SlideShare a Scribd company logo
1 of 36
UNCONVENTIONAL
MACHINING
PROCESS
INTRODUCTION
We all know that the term machinability refers to the
case with which a metal can be machined to an
acceptable surface finish.
 Nontraditional machining processes are widely used to
manufacture geometrically complex and precision parts
for aerospace, electronics and automotive industries.
In ordinary machining we use harder tool to work on work
piece, this limitations is overcome by unconventional
machining, unconventional machining is directly using
some sort of indirect energy For machining.
Ex: sparks , laser, heat, chemical etc.
applied in EDM , laser cutting machines etc.
Non conventional Machining is a recent development in
machining techniques.
The requirements that lead to the
development of nontraditional machining.
 Very high hardness and strength of the material.
 The work piece: too flexible or slender to support the
cutting or grinding forces.
 The shape of the part is complex, such as internal and
external profiles, or small diameter holes.
 Surface finish or tolerance better than those obtainable
conventional process.
 Temperature rise or residual stress in the work piece
are undesirable.
 Conventional machining involves the direct contact of
tool and work -piece, whereas unconventional machining
does not require the direct contact of tool and work piece.
Conventional machining has many disadvantages like tool
wear which are not present in Non-conventional
machining.
Advantages of Non-conventional
machining:
1) High accuracy and surface finish
2) Less/no wear
3) Tool life is more
4 ) Quieter operation
Disadvantages of non-conventional
machining:
1) High cost
2) Complex set-up
3) Skilled operator required
MACHINING
CHARACTERISTICS
The machining characteristics of different non-
conventional processes can be analysed withrespect
to :
 Metal removal rate
 Tolerance maintained
 Surface finish obtained
 Depth of surface damage
 Power required for machining
Unconventional machining processes
o Chemical machining(CM)
o Electrochemical machining(ECM)
o Electrochemical Grinding (ECG)
o Electrical Discharge Machining (EDM)
o Wire EDM
o Laser Beam Machining (LBM)
o Electron Beam Machining(EBM)
o Water Jet Machining (WJT)
o Abrasive Jet Machining (AJM)
o Ultrasonic Machining (USM)
CLASSIFICATION OF
UNCONVENTIONAL MACHINING PROCESS
Mechanical processes
electro-thermal
processes
Chemical/electrochemical
processes
Unconventional
machining process
 Oldest nontraditional machining process.
 Material is removed from a surface by chemical
dissolution using chemical reagents or etchants like
acids and alkaline solutions.
CHEMICAL
MACHINING (CM)
Types of chemical machining
1. Chemical Milling
By selectively attacking different areas of work
piece with chemical reagents shallow cavities can
be produced on plates, sheets, forging and
extrusion.
2. Chemical blanking
It is similar to blanking in sheet metals except
material is removed by chemical dissolution rather
than by shearing. Used in bur free etching of
printed circuit boards, decorative panels etc.
3. Photochemical blanking
This process is effective in blanking fragile work
pieces and materials. Material is removed using
photographic techniques. Applications are electric
motor lamination, flat springs, masks for color
television, printed circuit cards etc.
CHEMICAL
MACHINING
 Reverse of electroplating
 An electrolyte acts as a current carrier and high
electrolyte movement in the tool-work-piece gap
washes metal ions away from the work piece (anode)
before they have a chance to plate on to the tool
(cathode).
 Tool – generally made of bronze, copper, brass or
stainless steel.
 Electrolyte – salt solutions like sodium chloride or
sodium nitrate mixed in water.
 Power – DC supply of 5-25 V.
ELECTROCHEMICAL
MACHINING
 Process leaves a burr free surface.
 Does not cause any thermal damage to the parts.
 Lack of tool force prevents distortion of parts.
 Capable of machining complex parts and hard
materials
