SlideShare a Scribd company logo
1 of 127
Download to read offline
Chapter 3 Manipulator Kinematics




                                                                                        1


Chapter             Lecture Notes for
 Manipulator
Kinematics
               A Geometrical Introduction to
Forward
kinematics      Robotics and Manipulation
Inverse
Kinematics

Manipulator
               Richard Murray and Zexiang Li and Shankar S. Sastry
Jacobian                           CRC Press
Redundant
Manipulators

Reference
                      Zexiang Li and Yuanqing Wu

                  ECE, Hong Kong University of Science & Technology


                                 May       ,
Chapter 3 Manipulator Kinematics




                                                                         2

               Chapter Manipulator Kinematics
Chapter
 Manipulator
Kinematics
                 Forward kinematics
Forward
kinematics

Inverse
Kinematics
                 Inverse Kinematics
Manipulator
Jacobian
                 Manipulator Jacobian
Redundant
Manipulators

Reference
                 Redundant Manipulators

                 Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                      3


Chapter
 Manipulator
Kinematics

Forward
kinematics

Inverse        (a) Adept Cobra i600 (SCARA)                   (b) Forward kinematics of SCARA
Kinematics                                  Figure 3.1
Manipulator        Lower Pair Joints:
                  revolute joint S ↦ SO( )        prismatic joint ℝ ↦ T( )
Jacobian

Redundant

                              R                                  T
Manipulators

Reference
                        Li         Li+                   Li           Li+

                   Forward kinematics:

                                    L
                                                 joint            L
                                                                            joint n           Ln
                              base: stationary       Link : first movable link      Link n: end-effector
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                 4
                 ◻ Joint space:
                 Revolute joint:    S , θ i ∈ S or θ i ∈ [−π, π]
Chapter          Prismatic joint:   ℝ
                                    Q ∶ S × ⋯ × S ×ℝ × ⋯ × ℝ
 Manipulator
Kinematics           Joint space:
Forward
kinematics
                                        no. of R joint   no. of P joint

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                 4
                 ◻ Joint space:
                 Revolute joint:    S , θ i ∈ S or θ i ∈ [−π, π]
Chapter          Prismatic joint:   ℝ
                                    Q ∶ S × ⋯ × S ×ℝ × ⋯ × ℝ
 Manipulator
Kinematics           Joint space:
Forward
kinematics
                                        no. of R joint   no. of P joint

                          Q ∶S ×S ×S ×ℝ
Inverse
                 Adept
                          Q = Γ ∶S ×⋯×S
Kinematics

Manipulator      Elbow
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                 4
                 ◻ Joint space:
                 Revolute joint:    S , θ i ∈ S or θ i ∈ [−π, π]
Chapter          Prismatic joint:   ℝ
                                    Q ∶ S × ⋯ × S ×ℝ × ⋯ × ℝ
 Manipulator
Kinematics           Joint space:
Forward
kinematics
                                        no. of R joint   no. of P joint

                          Q ∶S ×S ×S ×ℝ
Inverse
                 Adept
                          Q = Γ ∶S ×⋯×S
Kinematics

Manipulator      Elbow
Jacobian

Redundant

                                                                      θ = ( , ,..., ) ∈ Q
Manipulators
                 Reference (nominal) joint config:
                                                                      gst ( ) ∈ SE( )
Reference
                 Reference (nominal) end-effector config:
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                  4
                 ◻ Joint space:
                 Revolute joint:    S , θ i ∈ S or θ i ∈ [−π, π]
Chapter          Prismatic joint:   ℝ
                                    Q ∶ S × ⋯ × S ×ℝ × ⋯ × ℝ
 Manipulator
Kinematics           Joint space:
Forward
kinematics
                                         no. of R joint   no. of P joint

                          Q ∶S ×S ×S ×ℝ
Inverse
                 Adept
                          Q = Γ ∶S ×⋯×S
Kinematics

Manipulator      Elbow
Jacobian

Redundant

                                                                       θ = ( , ,..., ) ∈ Q
Manipulators
                 Reference (nominal) joint config:
                                                                       gst ( ) ∈ SE( )
Reference
                 Reference (nominal) end-effector config:


