Correlação

69 visualizações

Publicada em

Aula de Métodos e Técnicas de Análise da Informação para Planejamento, julho de 2016, UFABC
Apresentação disponível em: https://youtu.be/FeqJ-hMjVC4

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
69
No SlideShare
0
A partir de incorporações
0
Número de incorporações
1
Ações
Compartilhamentos
0
Downloads
3
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Correlação

  1. 1. CORRELAÇÃO Vitor Vieira Vasconcelos BH1350 – Métodos e Técnicas de Análise da Informação para o Planejamento Julho de 2015
  2. 2. Inferência Estatística: Método científico para tirar conclusões sobre os parâmetros da população a partir da coleta, tratamento e análise dos dados de uma amostra recolhida dessa população.  Estatísticas da Amostra para Estimar Parâmetros da População Inferência Estatística se resumindo a uma equação: Revisão Saídai = (Modeloi) + erroi
  3. 3. Média como um modelo estatístico Uma representação simplificada de uma característica do mundo real:  A média do consumo per capita de água na Região Sudeste  A altura média dos edifícios em São Caetano  O PIB médio dos municípios localizados no arco do desmatamento
  4. 4. Este modelo é preciso? O quão diferente nossos dados reais são do modelo criado? Média (2,6) Desvios (erro do modelo) Nr.dehabitantes Domicílio Conceitos: - Variância - Desvio Padrão
  5. 5. Média com boa aderência aos dados Médias iguais, mas desvios padrão diferentes Média com pobre aderência aos dados Nr.dehabitantes Domicílio Nr.dehabitantes Domicílio
  6. 6. Para além de Médias… Modelos Lineares  São modelos baseados sobre uma linha reta, utilizados para representar a relação entre variáveis  Ou seja, geralmente estamos tentando resumir as RELAÇÕES observadas a partir de nossos dados observados em termos de uma linha reta. ConsumodeÁguaper Capita(m3/dia/ano) Renda per Capita (R$) RELAÇÃO ENTRE CONSUMO DE ÁGUA E RENDA
  7. 7. CORRELAÇÃO É uma medida do relacionamento linear entre duas variáveis Duas variáveis podem estar: (a) Positivamente relacionadas  quando maior a renda, maior o consumo de água (b) Negativamente relacionadas  quanto maior a renda, menor o consumo de água (c) Não há relação entre as variáveis
  8. 8. Representando Relacionamentos Graficamente Diagrama de Dispersão DIAGRAMA DE DISPERSÃO: Gráfico que coloca o escore de cada observação em uma variável contra seu escore em outra
  9. 9. Importante começar por ele! Diagrama de Dispersão Nos diz se a relação entre variáveis é linear, se existem peculiaridades nos dados que valem a pena observar (outliers) e dá uma ideia da força do relacionamento entre as variáveis. Exemplo de Correlação Não-Linear: Renda e proporção de domicílios próprios.
