipids: Sometimes called fats - contain C:H:O ratio of 1:2:>>1 ratio. - Cholesterol, fats, waxes, oils. 17. Proteins: Composed of building blocks called amino acids. Amino acids are composed of an amino group (-NH2), a carboxyl group (-COOH) and another group (R=variable sidechain) 18. Enzymes - (a) each chemical reaction requires a specific enzyme. (b) enzymes modify (speed up or slow down) the rate of reaction. 19. Just like a key fits one lock, enzymes and substrates fit together. Enzymes are effected by: temperature, relative amounts of enzyme or substrate, and pH. 20. If it ends in -ase, it is most likely an enzyme. 21. Photo- means "light"; -synthesis means "to make". You do the math! It is the basis of nutrition in autotrophs (those that AUTOmatically make their own food.) 22. Plants grow best at the wavelength they are not (green doesn't work, red and blue are best) 23. 6CO2 + 12H2O ---light and enzymes- C6H12O6 + 6H2O + 6O2 24. Results of Photosynthesis: glucose is formed for: (a) use as energy for cellular respiration; (b) synthesized into other metabolic compounds. (c) converted into storage products by dehydration synthesis and other reactions. 25. Nutrition in Heterotrophs: Ingestion (taking IN), digestion (DIviding), and egestion (Ejecting wastes). 26. Carbohydratessimple sugars (fructose, galactose, glucose); lipidsfatty acids and glycerol;proteinsamino acids 27. Nutrition: Fungi - rhizoids; Protozoan - pseudopods, phagocytosis, food vacuole; Hydra - stinging cells (nematocysts), gut cavity; Earthworm - one-way, pharynx, crop, gizzard, intestine; Grasshopper - gastric caeca, mouth parts, salivary glands, one-way; Human - one way alimentary canal, specialized structures and glands for breakdown. 28. Cell Membrane: called a bilipid layer (protein floating between two lipid layers "floating protein icebergs in a fatty sea"; Diffusion - movement of molecules from an area of high concentration to an area of low concentration; Osmosis - diffusion across a semi-permeable membrane. 29. Phagocytosis (cell eating) - engulfing of undissolved large particles by "growing" around them and enclosing them in a vacuole; Pinocytosis (cell drinking) - vacuoles form at cell surface "sip" large particles through the cell membrane. 30. Active transport in a "pump" (it's active) that move particles through a membrane - it requires energy. 31. Intra- versus Inter-: Remember it this way: If you are intra, you stay inside the track (within
  • 3. its' boundaries). If you are inter, you are interfering with other cells (between the cells). 32. Plants - bryophytes look like a brush - short and low with no vascular tissue. Tracheophytes are taller because they have vascular tissue (xylem & phloem). 33. Root hairs - increase water absorption - Someone with lots of hair can have wet hair for a long time if they don't dry it. Bald people cannot get wet hair! 34. Xylem & Phloem - Remember that water always phloes (flows) down a hill. 35. Transport in animals: Hydra-flagellated cells that assist in circulation; Earthworm-closed circulatory system with aortic arches to help move blood that contains hemoglobin; Grasshopper-open circulatory system and blood without hemoglobin; Human - closed circulatory system, four chambered heart, hemoglobin rich blood. 36. Respiration - think energy release and transfer. ATP - energy molecule; aerobic - when you do aerobics, you require a lot of oxygen. If no oxygen, then it is anaerobic (anti-aerobic, for those of you who do not like to exercise!) 37. Fermentation-breakdown of glucose that produces lactic acid, alcohol, and or carbon dioxide. 38. Aerobic respiration - that which uses oxygen - produces 38 ATP molecules in eukaryotic organisms. 39. Respiratory adaptations: plants - stoma (what's stomata wit' you?) and lenticels; hydra - gas exchange in watery environment; earthworm - moist skin air exchange (worms don't last long on a hot sunny day on the pavement!!); grasshopper-tracheal tubes that "ship" oxygen directly to tissues; human - moist membranes inside lungs - exchange gases by diffusion across moist membranes. 40. Excretion - What's waste? - carbon dioxide, water, mineral salts, nitrogenous wastes (most toxic is ammoniamoderately toxic is urealeast toxic is uric acid) 41. Adaptations: protista - contractile vacuoles; plants - excrete and recycle; hydra-depends on watery environment; earthworm-carbon dioxide through skin...most nitrogenous wastes through nephridia; grasshopper water and bodily fluids through tracheal tubes, uric acid through Malphigian tubules; human - excretion through lungs, excretion of nitrogenous wastes through nephrons. 