 ECM systems are now available as Numerically
Controlled machining centers with capability for
high production, high flexibility and high
tolerances.
ADVANTAGES OF ECM
ELECTROCHEMICAL
MACHINING
 Combines electrochemical machining with
conventional grinding.
 The equipment used is similar to conventional
grinder except that the wheel (bonded with
diamond or Al oxide abrasives) is a rotating
cathode with abrasive particles where
abrasives serve as insulator between wheel
and work piecee.
 A flow of electrolyte (sodium nitrate) is
provided for electrochemical machining.
ELECTROCHEMICAL GRINDING (ECG)
 Suitable for grinding very hard materials where wheel
wear is very high in traditional grinding process .
ELECTROCHEMICAL
GRINDING
 Based on erosion of metals by spark discharges.
 EDM system consist of a tool (electrode) and work
piece, connected to a dc power supply and placed in a
dielectric fluid.
 When potential difference between tool and work piece
is high, a transient spark discharges through the
fluid, removing a small amount of metal from the work
piece surface.
 This process is repeated with capacitor discharge rates
of 50-500 kHz.
ELECTRICAL DISCHARGE MACHINING
 dielectric fluid – mineral oils, kerosene, distilled and
deionized water etc.
role of the dielectric fluid
1. acts as a insulator until the
potential is sufficiently high.
2. acts as a flushing medium and
carries away the debris.
3. also acts as a cooling medium.
 Electrodes – usually made of graphite.
 EDM can be used for die cavities, small diameter deep
holes,turbine blades and various intricate shapes.
ELECTRICAL
DISCHARGE
MACHINING
 This process is similar to contour cutting with a band
saw.
 a slow moving wire travels along a prescribed
path, cutting the work piece with discharge sparks.
 wire should have sufficient tensile strength and fracture
toughness.
 wire is made of brass, copper or tungsten. (about
0.25mm in diameter).
Wire EDM
WIRE EDM
 In LBM laser is focused and the work piece which melts
and evaporates portions of the work piece.
 Low reflectivity and thermal conductivity of the work
piece surface, and low specific heat and latent heat of
melting and evaporation – increases process efficiency.
 Application - holes with depth-to-diameter ratios of 50 to
1 can be drilled. e.g. bleeder holes for fuel-pump
covers, lubrication holes in transmission hubs.
Laser beam
machining (LBM)
LASER BEAM
MACHINING
 Similar to LBM except laser beam is replaced by high
velocity electrons.
 When electron beam strikes the work piece surface, heat
is produced and metal is vaporized.
 Surface finish achieved is better than LBM.
 Used for very accurate cutting of a wide variety of
metals.
Electron beam
machining (EBM)
ELCTRON BEAM
MACHINING
 Water jet acts like a saw and cuts a narrow groove in
the material.
 Pressure level of the jet is about 400MPa.
 Advantages
- no heat produced
- cut can be started anywhere
without the need for predrilled holes
- burr produced is minimum
- environmentally safe and friendly
manufacturing
 Application – used for cutting
composites, plastics, fabrics, rubber, wood products
etc. Also used in food processing industry.
WATER JET MACHINING (WJT)
WATER JET
MACHINING
 In AJM a high velocity jet of dry air, nitrogen or CO2
containing abrasive particles is aimed at the work piece.
 The impact of the particles produce sufficient force to cut
small hole or slots, deburring, trimming and removing
oxides and other surface films.
Abrasive Jet
Machining (AJM)
ABRASIVE JET
MACHINING
 In UM the tip of the tool vibrates at low amplitude and
at high frequency. This vibration transmits a high
velocity to fine abrasive grains between tool and the
surface of the work piece.
 Material removed by erosion with abrasive particles.
 The abrasive grains are usually boron carbides.
 This technique is used to cut hard and brittle materials
like ceramics, carbides, glass, precious stones and
hardened steel.
ULTRASONIC MACHINING (UM)
ULTRASONIC
MACHINING
Made by:
Vatsal Vaghela (111)
THANK YOU