  10. 10. Diagrama de Dispersão
  11. 11. Como medimos relacionamentos? Veremos duas medidas para expressar estatisticamente os relacionamentos entre variáveis: 1. Covariância 2. Coeficientes de correlação
  12. 12. COVARIÂNCIA Uma maneira de verificar de duas variáveis estão associadas é ver se elas variam conjuntamente. Ou seja, ver se as mudanças em uma variável correspondem a mudanças similares na outra variável RELEMBRANDO O CONCEITO DE VARIÂNCIA:
  13. 13. COVARIÂNCIA Em outras palavras: Quando uma variável se desvia de sua média, esperamos que a outra variável se desvie da sua média de maneira similar (ou de maneira diretamente oposta). RELEMBRANDO O CONCEITO DE VARIÂNCIA:
  14. 14. Padrão similar nas diferenças de ambas as variáveis Municípios Renda per capita / Consumo de água per capita (Renda) (Consumo)
  15. 15. Como calcular a semelhança entre o padrão das diferenças das 2 variáveis? Multiplicando a diferença de uma variável pela diferença correspondente da segunda variável!  Se ambos os erros são positivos ou negativos, isso nos dará um valor positivo (desvios na mesma direção)  Se um erro for positivo e outro negativo, isso nos dará um valor negativo (desvios em direções opostas) COVARIÂNCIA
  16. 16. Covariância Média das Diferenças Combinadas É uma medida de como duas variáveis variam conjuntamente. Se a covariância entre duas variáveis é igual a zero, significa que elas são independentes. COVARIÂNCIA
  17. 17. Municípios Renda per capita / Consumo de água per capita (Renda) (Consumo)
  18. 18. Covariância Covariância Positiva: Quando uma variável se desvia da média, a outra variável se desvia na mesma direção. Covariância Negativa: Quando uma variável se desvia da média, a outra variável se desvia na direção oposta. COVARIÂNCIA
  19. 19. Covariância UM PROBLEMA!!! A covariância depende das escalas de medida. Não é uma medida padronizada. Ou seja, não podemos dizer se a covariância é particularmente grande ou pequena em relação a outro conjunto de dados a não ser que ambos os conjuntos fossem mensurados nas mesmas medidas.
  20. 20. Padronização & Coeficiente de Correlação Para superar o problema da dependência das escalas de medida, precisamos converter a variância em um conjunto padrão de unidades  Padronização Precisamos de uma unidade de medida na qual qualquer escala de mensuração possa ser convertida Unidades de Desvio Padrão (medida da média dos desvios a partir da média)
  21. 21. Padronização & Coeficiente de Correlação O COEFICIENTE DE CORRELAÇÃO é uma covariância padronizada COEFICIENTE DE CORRELAÇÃO DE PEARSON
  22. 22. Coeficiente de Correlação Padronizando a covariância, encontramos um valor que deve estar entre -1 e +1 r = +1  duas variáveis estão perfeitamente correlacionadas de forma positiva (se uma aumenta, a outra aumenta proporcionalmente) r = -1  relacionamento negativo perfeito (se uma aumenta, a outra diminui em valor proporcional r = 0  indica ausência de relacionamento linear
  23. 23. Mas… Como saber se a correlação não se deve a um erro amostral, ao acaso? Como saber se a correlação é estatisticamente significativa? Uma breve revisão sobre TESTES DE HIPÓTESE
  24. 24. Para testar a significância de uma medida de correlação, estabelecemos uma hipótese (nula) de nenhuma correlação existe na população. HIPÓTESES Hipótese Experimental (H1)  Geralmente corresponde a uma “previsão” feita pela pesquisador (existe uma correlação na população) Hipótese Nula (H0)  O efeito previsto não existe (não existe uma correlação na população) Tornou-se convenção na análise estatística iniciar o estudo pelo teste da hipótese nula.
  25. 25. Para confirmar ou rejeitar nossas hipóteses: Calculamos a probabilidade de que o efeito observado (no nosso caso, a correlação) ocorreu por acaso: À medida que a probabilidade do “acaso” diminui, confirmamos que a hipótese experimental é correta e que a hipótese nula pode ser rejeitada.
  26. 26. E quando podemos considerar que um resultado é genuíno, ou seja, não é fruto do acaso? Há sempre um risco de considerarmos um efeito verdadeiro, quando, de fato, não o é (ERRO TIPO I). Para Ronald Fisher, somente quando a probabilidade de algo acontecer por acaso é igual ou menor a 5% (<0,05), podemos aceitar que é um resultado estatisticamente significativo. O valor da probabilidade de cometer um erro do tipo I num teste de hipóteses é conhecido como NÍVEL DE SIGNIFICÂNCIA e é representado pela letra α Os níveis de significância mais utilizados são de 5%, 1% e 0,1%
  27. 27.  Para estabelecer se um modelo (no caso, a medida de correlação) é uma representação razoável do que está acontecendo, geralmente calculamos uma ESTATÍSTICA TESTE  É uma estatística que tem propriedades conhecidas, já sabemos a frequência com que diferentes valores desta estatística ocorrem.  Sabemos suas distribuições e isso nos permite, uma vez calculada a estatística teste, calcular um valor tão grande como o que temos. Se temos uma estatística teste de 100, por exemplo, poderíamos então calcular a probabilidade de obter um valor tão grande. Estatísticas teste
  28. 28. Estatísticas teste Existem várias estatísticas testes (t, F…). Entretanto, a maioria delas representa o seguinte: A forma exata desta equação muda de teste pra teste. Se nosso modelo é bom, esperamos que a variância explicada por ele seja maior do que a variância que ele não pode explicar.