                 Arbitrary configuration gst (θ):

                                    gst ∶ θ ∈ Q ↦ gst (θ) ∈ SE( )
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                              5
                 ◻ Classical Approach:
Chapter
                                gst (θ , θ ) = gst (θ ) ⋅ gl l ⋅ gl   t
 Manipulator
Kinematics
                Disadvantage: A coordinate frame needed for each link
Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                  5
                 ◻ Classical Approach:
Chapter
                                    gst (θ , θ ) = gst (θ ) ⋅ gl l ⋅ gl   t
 Manipulator
Kinematics
                Disadvantage: A coordinate frame needed for each link
                 ◻ The product of exponentials formula:
Forward
kinematics

Inverse
Kinematics
                Consider Fig 3.2.
Manipulator
Jacobian
                                                        θ2
Redundant
Manipulators                                 θ1

Reference                                             L2           T

                                         L1




                                         S



                            Figure 3.2: A two degree of freedom manipulator
                                                                 (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                   6

                Step 1: Rotating about ω by θ
                        ξ = −ωω× q
Chapter
 Manipulator
Kinematics

                        gst (θ ) = e ξ θ ⋅ gst ( )
                                     ˆ
Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                               6

                Step 1: Rotating about ω by θ
                        ξ = −ωω× q
Chapter
 Manipulator
Kinematics

                        gst (θ ) = e ξ θ ⋅ gst ( )
                                     ˆ
Forward
kinematics

Inverse         Step 2: Rotating about ω by θ
                        ξ = −ωω× q
Kinematics


                        gst (θ , θ ) = e ξ θ ⋅ e ξ θ ⋅ gst ( )
Manipulator
Jacobian                                 ˆ       ˆ
Redundant
Manipulators
                                                     o set
Reference                  θ ∶ ( , ) ↦ ( , θ ) ↦ (θ , θ )


                                                             (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                     7

               What if another route is taken?
Chapter

                              θ ∶ ( , ) ↦ (θ , ) ↦ (θ , θ )
 Manipulator
Kinematics

Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                     7

               What if another route is taken?
Chapter

                              θ ∶ ( , ) ↦ (θ , ) ↦ (θ , θ )
 Manipulator
Kinematics

Forward
kinematics
                Step 1: Rotating about ω by θ
                        ξ = −ωω× q
Inverse
Kinematics

                        gst (θ ) = e ξ θ ⋅ gst ( )
Manipulator                          ˆ
Jacobian

Redundant
Manipulators

Reference
                Step 2: Rotating about ω′ by θ
                    Let e ξ θ = R p
                          ˆ

                        ω′ = R ⋅ ω
                        q′ = p + R ⋅ q
                                                     (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                          8


                      −ω′ × q′         −R ω RT (p + R q )
               ξ′ =              =        ˆ
Chapter
 Manipulator
Kinematics              ω′                   Rω
Forward
                 =    R pRˆ          −ω × q = Ad ˆ ⋅ ξ ⇒ ξ ′ = eξ θ ⋅ ξ ⋅ e− ξ θ
                                                          ˆ     ˆ     ˆ      ˆ
kinematics
                           R           ω           eξ θ
Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                                8


                      −ω′ × q′          −R ω RT (p + R q )
               ξ′ =               =        ˆ
Chapter
 Manipulator
Kinematics              ω′                    Rω
Forward
                 =    R pRˆ           −ω × q = Ad ˆ ⋅ ξ ⇒ ξ ′ = eξ θ ⋅ ξ ⋅ e− ξ θ
                                                           ˆ     ˆ     ˆ      ˆ
kinematics
                           R            ω           eξ θ
Inverse
Kinematics

Manipulator

                          gst (θ , θ ) = eξ         ⋅ eξ θ ⋅ gst ( )
Jacobian                                  ˆ′ θ          ˆ
Redundant

                                       = ee                          ⋅ eξ θ ⋅ gst ( )
                                              ˆ               ˆ θ
Manipulators                                  ξ θ   ⋅ ξ θ ⋅e− ξ
                                                      ˆ                  ˆ
Reference

