O que é o PI (     )<br />p = 3,14159 26535 ……. <br />Miguel Ângelo Alberto Nº18  5º B<br />
Conhecendo melhor PIA constante pi pode ser definida como sendo a razão entre o perímetro e o diâmetro de uma circunferênc...
1ºExercício<br />- Copo com diâmetro de 5 cm<br />Perímetro = Diâmetro X <br />Para  achar o perímetro do copo faremos a s...
2ºExercício<br />Jarro água com 16,5 cm de diâmetro<br />Para  achar o perímetro do jarro faremos a seguinte equação.<br /...
3ºExercício<br />Caneca onde bebo o meu Leite com 7,8 cm de diâmetro<br />Para  achar o perímetro da caneca faremos a segu...
Próximos SlideShares
Carregando em…5
×

O que é o pi ?(Miguel,5ºB)

2.639 visualizações

Publicada em

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
2.639
No SlideShare
0
A partir de incorporações
0
Número de incorporações
47
Ações
Compartilhamentos
0
Downloads
13
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

O que é o pi ?(Miguel,5ºB)

  1. 1. O que é o PI ( )<br />p = 3,14159 26535 ……. <br />Miguel Ângelo Alberto Nº18 5º B<br />
  2. 2. Conhecendo melhor PIA constante pi pode ser definida como sendo a razão entre o perímetro e o diâmetro de uma circunferência  A primeira utilização do símbolo para representar pi deve-se a William Jones em 1706, sendo depois adoptada por Euler em 1748 a partir do qual se popularizou e tornou a notação padrão para esta constante. Pode-se provar que o número pi é irracional e transcendente. Um número diz-se irracional quando não pode ser representado por uma fracção de dois números inteiros e transcendente se não anular nenhuma função polinomial de coeficientes inteiros. Durante muito tempo os matemáticos acreditaram que todas as grandezas eram comensuráveis, o que podemos traduzir em linguagem moderna pela afirmação que todos os números eram racionais. Os gregos demonstraram que a diagonal do quadrado não era comensurável com o lado do quadrado, o que nós podemos exprimir em linguagem actual, dizendo que não pode ser expressa como quociente de dois inteiros, ou não é racional. As características rebeldes destes números valeram-lhes o nome de números irracionais. Os números racionais têm uma expansão decimal finita (regulares) ou infinita periódica (irregulares) . <br />Miguel Ângelo Alberto Nº18 5º B<br />
  3. 3. 1ºExercício<br />- Copo com diâmetro de 5 cm<br />Perímetro = Diâmetro X <br />Para achar o perímetro do copo faremos a seguinte equação.<br />5 x 3,14= 15,7 cm<br />O perímetro deste copo é 15,7 cm.<br />Miguel Ângelo Alberto Nº18 5º B<br />
  4. 4. 2ºExercício<br />Jarro água com 16,5 cm de diâmetro<br />Para achar o perímetro do jarro faremos a seguinte equação.<br />16,5x 3,14= 51,81 cm<br />O perímetro deste Jarro é 51,81 cm.<br />Miguel Ângelo Alberto Nº18 5º B<br />
  5. 5. 3ºExercício<br />Caneca onde bebo o meu Leite com 7,8 cm de diâmetro<br />Para achar o perímetro da caneca faremos a seguinte equação.<br />7,8x 3,14 = 24,49 cm<br />O perímetro da minha Caneca é 24,49 cm.<br />Miguel Ângelo Alberto Nº18 5º B<br />

×