42. Regulation - coordination; Hydra-nerve net; earthworm; cerebral ganglion, ventral nerve cord; grasshopper-fused ganglion ("brain"); human - use your brain (and spinal cord). 43. Chemical control in Plants - lean towards the source of the answer!!! (ie. geotropism - attraction to ground, phototropism - attraction towards light, hydrotropism - attraction towards water, etc...) - all due to the concentration of auxins (plant hormones). 44. Chemical control in animals - endocrine glands secrete hormones. Principle use in insects is metamorphosis (change in the body). 45. Locomotion - NOT a dance step!!!! why do you need it? increased opportunities to obtain
  • 4. food, seek shelter, avoid predators, move away from toxic wastes, find a mate (kind of like getting your license allows you to go to McDonald's, get out of the rain, get away from the big guy that is trying to beat you up, get away from the landfill that stinks, and go pick up your girlfriend/boyfriend.) 46. Adaptation for locomotion - protista, flagella, pseudopods, or cilia; hydra - mostly sessile, can somersault or bubble float; earthworm-setae and longitudinal muscles; grasshopper - jumpers and walkers, occasionally fly; human-endoskeleton that allows them to walk. 47. Nutrition in humans - needed for the energy, growth, repair and maintenance of tissues - includes water, minerals, fats, carbohydrates, and proteins - foods move via peristalsis - rhythmic contraction. 48. Starts in mouth - mechanical digestion to increase surface area and chemical digestion of amylose and simple starch starts here as well. passes through esophagus, into stomach where protein digestion starts and acid is added to the food, now known as chyme. Into the small intestine, where in the first foot or so bile (manufactured by liver and stored in gall bladder) is squirted in to start emulsification of fats and pancreatic juices start to react with the sugars. Much of the absorption occurs here as the villi (which house the lacteals) absorb dissolved nutrients directly into the bloodstream. Then, it passes to the large intestine, where it is compacted, water is removed and recycled, and is passed from the body as feces. 49. Hydrolysis: chemical breakdown of large molecules to small molecules; maltose+water2 glucose; proteins+wateramino acids; lipids+water3 fatty acids and 1 glycerol 50. Malfunctions: constipation - dry fecal mass doesn't pass; diarrhea - loose watery fecal mass that will pass too easily; appendicitis-inflammation of appendix due to infection; gallstones- solidification of bile and cholesterol deposits in the gall bladder. 51. Transport - circulatory system: Transport media known as blood - has plasma (liquid), red blood cells (hemoglobin oxygen carriers), platelets (cell fragments) that trap to form clots. White blood cells - prevent disease and fight infection; active immunity - antigen-antibody reaction such as a vaccination; passive immunity-medicines and the like - give temporary immunity from disease. 52. Transport through the body - occurs in arteries - carry away from heart, veins - carry towards the heart, and capillaries, connect the arteries and veins - also a site for oxygen and carbon dioxide to exchange between blood and cells. - Deoxy blood returns to heart through inferior and superior vena cava to the right atrium. Passes through the Rt. AV valve into the right ventricle and out to the L and R lungs where it picks up oxygen. Returns to the heart through the pulmonary veins and empties into the L atrium. It then passes to the L ventricle, the strongest chamber, where it is then pumped out to the rest of the body through the aorta. Four types of circulation: coronary - circ to heart muscle; hepatic - circ. to the liver; pulmonary - circ. to the lungs; and systemic - circ. to entire body. 53. Malfunctions include: high BP (hypertension)-increased arterial pressure that compromises the elasticity of the vessels; Heart attack-thrombosis-blockage of vessels and subsequent oxygen deprivation; angina pectoris - heart or chest pain caused by narrowing of vessels and oxygen deprivation; anemia-impairment of oxygen carrying capability; leukemia-cancer of bone marrow, the cell producing tissues of the system; AIDS-virus which is blood borne that destroys disease fighting systems of the body.