                                       = eξ θ ⋅ eξ            ⋅ e− ξ θ ⋅ eξ θ ⋅ gst ( )
                                          ˆ            ˆθ            ˆ        ˆ


                                       = eξ θ ⋅ eξ                ⋅ gst ( )
                                              ˆ          ˆθ


                                 Independent of the route taken
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                             9
                 ◻ Procedure for forward kinematic map:
Chapter          Identify a nominal configuration:
 Manipulator


                      Θ = (θ , . . . , θ n ) = , gst ( ) ≜ gst (θ , . . . , θ n )
Kinematics

Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                             9
                 ◻ Procedure for forward kinematic map:
Chapter          Identify a nominal configuration:
 Manipulator


                      Θ = (θ , . . . , θ n ) = , gst ( ) ≜ gst (θ , . . . , θ n )
Kinematics

Forward
kinematics

Inverse
Kinematics
                 Simplification of forward kinematics mapping:
                                             ξi = −ωωi qi
Manipulator                                           ×
Jacobian               Revolute joint:
Redundant
Manipulators
                                             Choose qi s.t. ξi is simple.
                                                  vi
                                             ξi =
Reference
                      Prismatic joint:
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                               9
                 ◻ Procedure for forward kinematic map:
Chapter          Identify a nominal configuration:
 Manipulator


                        Θ = (θ , . . . , θ n ) = , gst ( ) ≜ gst (θ , . . . , θ n )
Kinematics

Forward
kinematics

Inverse
Kinematics
                 Simplification of forward kinematics mapping:
                                               ξi = −ωωi qi
Manipulator                                             ×
Jacobian                 Revolute joint:
Redundant
Manipulators
                                               Choose qi s.t. ξi is simple.
                                                    vi
                                               ξi =
Reference
                         Prismatic joint:

                 Write gst (θ) = e ξ θ . . . e ξn θ n ⋅ gst ( ) (product of exponential
                                     ˆ         ˆ

                mapping)
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                     10
                 Example: SCARA manipulator
                                                                                           θ3



                           ⎡            ⎤
                           ⎢            ⎥
Chapter                                                                θ2




                 gst ( ) = ⎢ I   l +l   ⎥
 Manipulator                                        θ1                       l2



                           ⎢            ⎥
                                                                                                θ4
Kinematics

                           ⎢            ⎥
                                                             l1

                                   l
                           ⎣            ⎦
Forward
kinematics                                      z                                      T



                 ω =ω =ω =
                                                                            l0
                                            q1 S                  q2              q3
Inverse                                                  y

Kinematics                                  x


Manipulator
Jacobian
                                                             Figure 3.3
Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                                10
                 Example: SCARA manipulator
                                                                                                      θ3



                           ⎡              ⎤
                           ⎢              ⎥
Chapter                                                                           θ2




                 gst ( ) = ⎢ I    l +l    ⎥
 Manipulator                                                   θ1                       l2



                           ⎢              ⎥
                                                                                                           θ4
Kinematics

                           ⎢              ⎥
                                                                        l1

                                    l
                           ⎣              ⎦
Forward
kinematics                                                 z                                      T



                 ω =ω =ω =
                                                                                       l0
                                                       q1 S                  q2              q3
Inverse                                                             y

Kinematics                                             x


Manipulator
Jacobian
                                                                        Figure 3.3

                            q =          ,q =       ,q =                l +l
Redundant
Manipulators                                    l
Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                                 10
                 Example: SCARA manipulator
                                                                                                       θ3



                           ⎡              ⎤
                           ⎢              ⎥
Chapter                                                                            θ2




                 gst ( ) = ⎢ I    l +l    ⎥
 Manipulator                                                   θ1                        l2



                           ⎢              ⎥
                                                                                                            θ4
Kinematics

                           ⎢              ⎥
                                                                        l1

                                    l
                           ⎣              ⎦
Forward
kinematics                                                 z                                       T



                 ω =ω =ω =
                                                                                        l0
                                                       q1 S                   q2              q3
Inverse                                                             y