More Related Content

What's hot

Metal forming processes full
Metal forming processes fullMetal forming processes full
Metal forming processes fullNaman Dave
 
ECM : Electrochemical machining - Principle,process,subsystems & applications
ECM : Electrochemical machining - Principle,process,subsystems & applicationsECM : Electrochemical machining - Principle,process,subsystems & applications
ECM : Electrochemical machining - Principle,process,subsystems & applicationsPratik Chaudhari
 
Surface finishing processes
Surface finishing processesSurface finishing processes
Surface finishing processesNishit Desai
 
electrochemical grinding
electrochemical grinding electrochemical grinding
electrochemical grinding boney191
 
Water jet machining
Water jet machiningWater jet machining
Water jet machiningVarun Garg
 
Ultrasonic machining process (USM)
Ultrasonic machining process (USM)Ultrasonic machining process (USM)
Ultrasonic machining process (USM)Yuga Aravind Kumar
 
Non traditional machining processes
Non traditional machining processesNon traditional machining processes
Non traditional machining processesMECHV
 
High energy rate forming process
High energy rate forming processHigh energy rate forming process
High energy rate forming processJason Mani
 
Ultrasonic machining
Ultrasonic machiningUltrasonic machining
Ultrasonic machiningmohit99033
 
Advantages and limitation of non traditional machining
Advantages and limitation of non traditional machiningAdvantages and limitation of non traditional machining
Advantages and limitation of non traditional machiningMrunal Mohadikar
 
Electrochemical Machining
Electrochemical MachiningElectrochemical Machining
Electrochemical MachiningSushima Keisham
 

What's hot (20)

Chemical machining
Chemical machiningChemical machining
Chemical machining
 
Metal forming processes full
Metal forming processes fullMetal forming processes full
Metal forming processes full
 
ELECTRIC DISCHARGE MACHINING
ELECTRIC DISCHARGE MACHININGELECTRIC DISCHARGE MACHINING
ELECTRIC DISCHARGE MACHINING
 
ECM : Electrochemical machining - Principle,process,subsystems & applications
ECM : Electrochemical machining - Principle,process,subsystems & applicationsECM : Electrochemical machining - Principle,process,subsystems & applications
ECM : Electrochemical machining - Principle,process,subsystems & applications
 
Electron beam machining
Electron beam machiningElectron beam machining
Electron beam machining
 
Surface finishing processes
Surface finishing processesSurface finishing processes
Surface finishing processes
 
Coining process
Coining processCoining process
Coining process
 
Plasma Arc Machining process
Plasma Arc Machining processPlasma Arc Machining process
Plasma Arc Machining process
 
electrochemical grinding
electrochemical grinding electrochemical grinding
electrochemical grinding
 
Electrochemical honing
Electrochemical honingElectrochemical honing
Electrochemical honing
 
Water jet machining
Water jet machiningWater jet machining
Water jet machining
 
Ultrasonic machining process (USM)
Ultrasonic machining process (USM)Ultrasonic machining process (USM)
Ultrasonic machining process (USM)
 
Non traditional machining processes
Non traditional machining processesNon traditional machining processes
Non traditional machining processes
 
High energy rate forming process
High energy rate forming processHigh energy rate forming process
High energy rate forming process
 
Electrical Discharge Machining Process
Electrical Discharge Machining ProcessElectrical Discharge Machining Process
Electrical Discharge Machining Process
 
Ultrasonic machining
Ultrasonic machiningUltrasonic machining
Ultrasonic machining
 
Advantages and limitation of non traditional machining
Advantages and limitation of non traditional machiningAdvantages and limitation of non traditional machining
Advantages and limitation of non traditional machining
 
Honing, Lapping & Electroplating
Honing, Lapping & ElectroplatingHoning, Lapping & Electroplating
Honing, Lapping & Electroplating
 
Electrochemical Machining
Electrochemical MachiningElectrochemical Machining
Electrochemical Machining
 
Laser Beam machining Process
Laser Beam machining ProcessLaser Beam machining Process
Laser Beam machining Process
 

Similar to Unconventional machining process

Unconventional machining process
Unconventional machining processUnconventional machining process
Unconventional machining processPNMohankumar
 
Ch 12 unconventional machining
Ch 12 unconventional machiningCh 12 unconventional machining
Ch 12 unconventional machiningNandan Choudhary
 