  • 5. 54. Respiration - respiratory system: involves the processes of cellular respiration and gas exchange and the conversion of chemical bond energy from foods into usable energy (ATP) in human cells. Also referred to as breathing - the diffusion of gases into and out of the blood across moist membranes after inhalation and expiration of environmental gases. 55. Air Flow - where does it go? In through nose (nasal cavity) and mouth (oral cavity) into the trachea. Trachea is protected from food entering trachea because of the epiglottis. Passes through the bronchi, two large tubes that split to each lung. Gradually the "tubes" get smaller: bronchi become bronchioles, become alveoli (the smallest) and these are surrounded by capillaries for air exchange. Breathing rate is regulated by carbon dioxide concentration in the blood which in turn lowers the pH of the blood. Common malfunctions are: bronchitis- inflammation of the bronchi from dust or other inhalants; asthma-allergic response which narrows respiratory passages; emphysema-change in structure of lungs characterized by degeneration of tissues (caused by pollution and cigarette smoke). 56. Excretion-ridding the body of the metabolic wastes. Lungs - get rid of heat, water, and carbon dioxide. Liver-breakdown and deamination of amino acids, recycling of usable materials, and destruction of old, worn-out red blood cells. Urinary system - elimination of urea and unneeded body fluids through kidneys - pass through kidney where blood is filtered, into the ureter which leads to the bladder-collects and is eliminated through the urethra. Malfunctions: kidney disease-results from damage to or disease of the kidney - result is buildup of toxic wastes in blood stream. Gout - inflammation of joints associated with a buildup of uric acid crystals which lead to arthritic-like painful attacks. 57. Regulation-the nervous system. Organized into a series of neurons (nerve cells) which relay an electrochemical message from cell to cell. Divided into two parts: CNS (central nervous system) which includes brain and spinal cord and PNS (peripheral nervous system) which includes all other nervous tissues. Further extended into the somatic NS to control voluntary actions and the autonomic NS which controls the automatic or reflex actions of the body. Malfunctions: meningitis - inflammation of the membranes surrounding brain and spinal cord; Stroke-caused by cerebral hemorrhage (burst blood vessel) resulting in brain damage; Polio- viral disease resulting in paralysis (uncommon now since we are all immunized against it). 58. Endocrine system - system of ductless glands that helps to regulate body functions - uses chemical messages to hit target tissues. Hypothalamus-influences master gland; Pituitary gland-master gland that governs all other glands, produce Growth stimulating hormone; thyroid gland - influences metabolism; parathyroid glands - produce parathormone needed for control of blood calcium levels; adrenal glands influence metabolism, reabsorption of sodium and chloride ions and adrenalin (fight or flight; Islets of Langerhans-produce insulin and glucagon to regulate blood sugar levels; Gonads (testes and ovaries) control influence of secondary sex characteristics. 59. Humans have an ENDOskeleton - this means it is inside. It consists of bones(internal support); cartilage (cushions bones); tendons(hold muscle to bone); and ligaments(hold bone to bone). It also has muscle (movement tissue) which is divided into three different type: visceral (those of the digestive system); cardiac (the heart); and skeletal (pretty self-explanatory). They work in pairs - one that flexes (flexors) and one that extends(extensors). basic malfunctions include arthritis (pain associated with swelling around he bones) and tendinitis(inflammation of the tendons). 60. Two different types of reproduction exist: Asexual (without sex) and sexual(meaning with sex). Remember, sex is not an act, in the biological sense, but rather a conjoining of the actual
  • 6. male and female reproductive cells. 61. Asexual: most organisms that are asexual reproduce by means of mitosis - the replication of nuclear material that is followed by cytokinesis (splitting of the cytoplasm). It is characterized by 4 stages: prophase, metaphase, anaphase, and telophase. It differs between animal and plant cells because plant cells for a cell plate. If cells continue to grow at an irregular and uncontrollable rate, it is called metastasis (cancer). 62. 5 main types of asexual reproduction in organisms. 