Kinematics                                             x


Manipulator
Jacobian
                                                                        Figure 3.3

                            q =          ,q =       ,q =                l +l
Redundant
Manipulators                                    l
Reference

                        ⎡         ⎤      ⎡ l ⎤    ⎡ l +l                     ⎤      ⎡                       ⎤
                        ⎢         ⎥      ⎢ ⎥      ⎢                          ⎥      ⎢                       ⎥
                        ⎢         ⎥      ⎢ ⎥      ⎢                          ⎥      ⎢                       ⎥
                        ⎢         ⎥      ⎢ ⎥      ⎢                          ⎥      ⎢                       ⎥
                    ⇒ξ =⎢         ⎥, ξ = ⎢ ⎥, ξ = ⎢                          ⎥, ξ = ⎢                       ⎥
                        ⎢         ⎥      ⎢ ⎥      ⎢                          ⎥      ⎢                       ⎥
                        ⎢         ⎥      ⎢ ⎥      ⎢                          ⎥      ⎢                       ⎥
                        ⎢         ⎥      ⎢ ⎥      ⎢                          ⎥      ⎢                       ⎥
                        ⎣         ⎦      ⎣ ⎦      ⎣                          ⎦      ⎣                       ⎦
                                                           (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                    11

                gst (θ) = eξ θ ⋅ eξ     ⋅ eξ    ⋅ eξ     ⋅ gst ( ) =   R(θ) p(θ)
                           ˆ      ˆ θ      ˆθ      ˆ θ
Chapter
 Manipulator
Kinematics

Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                             11

                 gst (θ) = eξ θ ⋅ eξ     ⋅ eξ    ⋅ eξ ⋅ gst ( ) = R(θ) p(θ)
                            ˆ      ˆ θ      ˆθ      ˆ θ
Chapter

                        ⎡ c −s                ⎤          ⎡            ls ⎤
                                              ⎥ ξ θ ⎢ c −s
 Manipulator

                        ⎢                                             l s ⎥,
                      =⎢ s                    ⎥, e ˆ = ⎢ s                ⎥
Kinematics

                        ⎢                     ⎥          ⎢                ⎥
                e
                  ˆ
                  ξθ            c                                c
                        ⎢                     ⎥          ⎢                ⎥
Forward

                        ⎣                     ⎦          ⎣                ⎦
kinematics

                         ⎡ c −s             (l s )s ⎤            ⎡         ⎤
                         ⎢                           ⎥ ˆ
Inverse

                         ⎢                  (l s )v ⎥, eξ θ = ⎢ I          ⎥
Kinematics

                       =⎢ s                          ⎥           ⎢         ⎥
                                                                 ⎢         ⎥
                  ˆ              c
                         ⎢                           ⎥
                  ξ θ
                e
                                                                 ⎢         ⎥
Manipulator

                         ⎢                           ⎥
                                                                      θ
                                                                 ⎣         ⎦
Jacobian

Redundant                ⎣                           ⎦
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                           11

                 gst (θ) = eξ θ ⋅ eξ θ ⋅ eξ θ ⋅ eξ θ ⋅ gst ( ) = R(θ) p(θ)
                             ˆ     ˆ      ˆ       ˆ
Chapter

                        ⎡ c −s               ⎤          ⎡            ls ⎤
                                             ⎥ ξ θ ⎢ c −s
 Manipulator

                        ⎢ s                                          l s ⎥,
                        ⎢                    ⎥, e ˆ = ⎢ s                ⎥
Kinematics

                      =⎢        c
                                             ⎥          ⎢
                                                                c
                                                                         ⎥
                  ˆ
                  ξθ
                e
                        ⎢                    ⎥          ⎢                ⎥
Forward

                        ⎣                    ⎦          ⎣                ⎦
kinematics

                         ⎡ c −s            (l s )s ⎤            ⎡         ⎤
                         ⎢                            ⎥ ˆ
Inverse