  29. 29. Quanto maior a estatística teste, menor a probabilidade de que nossos resultados sejam fruto do acaso. Quando esta probabilidade cai para abaixo de 0,05 (Critério de Fisher), aceitamos isso como uma confiança suficiente para assumir que a estatística teste é assim grande porque nosso modelo explica um montante suficiente de variações para refletir o que realmente está acontecendo no mundo real (a população) Estatísticas teste
  30. 30. Quanto maior a estatística teste, menor a probabilidade de que nossos resultados sejam fruto do acaso. Ou seja, Rejeitamos nossa hipótese nula e aceitamos nossa hipótese experimental Estatísticas teste
  31. 31. Hipótese Nula Hipótese Experimental Estatísticas teste REJEITA!
  32. 32. Teste de Significância do r de Pearson Para testar a significância do r, calculamos uma estatística teste conhecida como “razão t”, com graus de liberdade igual a N-2. Olhar na tabela o valor crítico de t, com graus de liberdade “N-2” e α=0,05 Se tcalculado > tcrítico, podemos rejeitar a hipótese nula de que ρ=0.
  33. 33. Teste de Significância do r de Pearson Para testar a significância do r, calculamos uma estatística teste conhecida como “razão t”, com graus de liberdade igual a N-2. Olhar na tabela o valor crítico de t, com graus de liberdade “N-2” e α=0,05 Se tcalculado > tcrítico, podemos rejeitar a hipótese nula de que ρ=0. O que o modelo “explica” O que o modelo NÃO “explica” N maior, estatística maior
  34. 34. Hipótese Direcional: “Existe uma correlação populacional positiva”  TESTE DE HIPÓTESE UNILATERAL Hipótese Não Direcional: “Existe uma correlação populacional positiva ou negativa”  TESTE DE HIPÓTESE BILATERAL Testes Uni e Bilaterais
  35. 35. Testes Uni e Bilaterais Valor-p (p-value): Probabilidade de se obter uma estatística teste igual ou mais extrema que aquela observada em uma amostra, sob hipótese nula. Ou seja, pode- se rejeitar a hipótese nula a 5% caso o valor-p seja menor do que 0,05. Valor-p ≠ nível de significância (α). O nível de significância é estabelecido antes da coleta dos dados. Já o valor-p é obtido de uma amostra.
  36. 36. 1. Escolhemos as hipóteses nula (Ho) e alternativa (H1) 2. Decidimos qual será a estatística utilizada para testar a hipótese nula (no nosso exemplo, a estatística t) 3. Estipulamos o nível de significância (α), ou seja, um valor para o erro do tipo I. Com este valor, construímos a região crítica, que servirá de regra para rejeitar ou não a hipótese nula. 4. Calculamos o valor da estatística teste 5. Quanto o valor calculado da estatística NÃO pertence à região crítica estabelecida pelo nível de significância, NÃO rejeitamos a hipótese nula. Caso contrário, rejeitamos a hipótese nula. Passo-a-Passo: Teste de Hipótese
  37. 37. Exigências para o uso do coeficiente de correlação r de Pearson 1. Relação Linear entre X e Y 2. Dados intervalares 3. Amostragem Aleatória (assim podemos aplicar o teste de significância) 4. Características normalmente distribuídas (importante quando se testa significância em amostras pequenas - N<30)
  38. 38. Um alerta sobre interpretação: CAUSALIDADE Coeficientes de correlação NÃO dão indicação da causalidade 1. O problema da terceira variável Em qualquer correlação bivariada, a causalidade entre duas variáveis não pode ser dada por certo, porque podem ter outras variáveis, medidas ou não, afetando os resultados
  39. 39. Um alerta sobre interpretação: CAUSALIDADE Coeficientes de correlação NÃO dão indicação da causalidade 2. Direção da causalidade Coeficientes de correlação nada dizem sobre qual variável causa a alteração na outra. Mesmo se pudéssemos ignorar o problema da terceira variável, e pudéssemos assumir que as duas variáveis correlacionadas eram as únicas importantes, o coeficiente de correlação não indica em qual direção a causalidade opera.