1. binary fission - bi- means two, so think of an organism splitting equally into two distinct parts; 2. budding - incomplete division of cytoplasm, equal division of nuclear material; 3. sporulation-spores, need we say more, drift off of the mother plant and create new life; 4. Regeneration - re-means again, generation means to make; so put the two together and we get the answer: the making of new material (it is a bit more involved, but that's for you to look up.) and lastly 5. Vegetative propagation - the reproduction of new veggies: think of the different plants, some are bulbs, some have runners, some are grafted (where do the seeds for seedless orange trees come from?), some are cuttings. 63. Sexual reproduction - literally the joining (fertilization or fusion) of specialized sex cells (gametes) to create a fertilized egg (zygote) that will undergo a series of divisions (cleavages) in which the number of cells increases, but the mass stays the same. Then, the "cell ball" gastrulates and starts to differentiate and increase in mass and area. 64. These gametes are formed by gametogenesis (genesis means beginning). Oogenesis makes the egg (ovum, ova, etc) cells and spermatogenesis makes the sperm (male) sex cells. 65. This brings us to meiosis (not the same as mitosis). It occurs in two distinct stages and is sometimes referred to as reduction division (I know, a math flashback, AAUUGGHHHH!!!!!). In Meiosis 1, each single stranded chromosome replicates and forms sister chromatids. These sister chromatids join together, a process called synapsis, having a total of 4n the normal number of chromosomes. After this, they align at the equator of the cell and then tear apart into two different cells. Meiosis 2 begins with the alignment of these sister chromatids (now 2n since it has undergone cytoplasmic division)once again at the center of the two new cells. Once again, the sister chromatids replicate and then begin to migrate towards the end of the poles. When cytoplasmic division occurs this time, however, each resulting cell has only the "n" number of chromosomes. Meiosis in a nutshell is: 2n4n2n & 2n: 2n &2nn & n & n & n. This produces: in oogenesis - 1 mature egg cell and 3 polar bodies and in spermatogenesis 4 viable sperm cells. 66. Fertilization and development: to fertilize, you will need 1 "n" male gamete and 1 "n" female gamete. When you join these two together, you get one fertilized egg (called a zygote) (Note: Regardless of what your math teacher says, 1+1 does equal 1. However in their defense, n+n=2n) 67. Fertilization happens either internally, as in humans and most mammals, or externally, as is the case with fish and amphibians. There are some exceptions to this rule. 68. As far as cleavage (see #63), this cleaving or splitting ball of cells will start to differentiate. This means it forms new layers that will start to get distinct functions. The ectoderm (outside) forms the skin and nervous system. The mesoderm (middle) forms the muscles, circulatory system, skeleton, excretory system, and gonads. The endoderm forms the lining of the
  • 7. respiratory and digestive systems and portions of the liver and pancreas. 69. A marsupial is a mammal that is nonplacental in which the young are born very prematurely and get their nutrition from the mammary glands of a mother organism (usually in some form of pouch as the kangaroo has. 70. The human reproductive system is pretty much the same as most other mammals. The male system consists mainly of a pair of testes, sperm producing glands, that are held outside the body in an outpocketing of skin called the scrotum. It is necessary to produce sperm cells and to deposit the cells into the female reproductive system. The female system is important not only for reproduction, but also for the development of the young. It consists of a hollow muscular tube called the vagina, which accepts the penis during intercourse. It is joined internally by the uterus, the holding place for a developing embryo. In most mammals, the lining of the uterus is shed periodically to replenish the lining (this is the menstrual cycle). It consists of 4 stages: follicle stage, ovulation, corpus luteum, and the menstruation. It is entirely controlled and regulated by hormones, including FSH follicle stimulating hormone, LH- leutenizing hormone, estrogen, and progesterone. All of these are governed by a negative feedback system, much the same as the thermostat in your house that regulates temperature. 71. Reproduction in flowering plants: Male flower parts - called the stamen - composed of anther which produces pollen grains, and the filament - a stalk like structure that holds the anther at or above the level of the female parts. Female flower parts -commonly called the pistil is composed of the stigma, the style, and the ovary. 72. Pollination - two types: self - plants use their own pollen to fertilize their own ovule OR cross - plants use the pollen of other plants to fertilize ovule. The latter increases plant variety as a result of the recombination of genes. 