                         ⎢ s               (l s )v ⎥, eξ θ = ⎢ I          ⎥
Kinematics

                       =⎢                             ⎥         ⎢         ⎥
                                                                ⎢         ⎥
                  ˆ              c
                         ⎢                            ⎥
                  ξ θ
                e
                                                                ⎢         ⎥
Manipulator

                         ⎢                            ⎥
                                                                     θ
                                                                ⎣         ⎦
Jacobian

                         ⎣                            ⎦
                           ⎡        −s          −l s − l s ⎤
Redundant

                           ⎢ c                                ⎥
                           ⎢                     l c +l c ⎥
Manipulators

                gst (θ) = ⎢ s        c                        ⎥
                           ⎢                        l +θ      ⎥
Reference

                           ⎢                                  ⎥
                           ⎣                                  ⎦
                in which, c = cos(θ + θ + θ ) and c = cos(θ + θ ).
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                     12
                  Example: Elbow manipulator
Chapter
 Manipulator                                        ξ1                                ξ4
                                                              ξ2                 ξ3        ξ5

                          ⎡             ⎤
Kinematics

                          ⎢     l +l    ⎥
                                                              l1            l2


                gst ( ) = ⎢ I           ⎥
Forward                                        q1                   q2                          ξ6


                          ⎢             ⎥
kinematics                                                                            T


                          ⎢       l     ⎥
                          ⎣             ⎦
Inverse
Kinematics                                               l0


Manipulator                                         S
Jacobian

Redundant
                                                              Figure 3.4
                   ⎡                    ⎤ ⎡   ⎤
Manipulators

                   ⎢ −          ×       ⎥ ⎢   ⎥
                   ⎢                    ⎥ ⎢   ⎥
Reference

                   ⎢                    ⎥ ⎢   ⎥
                ξ =⎢                l   ⎥=⎢   ⎥,
                   ⎢                    ⎥ ⎢   ⎥
                   ⎢                    ⎥ ⎢   ⎥
                   ⎢                    ⎥ ⎢   ⎥
                   ⎣                    ⎦ ⎣   ⎦
                                                                   (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                       13
                     ⎡    −             ⎤ ⎡     ⎤      ⎡    ⎤
                     ⎢ −        ×       ⎥ ⎢ −l ⎥       ⎢ −l ⎥
                     ⎢                  ⎥ ⎢     ⎥      ⎢    ⎥
                     ⎢                  ⎥ ⎢     ⎥      ⎢ l ⎥
                 ξ =⎢         −
                                   l    ⎥ = ⎢ − ⎥, ξ = ⎢ − ⎥,
                     ⎢                  ⎥ ⎢     ⎥      ⎢    ⎥
                     ⎢                  ⎥ ⎢     ⎥      ⎢    ⎥
Chapter

                     ⎢                  ⎥ ⎢     ⎥      ⎢    ⎥
 Manipulator

                     ⎣                  ⎦ ⎣     ⎦      ⎣    ⎦
Kinematics

                    ⎡ l +l ⎤       ⎡       ⎤    ⎡ −l ⎤
                    ⎢       ⎥      ⎢ −l ⎥       ⎢      ⎥
Forward

                    ⎢       ⎥      ⎢       ⎥    ⎢      ⎥
kinematics

                    ⎢       ⎥      ⎢ l +l ⎥     ⎢      ⎥
                ξ =⎢        ⎥, ξ = ⎢ − ⎥, ξ = ⎢        ⎥
Inverse

                    ⎢       ⎥      ⎢       ⎥    ⎢      ⎥
                    ⎢       ⎥      ⎢       ⎥    ⎢      ⎥
Kinematics

                    ⎢       ⎥      ⎢       ⎥    ⎢      ⎥
                    ⎣       ⎦      ⎣       ⎦    ⎣      ⎦
Manipulator
Jacobian

Redundant

                   → gst (θ , . . . θ ) = eξ θ . . . eξ     ⋅ gst ( ) =
Manipulators
                                            ˆ         ˆ θ                    R(θ) p(θ)
Reference



                                    ⎡ −s (l c + l c )           ⎤
                                    ⎢                           ⎥
                             p(θ) = ⎢ c (l c + l c )            ⎥ , R(θ) = [rij ]
                                    ⎢ l −l s −l s               ⎥
                                    ⎣                           ⎦