Report on EDM,LJM, USM & ECM
Report on EDM,LJM, USM & ECMReport on EDM,LJM, USM & ECM
Report on EDM,LJM, USM & ECMMarwan Shehata
 
Thermal network removal processes
Thermal network removal processesThermal network removal processes
Thermal network removal processesAbrar Mirza
 
Non-Traditional Maching Processes
Non-Traditional Maching ProcessesNon-Traditional Maching Processes
Non-Traditional Maching ProcessesFaisal Shafiq
 
5 nontraditionalmachining ch26wiley
5 nontraditionalmachining ch26wiley5 nontraditionalmachining ch26wiley
5 nontraditionalmachining ch26wileyDr Manimaran R
 
Sourabh tailor (seminar)
Sourabh tailor (seminar)Sourabh tailor (seminar)
Sourabh tailor (seminar)Sourabh Tailor
 
Thermal Removal Processes (Overview)
Thermal Removal Processes (Overview) Thermal Removal Processes (Overview)
Thermal Removal Processes (Overview) AJay MIttal
 
Unconventional Machining Process
Unconventional Machining ProcessUnconventional Machining Process
Unconventional Machining ProcessAanand Kumar
 
Adsvance Manufacturing Process.ppt
Adsvance Manufacturing Process.pptAdsvance Manufacturing Process.ppt
Adsvance Manufacturing Process.pptRNAKHSANUTAKWIM
 
class29_nontraditional machining.ppt.pptx
class29_nontraditional machining.ppt.pptxclass29_nontraditional machining.ppt.pptx
class29_nontraditional machining.ppt.pptxAllakahima
 
Non Conventional Machining Processes
Non Conventional Machining ProcessesNon Conventional Machining Processes
Non Conventional Machining ProcessesVivek Ray
 
Non traditional machining
Non traditional machiningNon traditional machining
Non traditional machiningNayanGaykwad
 
Advanced Material Process Techniques Exteriments
Advanced Material Process Techniques ExterimentsAdvanced Material Process Techniques Exteriments
Advanced Material Process Techniques ExterimentsShivam Patel
 

Similar to Unconventional machining process (20)

Unconventional machining process
Unconventional machining processUnconventional machining process
Unconventional machining process
 
Ch 12 unconventional machining
Ch 12 unconventional machiningCh 12 unconventional machining
Ch 12 unconventional machining
 
LBM
LBMLBM
LBM
 
5NontraditionalMachining-CH26Wiley.ppt
5NontraditionalMachining-CH26Wiley.ppt5NontraditionalMachining-CH26Wiley.ppt
5NontraditionalMachining-CH26Wiley.ppt
 
ADVANCE MANUFACTURING PROCESS
ADVANCE MANUFACTURING PROCESSADVANCE MANUFACTURING PROCESS
ADVANCE MANUFACTURING PROCESS
 
Report on EDM,LJM, USM & ECM
Report on EDM,LJM, USM & ECMReport on EDM,LJM, USM & ECM
Report on EDM,LJM, USM & ECM
 
Thermal network removal processes
Thermal network removal processesThermal network removal processes
Thermal network removal processes
 
U6 p2 ntm processes
U6 p2 ntm processesU6 p2 ntm processes
U6 p2 ntm processes
 
Non-Traditional Maching Processes
Non-Traditional Maching ProcessesNon-Traditional Maching Processes
Non-Traditional Maching Processes
 
5 nontraditionalmachining ch26wiley
5 nontraditionalmachining ch26wiley5 nontraditionalmachining ch26wiley
5 nontraditionalmachining ch26wiley
 
Sourabh tailor (seminar)
Sourabh tailor (seminar)Sourabh tailor (seminar)
Sourabh tailor (seminar)
 
Thermal Removal Processes (Overview)
Thermal Removal Processes (Overview) Thermal Removal Processes (Overview)
Thermal Removal Processes (Overview)
 
Unconventional.ppt
Unconventional.pptUnconventional.ppt
Unconventional.ppt
 
MT .ppt
MT .pptMT .ppt
MT .ppt
 
Unconventional Machining Process
Unconventional Machining ProcessUnconventional Machining Process
Unconventional Machining Process
 