73. Three parts of a seed - the hypocotyl develops into the root and lower portions of the stem; the epicotyl which develops into the leaves and upper portions of the stem; and the cotyledon which is the greatest portion of the plant seed - it is the food for the developing seedling. 74. Three factors for successful germination: sufficient moisture, sufficient temperature and sufficient oxygen. After it has germinated (sprouted) however, it no longer needs a great deal of oxygen since it will carry out photosynthesis. As it grows, the regions of growth are concentrated at the apical meristem (which elongates root and shoot tips) and at the lateral meristem, which regulates the thickness (girth) of the plant. 75. Foundations of Genetics - genetics studies father - Gregor Mendel - came up with theories by studying pea plants. Three principles: dominance-some traits can be masked by others; segregation-there are so many possibilities because genes can recombine in many different ways; and independent assortment-some traits can be inherited while others are not. 76. Mendel's work lead to the gene-chromosome theory which states that two genes associated with a specific characteristics are known as alleles and are located on homologous chromosomes. 77. 8 important words for genetics: homozygous - means alike alleles are present (TT or tt or GG or gg) sometimes referred to as pure; heterozygous - two different alleles exist, although the recessive may be hidden by the dominant (Tt or Gg) sometimes referred to as hybrid; dominant - the expressed gene, rather it is located in an allelic pair that is homozygous or heterozygous; recessive - the masked gene that is covered by the dominant, only present when
  • 8. the organism is said to be homozygous (pure) recessive (gg or tt). Filial (F1) - means the offspring of the parental generation (these are the ones that fill up the boxes in a Punnett square. Parental (P1) - these are the breeding offspring that are giving the experimenter the alleles for the outside of the Punnett Square (which is a way of predicting the possible outcomes from a breeding). 78. Dominance and recessiveness are relative terms - they do not always work. For instance, in an incomplete dominance cross, the heterozygous offspring are phenotypically different than their homozygous parents. This is evident in organisms like the Japanese Four-O-Clock's (red flowers X white flowers = pink flowers). 79. Co-dominance is a condition that exists when both dominant alleles are expressed (that of each parent) and "blending" occurs. For instance, in some species of cattle, red coat is dominant and in some species, white coat is dominant. When these species are bred, both homozygous for their respective coat color, the offspring will be roan colored (a mix of red and white). The same is true of blood groups in humans. 80. Crossing over - during synapsis in meiosis 1, the chromatids in a homologous pair of chromosomes often twist around each other and break off, exchanging segments. This results in a rearrangement of linked genes and increases in variability. 81. Multiple alleles - much like the co-dominance we talked about in #79. Best example is blood groups in humans. The following are the possible genotypes and phenotypes for blood groups in humans: Genotype Phenotype Antigens made IAIA A A only IAi A A only IBIB B B only IBi B B only IAIB AB Both A and B ii O Neither A nor B 82. Sex determination - as most people know, there are two predominant sexes: male or female. This is because upon fertilization, the female contributes either an X or and X. The male, however, can contribute either an X or a Y chromosome. Therefore, the MALE determines the sex of the offspring (at least in humans). 83. Mutations: Let's keep this to a minimum (no pun intended). Mutation is a change in the genetic material - plain and simple. Mutations that occur only in body cells will not be passed on to offspring. However, those that occur in sex cells may possibly be passed on to offspring. 84. Chromosomal alteration mutations are a change in the number or structure of chromosomes. Failure of chromosomes to separate during meiosis 1 (nondisjunction) is another