                                                                     (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                        14

                in which, r = c (c c − s c s ) + s (s s c + s c c s + c s s )
Chapter                  r = −c (s c c + c s ) + s s s
                         r = c (−c s s − (c c s + c s )s ) + (c c − c s s )s
 Manipulator
Kinematics


                         r = c (c s + c c s ) − (c c s + (c c c − s s )s )s
Forward
kinematics


                         r = c (c c c − s s ) − c s s
Inverse
Kinematics

Manipulator
Jacobian
                         r = c (c c s + (c c c − s s )s ) + (c s + c c s )s
Redundant                r = −(c s s ) − (c c − c s s )s
                         r = −(c c s ) − c s
Manipulators

Reference

                         r = c (c c − c s s ) − s s s
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                         14

                in which, r = c (c c − s c s ) + s (s s c + s c c s + c s s )
Chapter                   r = −c (s c c + c s ) + s s s
                          r = c (−c s s − (c c s + c s )s ) + (c c − c s s )s
 Manipulator
Kinematics


                          r = c (c s + c c s ) − (c c s + (c c c − s s )s )s
Forward
kinematics


                         r = c (c c c − s s ) − c s s
Inverse
Kinematics

Manipulator
Jacobian
                         r = c (c c s + (c c c − s s )s ) + (c s + c c s )s
Redundant                 r = −(c s s ) − (c c − c s s )s
                         r = −(c c s ) − c s
Manipulators

Reference

                         r = c (c c − c s s ) − s s s

                Simplify forward Kinematics Map:
                 Choose base frame or ref. Config. s.t. gst ( ) = I
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                    15

                 ◻ Manipulator Workspace:
Chapter
 Manipulator
                W = {gst (θ) ∀θ ∈ Q} ⊂ SE( )
Kinematics

Forward
                    Reachable Workspace:
kinematics

Inverse
Kinematics
                                     WR = {p(θ) ∀θ ∈ Q} ⊂ ℝ
Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                      15

                 ◻ Manipulator Workspace:
Chapter
 Manipulator
                W = {gst (θ) ∀θ ∈ Q} ⊂ SE( )
Kinematics

Forward
                    Reachable Workspace:
kinematics

Inverse
Kinematics
                                     WR = {p(θ) ∀θ ∈ Q} ⊂ ℝ
Manipulator
Jacobian

Redundant           Dextrous Workspace:
Manipulators


                           WD = {p ∈ ℝ ∀R ∈ SO( ), ∃θ, gst (θ) = (p, R)}
Reference
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                  16
                 Example: A planar serial 3-bar linkage
Chapter
                (a) Workspace calculation:                         θ3



                 g = (x, y, ϕ)
                                                 θ2
 Manipulator                                           l2
                                                            l3




                 x =l c +l c +l c
Kinematics


                 y =l s +l s +l s
                                                                  θ1
                                                  l1
Forward
kinematics

                 ϕ=θ +θ +θ
                                                            (a)                             (b)
Inverse
Kinematics
                (b) Construction of Workspace:
Manipulator
Jacobian        (c) Reachable Workspace:                          l1    l2 l3
                                                                                2l3   2l3


Redundant       (d) Dextrous Workspace:
Manipulators
                                                            (c)                             (d)

Reference
                                                                 Figure 3.5
Chapter 3 Manipulator Kinematics

               3.1 Forward kinematics
                                                                                                          16
                 Example: A planar serial 3-bar linkage
Chapter
                (a) Workspace calculation:                                 θ3



                 g = (x, y, ϕ)
                                                         θ2
 Manipulator                                                   l2
                                                                    l3




                 x =l c +l c +l c
Kinematics


                 y =l s +l s +l s
                                                                          θ1
                                                          l1
Forward
kinematics

                 ϕ=θ +θ +θ
                                                                    (a)                             (b)
Inverse
Kinematics
                (b) Construction of Workspace:
Manipulator
Jacobian        (c) Reachable Workspace:                                  l1    l2 l3
                                                                                        2l3   2l3