Adsvance Manufacturing Process.ppt
Adsvance Manufacturing Process.pptAdsvance Manufacturing Process.ppt
Adsvance Manufacturing Process.ppt
 
class29_nontraditional machining.ppt.pptx
class29_nontraditional machining.ppt.pptxclass29_nontraditional machining.ppt.pptx
class29_nontraditional machining.ppt.pptx
 
Non Conventional Machining Processes
Non Conventional Machining ProcessesNon Conventional Machining Processes
Non Conventional Machining Processes
 
Non traditional machining
Non traditional machiningNon traditional machining
Non traditional machining
 
Advanced Material Process Techniques Exteriments
Advanced Material Process Techniques ExterimentsAdvanced Material Process Techniques Exteriments
Advanced Material Process Techniques Exteriments
 

Recently uploaded

How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 

Recently uploaded (20)

How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 

Unconventional machining process

  • 2. INTRODUCTION We all know that the term machinability refers to the case with which a metal can be machined to an acceptable surface finish.  Nontraditional machining processes are widely used to manufacture geometrically complex and precision parts for aerospace, electronics and automotive industries.
  • 3. In ordinary machining we use harder tool to work on work piece, this limitations is overcome by unconventional machining, unconventional machining is directly using some sort of indirect energy For machining. Ex: sparks , laser, heat, chemical etc. applied in EDM , laser cutting machines etc. Non conventional Machining is a recent development in machining techniques.
  • 4. The requirements that lead to the development of nontraditional machining.  Very high hardness and strength of the material.  The work piece: too flexible or slender to support the cutting or grinding forces.  The shape of the part is complex, such as internal and external profiles, or small diameter holes.  Surface finish or tolerance better than those obtainable conventional process.  Temperature rise or residual stress in the work piece are undesirable.
  • 5.  Conventional machining involves the direct contact of tool and work -piece, whereas unconventional machining does not require the direct contact of tool and work piece. Conventional machining has many disadvantages like tool wear which are not present in Non-conventional machining.
  • 6. Advantages of Non-conventional machining: 1) High accuracy and surface finish 2) Less/no wear 3) Tool life is more 4 ) Quieter operation
  • 7. Disadvantages of non-conventional machining: 1) High cost 2) Complex set-up 3) Skilled operator required
  • 8. MACHINING CHARACTERISTICS The machining characteristics of different non- conventional processes can be analysed withrespect to :  Metal removal rate  Tolerance maintained  Surface finish obtained  Depth of surface damage  Power required for machining
  • 9. Unconventional machining processes o Chemical machining(CM) o Electrochemical machining(ECM) o Electrochemical Grinding (ECG) o Electrical Discharge Machining (EDM) o Wire EDM o Laser Beam Machining (LBM) o Electron Beam Machining(EBM) o Water Jet Machining (WJT) o Abrasive Jet Machining (AJM) o Ultrasonic Machining (USM)
  • 10. CLASSIFICATION OF UNCONVENTIONAL MACHINING PROCESS Mechanical processes electro-thermal processes Chemical/electrochemical processes Unconventional machining process
  • 11.
  • 12.  Oldest nontraditional machining process.  Material is removed from a surface by chemical dissolution using chemical reagents or etchants like acids and alkaline solutions. CHEMICAL MACHINING (CM)
  • 13. Types of chemical machining 1. Chemical Milling By selectively attacking different areas of work piece with chemical reagents shallow cavities can be produced on plates, sheets, forging and extrusion. 2. Chemical blanking It is similar to blanking in sheet metals except material is removed by chemical dissolution rather than by shearing. Used in bur free etching of printed circuit boards, decorative panels etc. 3. Photochemical blanking This process is effective in blanking fragile work pieces and materials. Material is removed using photographic techniques. Applications are electric motor lamination, flat springs, masks for color television, printed circuit cards etc.