  • 9. form. This most commonly results in offspring having too many or too few chromosomes. It is also the cause of Down's syndrome (nondisjunction of chromosome #21). 85. Translocation - transfer of a section of a chromosome from one chromosome to a nonhomologous chromosome; addition - the gain of a portion of a chromosome; deletion - loss of a portion of a chromosome. 86. Description and detection of genetic disorders: PKU - absence of a enzyme necessary for the metabolism of phenylalanine, characterized by the development of mental retardation; Sickle-cell anemia - homozygous condition resulting in the formation of abnormal hemoglobin prevalent in African Americans; Tay-Sachs - recessive genetic disorder characterized by malfunction of the nervous system due to accumulation of fatty deposits along the axon of nerve cells. Detection: Screening - chemical analysis of body fluids to detect presence or absence of such disorders; karyotyping - enlarged photograph of chromosomes which may show chromosome abnormalities; amniocentesis - removal of amniotic fluid from fluid around fetus for cellular or chemical analysis. 87. Modern Genetics - DNA and RNA. In 1940, Oswald Avery, Colin McLeod, and Maclyn McCarty found that DNA is the genetic material found in cells and is passed on from generation to generation. DNA is structured so that small subunits called nucleotides are arranged, each with three main parts: a phosphate group, a deoxyribose group, and a nitrogenous base (adenine, guanine, cytosine, or thymine). In 1953, James Watson and Francis Crick developed the first model of DNA, a double helix (twisted ladder). This molecule will replicate (when needed as in cellular reproduction). 88. RNA is slightly different from DNA. It is a nucleic acid, that's for sure, but the three main differences are: RNA is a single chain of nucleotides, Ribose is substituted for deoxyribose, and uracil will always replace thymine. It exists in three forms: messenger RNA (mRNA) which carries the DNA message from the DNA in the nucleus to the ribosomes; transfer (tRNA) which transports amino acids within the cytoplasm to the ribosomes, and Ribosomal (rRNA) which makes up the identification code of each ribosome for specific protein manufacturing. 89. Evolution - a series of changes over a period of time. Believe what you want theologically, but understand what is here biologically. We call it organic evolution. It is supported by: 1. geologic record - fossils are our window into what once was; 2. comparative biochemistry - nucleic acids and other chemicals and their functions closely relate animals that are currently living, although they may not look like each other or act like each other; 3. comparative cytology - organelles and organisms have similar anatomy and physiology now as they did years ago; 4. comparative anatomy - different animals and organisms have similar structures (7 neck vertebrae in humans, whales, mice, and giraffes); 5. comparative embryology - similar appearance of different embryos as they develop. 90. Theories of Evolution - LaMarck (1809) had two main ideas (1) Use and Disuse - new organs will arise when they are needed and their size will be determined by their need. (2) Transmission of Acquired Traits - Useful characteristics that you acquire during your lifetime will be passed on to your children. Darwin - based all theories on variation and natural selection - encompassed the following tenets: overproduction (more are born than can possibly survive); competition (there is a struggle for existence among all creatures); survival of the fittest (only the most fit will survive long enough to breed); reproduction (if you live long enough, you will most likely breed at one time or another); and speciation - if characteristics help you to survive, your chances to reproduce are greater, therefore the trait that you had will appear more often)
  • 10. 91. Time Frame for evolution - either gradual (as the name implies - things happen at a slow and steady rate) or punctuated (large change in a very brief amount of time). 92. Heterotroph Hypothesis - developing earth was a volatile place with a lot of inorganic compounds that existed naturally. Over time, these compounds, with the help of severe rains and storms, started to cool and condense into the seas. Intense sunlight, radiation, and more storms (mostly electrical) started to change the structure of the molecules and make them become, somehow, organic. These organics soon changed again and became life - that's our best guess and it was proven by Miller and Urey's experiment. 93. Over time, these molecules (from #92) started to carry on some primitive form of photosynthesis and then started to produce oxygen. This allowed other organisms that were formerly anaerobic to start using oxygen in ways that we still don't understand and this may have lead to the first autotrophic organisms. 94. Ecology is a science. It investigates the interactions of all life (biotic) with all of the non- living (abiotic) forces that exist in our environment. It has a "step-up" approach: populations are all of one certain species in a given area at a given time, communities are all of the different populations in a given area at a given time, an ecosystem is all of the communities in a certain are at a given time, and a biosphere is basically everything on Earth working together and against each other to achieve a living and nonliving equilibrium. 