Redundant       (d) Dextrous Workspace:
Manipulators
                                                                    (c)                             (d)

Reference
                                                                         Figure 3.5

                ◻ R manipulator with maximum
               workspace (Paden):
                Elbow manipulator and its kinematics inverse.
                                                           † End of Section †
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                         17
                Definition: Inverse kinematics
                Given g ∈ SE( ), find θ ∈ Q s.t.
                              gst (θ) = g, where gst ∶ Q ↦ SE( )
Chapter
 Manipulator
Kinematics

Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                                    17
                Definition: Inverse kinematics
                Given g ∈ SE( ), find θ ∈ Q s.t.
                              gst (θ) = g, where gst ∶ Q ↦ SE( )
Chapter
 Manipulator
Kinematics

Forward
kinematics
                  Example: A planar example
Inverse
Kinematics                                                      (x, y)                        (x, y)

Manipulator                                           l2
Jacobian                                                                                    θ2
                                                           θ2                r
Redundant
                              y                                                   α
Manipulators                          l1                                     β
Reference                                  θ1                            φ       θ1
                                  B
                                      x

                                                (a)                              (b)
                                             Figure 3.6
                                   x = l cos θ + l cos (θ + θ )
                                   y = l sin θ + l sin (θ + θ )
                Given (x, y), solve for (θ , θ ).
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                           18
                  Review:
Chapter
                Polar Coordinates:
                                      (r, ϕ), r =   x +y
 Manipulator
Kinematics

Forward
                Law of cosines:
                                   θ = π ± α, α = cos−
kinematics
                                                         l +l −r
Inverse

                Flip solution: π + α
Kinematics
                                                            ll

Manipulator

                                                           r +l −l
Jacobian

Redundant
Manipulators               θ = atan (y, x) ± β, β = cos−
                                                              lr
Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                           18
                  Review:
Chapter
                Polar Coordinates:
                                      (r, ϕ), r =   x +y
 Manipulator
Kinematics

Forward
                Law of cosines:
                                   θ = π ± α, α = cos−
kinematics
                                                         l +l −r
Inverse

                Flip solution: π + α
Kinematics
                                                            ll

Manipulator

                                                           r +l −l
Jacobian

Redundant
Manipulators               θ = atan (y, x) ± β, β = cos−
                                                              lr
Reference




               Hight Lights:
                   Subproblems
                   Each has zero, one or two solutions!
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                           19
                 ◻ Paden-Kahan Subproblems:
Chapter          Subproblem 1: Rotation about a single axis
 Manipulator
Kinematics
                Let ξ be a zero-pitch twist, with unit magnitude and two points
                p, q ∈ ℝ . Find θ s.t. eξθ p = q
Forward
kinematics
                                        ˆ

Inverse
Kinematics

Manipulator                                  p
Jacobian
                                   u
Redundant                                                             u′
Manipulators                r                θ           ξ       θ
Reference                                                             v′
                                   v
                                             q


                                       (a)                            (b)
                                                 Figure 3.6
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                          19
                 ◻ Paden-Kahan Subproblems:
Chapter          Subproblem 1: Rotation about a single axis
 Manipulator
Kinematics
                Let ξ be a zero-pitch twist, with unit magnitude and two points
                p, q ∈ ℝ . Find θ s.t. eξθ p = q
Forward
kinematics
                                        ˆ

Inverse
Kinematics

Manipulator                                    p
Jacobian
                                     u
Redundant                                                            u′
Manipulators                 r                 θ      ξ         θ
Reference                                                            v′
                                     v
                                               q


                                         (a)                         (b)
                                              Figure 3.6
                Solution: Let r ∈ l ξ , define u = p − r, v = q − r, eξθ r = r
                                                                     ˆ

                                                              (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                   20
               Moreover,

Chapter
 Manipulator     ⇒ eξθ p = q ⇒ eξθ (p − r) = q − r ⇒
                     ˆ          ˆ                               eωθ
                                                                 ˆ
                                                                        ∗         u
                                                                                       =
                                                                                             v
Kinematics
                                         u              v
                                        w u=w v
Forward