  40. 40. Um alerta sobre interpretação: CAUSALIDADE Coeficientes de correlação NÃO dão indicação da causalidade 2. Direção da causalidade
  41. 41. Para diversão Spurious Correlation – www.tylervigen.com
  42. 42. Utilizando o R2 para Interpretação Embora não possamos tirar conclusões diretas sobre causalidade, podemos levar o coeficiente de correlação um passo a frente elevando-o ao quadrado  Coeficiente de Determinação, R2 O Coeficiente de Determinação é uma medida da quantidade de variação em uma variável que é explicada pela outra. Quanto da variabilidade do consumo de água per capita pode ser “explicada” pela renda per capita?
  43. 43. CORRELAÇÃO BIVARIADA Coeficientes 1. COEFICIENTE DE CORRELAÇÃO DE PEARSON 2. COEFICIENTE DE CORRELAÇÃO DE SPEARMAN  NÃO PARAMÉTRICO – Pode ser usada quando dados violarem suposições paramétricas, tais como dados não normais, dados ordinais. 3. TAU DE KENDALL  NÃO PARAMÉTRICO. Adequado para conjunto pequeno de dados com muitos escores “empatados”
  44. 44. CORRELAÇÃO PARCIAL Até o momento tratamos da CORRELAÇÃO BIVARIADA: correlação entre 2 variáveis. Exemplos: coeficiente de correlação de Pearson (r) e o de Spearman Mas… Nossa interpretação da relação entre duas variáveis muda de alguma maneira ao olharmos para o contexto mais amplo de outros fatores relacionados???
  45. 45. CORRELAÇÃO PARCIAL Em muitos casos, é importante ver o relacionamento entre duas variáveis quando o efeito de outras variáveis são constantes. CORRELAÇÃO PARCIAL: determina o relacionamento entre variáveis “controlando” o efeito de uma ou mais variáveis.
  46. 46. CORRELAÇÃO PARCIAL
  47. 47. CORRELAÇÃO SEMIPARCIAL
  48. 48. Análise de Correlação no SPSS
  49. 49. 1. No SPSS, abra o arquivo “Agua2010_SNIS.sav” 1. Vá em Gráficos > Construtor de Gráficos> Diagrama de Dispersão Selecione as variáveis Consumo de Água per capita (população total) Renda per capita Diagrama de Dispersão
  50. 50. Diagrama de Dispersão Como é o relacionamento entre as variáveis selecionadas? - Linear? - Forte/Fraco? - Positivo/Negativo?
  51. 51. Diagrama de Dispersão
  52. 52. Correlação no SPSS Analisar > Correlacionar > Bivariada… (Analyse > Correlate > Bivariate …)
  53. 53. Correlação no SPSS
  54. 54. ATIVIDADE 4 Utilizando os dados do seu trabalho de curso, conduza as seguintes análises no SPSS: 1. Construa e interprete diagrama(s) de dispersão a partir de variáveis de interesse. 2. Calcule e interprete a correlação entre variáveis de interesse. É significativa? O que isso significa? O exercício deverá ser compreendido como uma versão preliminar de parte do trabalho final da disciplina. Interprete. Aproveite para entender melhor o problema investigado.

×