95. Ecosystems are the level of ecological organization that is commonly talked about in the news media. It has very basic requirements: (2) it must have a constant energy source and a living system capable of incorporating the energy in these compounds into organic energy and (2) it must be able to cycle and recycle these materials between the organisms and the environment. 96. Biotic versus abiotic: biotic factors include things like trees, algae, deer, bacteria, protists, birds, etc... Essentially, everything that is alive. Abiotic factors are everything that is not living like rocks, water, temperature, sunlight, humidity, gases, pH, etc... 97. Biotic factors also depend on some sort of Nutritional relationships. The include: (1)autotrophs - any organism (not just plants) that can synthesize their own food from inorganic molecules and a usable energy source. Commonly referred to as autotrophs and in some instances chemotrophs. (2) Heterotrophs - are organisms that rely on autotrophs and other heterotrophs for their energy source. based on this, these are any organism that is described in #98. 98. The different types of heterotrophs are: (1)saprophytes - organisms of decay, including nongreen plants, fungi and bacteria. These are the janitors of the planet, converting waste and dead material back into usable energy. (2)Herbivores - as the name implies, these are the plant eaters. Around here, people think of things like cows and deer as being the only herbivores. However, one of the largest scale herbivores on the planet is insects, closely followed by humans. Can a human be an herbivore - of course. In a sense we all are. Since a cow eats grasses, and we eat the cow, we are basically eating grass that has been converted into meat! (3)Carnivores - are those animals that eat only other animals. They are divided into two separate categories (a) predators, which actively hunt and kill their prey such as eagles and wolves; and (b) scavengers which live off the "leftovers" from the predators, hoping that the predator didn't strip the bones of what it killed bare (these include vultures and crabs.) 99. All or at least most of these animals live in some sort of symbiotic (dependent) relationship. The three different types are: (1) Commensalism - commonly referred to as a +,0
  • 11. relationship. This means that one organism benefits from the interaction and one is unaffected. (2)Mutualism - is commonly called a +,+ relationship in which both organisms benefit from the interaction; and (3)Parasitism - is commonly called a +,- relationship because one organism benefits and the other is negatively affected. 100. Food Chains and Succession - A food chain is just that - a chain. The grass grows, the insect eat the grass, the frog eats the insect, the fox eats the frog, the car biffs the fox, the bacteria consume the fox carcass, and this in turn fertilizes the soil so that the grass grows again. A web is slightly more complex. In the web, a linear fashion is not followed. At any of the above stages in a web, other organisms can "sneak in" and upset the balance of the chain. For instance, maybe the bear eats half the frogs and humans eat some. But, a human caught off guard gets eaten by a bear and the fox comes in to finish off the carcass (kinda gruesome, I know). See, everything is related as far as this is concerned. I suggest watching the Disney movie "The Lion King". When Mufasa explains the prideland to Simba - he does a better job than any textbook ever could - get it and watch it! Also, there are distinct regions on our plant where materials are recycled - look back into your review book and you will see these cycles - once again - the old saying "What goes around comes around" holds true. Lastly, these regions have certain flora (plants) and fauna (animals) that exist at certain latitudes and altitudes. The biomes, as they are called, are somewhat like biological homes (thus the word biomes) where certain conditions exist that will allow only certain species to live at certain conditions. They are: tundra (like upper reaches of Canada), taiga (like Alaska), temperate deciduous forest (most of New York State), tropical forest (Central America), grassland (such as the savanna plains of the states of Wyoming and Nebraska), and desert (kind of like Arizona). 101. The most important bit of wisdom I can pass on is: "If you know half the world, you automatically know the other half" -M. Fenlon - my favorite Jefferson Community College professor(ex. black - ; right - ; cold- ) See what I mean!