  • 15.  Reverse of electroplating  An electrolyte acts as a current carrier and high electrolyte movement in the tool-work-piece gap washes metal ions away from the work piece (anode) before they have a chance to plate on to the tool (cathode).  Tool – generally made of bronze, copper, brass or stainless steel.  Electrolyte – salt solutions like sodium chloride or sodium nitrate mixed in water.  Power – DC supply of 5-25 V. ELECTROCHEMICAL MACHINING
  • 16.  Process leaves a burr free surface.  Does not cause any thermal damage to the parts.  Lack of tool force prevents distortion of parts.  Capable of machining complex parts and hard materials  ECM systems are now available as Numerically Controlled machining centers with capability for high production, high flexibility and high tolerances. ADVANTAGES OF ECM
  • 18.  Combines electrochemical machining with conventional grinding.  The equipment used is similar to conventional grinder except that the wheel (bonded with diamond or Al oxide abrasives) is a rotating cathode with abrasive particles where abrasives serve as insulator between wheel and work piecee.  A flow of electrolyte (sodium nitrate) is provided for electrochemical machining. ELECTROCHEMICAL GRINDING (ECG)
  • 19.  Suitable for grinding very hard materials where wheel wear is very high in traditional grinding process .
  • 21.  Based on erosion of metals by spark discharges.  EDM system consist of a tool (electrode) and work piece, connected to a dc power supply and placed in a dielectric fluid.  When potential difference between tool and work piece is high, a transient spark discharges through the fluid, removing a small amount of metal from the work piece surface.  This process is repeated with capacitor discharge rates of 50-500 kHz. ELECTRICAL DISCHARGE MACHINING
  • 22.  dielectric fluid – mineral oils, kerosene, distilled and deionized water etc. role of the dielectric fluid 1. acts as a insulator until the potential is sufficiently high. 2. acts as a flushing medium and carries away the debris. 3. also acts as a cooling medium.  Electrodes – usually made of graphite.  EDM can be used for die cavities, small diameter deep holes,turbine blades and various intricate shapes.
  • 24.  This process is similar to contour cutting with a band saw.  a slow moving wire travels along a prescribed path, cutting the work piece with discharge sparks.  wire should have sufficient tensile strength and fracture toughness.  wire is made of brass, copper or tungsten. (about 0.25mm in diameter). Wire EDM
  • 26.  In LBM laser is focused and the work piece which melts and evaporates portions of the work piece.  Low reflectivity and thermal conductivity of the work piece surface, and low specific heat and latent heat of melting and evaporation – increases process efficiency.  Application - holes with depth-to-diameter ratios of 50 to 1 can be drilled. e.g. bleeder holes for fuel-pump covers, lubrication holes in transmission hubs. Laser beam machining (LBM)
  • 28.  Similar to LBM except laser beam is replaced by high velocity electrons.  When electron beam strikes the work piece surface, heat is produced and metal is vaporized.  Surface finish achieved is better than LBM.  Used for very accurate cutting of a wide variety of metals. Electron beam machining (EBM)
  • 30.  Water jet acts like a saw and cuts a narrow groove in the material.  Pressure level of the jet is about 400MPa.  Advantages - no heat produced - cut can be started anywhere without the need for predrilled holes - burr produced is minimum - environmentally safe and friendly manufacturing  Application – used for cutting composites, plastics, fabrics, rubber, wood products etc. Also used in food processing industry. WATER JET MACHINING (WJT)
  • 32.  In AJM a high velocity jet of dry air, nitrogen or CO2 containing abrasive particles is aimed at the work piece.  The impact of the particles produce sufficient force to cut small hole or slots, deburring, trimming and removing oxides and other surface films. Abrasive Jet Machining (AJM)
  • 34.  In UM the tip of the tool vibrates at low amplitude and at high frequency. This vibration transmits a high velocity to fine abrasive grains between tool and the surface of the work piece.  Material removed by erosion with abrasive particles.  The abrasive grains are usually boron carbides.  This technique is used to cut hard and brittle materials like ceramics, carbides, glass, precious stones and hardened steel. ULTRASONIC MACHINING (UM)
  • 36. Made by: Vatsal Vaghela (111) THANK YOU