                 ⇒ eωθ u = v
kinematics                               T          T
                    ˆ
Inverse
Kinematics
                                         u = v
Manipulator
Jacobian
                                              p
Redundant
Manipulators
                                    u
                                                                            u′
Reference                  r                  θ             ξ          θ
                                                                            v′
                                    v
                                              q


                                        (a)                                 (b)
                                                  Figure 3.6
                                                                  (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                 21
               u′ = (I − ωωT )u, v′ = (I − ωωT )v

                                                     u′ = v′
Chapter
 Manipulator

                                                    ωT u = ωT v
Kinematics           The solution exists only if
Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                        21
               u′ = (I − ωωT )u, v′ = (I − ωωT )v

                                                           u′ = v′
Chapter
 Manipulator

                                                          ωT u = ωT v
Kinematics           The solution exists only if
Forward
kinematics


                   If u′ ≠ , then
Inverse
Kinematics

Manipulator

                                    u′ × v′ = ω sin θ u′ v′
Jacobian

Redundant
Manipulators
                                     u′ ⋅ v′ = cos θ u′ v′
Reference


                                ⇒ θ = atan (ωT (u′ × v′ ), u′T v′ )
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                        21
               u′ = (I − ωωT )u, v′ = (I − ωωT )v

                                                           u′ = v′
Chapter
 Manipulator

                                                          ωT u = ωT v
Kinematics           The solution exists only if
Forward
kinematics


                   If u′ ≠ , then
Inverse
Kinematics

Manipulator

                                    u′ × v′ = ω sin θ u′ v′
Jacobian

Redundant
Manipulators
                                     u′ ⋅ v′ = cos θ u′ v′
Reference


                                ⇒ θ = atan (ωT (u′ × v′ ), u′T v′ )


                   If u′ = , ⇒ Infinite number of solutions!
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                     22
                Subproblem 2: Rotation about two subsequent axes
Chapter        Let ξ and ξ be two zero-pitch, unit magnitude twists, with
               intersecting axes, and p, q ∈ R . find θ and θ s.t.
 Manipulator
Kinematics

               eξ θ eξ θ p = q.
Forward         ˆ    ˆ
kinematics

Inverse
Kinematics                                       p
                                                              ξ2
Manipulator
Jacobian                                     θ2
Redundant
Manipulators
                                             c
Reference

                              r                  θ1
                                                                ξ1


                                              q

                                        Figure 3.6
                                                       (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                      23
               Solution: If two axes of ξ and ξ coincide, then we get:
                                 Subproblem 1: θ + θ = θ
Chapter
 Manipulator
Kinematics

Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                            23
               Solution: If two axes of ξ and ξ coincide, then we get:
                                 Subproblem 1: θ + θ = θ
Chapter
 Manipulator
               If the two axes are not parallel, ω × ω ≠ , then, let c satisfy:
                                            p = c = e− ξ θ q
Kinematics                             ˆθ              ˆ
Forward                               eξ
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                23
               Solution: If two axes of ξ and ξ coincide, then we get:
                                 Subproblem 1: θ + θ = θ
Chapter
 Manipulator
               If the two axes are not parallel, ω × ω ≠ , then, let c satisfy:
                                               p = c = e− ξ θ q
Kinematics                                ˆθ                 ˆ
Forward                                  eξ
               Set r ∈ l ξ ∩ l ξ
kinematics

Inverse


                           p − r = c − r = e− ξ θ (q − r), ⇒ eω        u = z = e−ω θ v
Kinematics
                      ˆθ                       ˆ
Manipulator          eξ                                       ˆ    θ             ˆ
Jacobian
                             u       z                   v
                            ω u=ω z
Redundant

                                                   = z       = v
Manipulators                  T      T

                            ωT v = ωT z
Reference            ⇒                  , u
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                 23
               Solution: If two axes of ξ and ξ coincide, then we get:
                                 Subproblem 1: θ + θ = θ
Chapter
 Manipulator
               If the two axes are not parallel, ω × ω ≠ , then, let c satisfy:
                                               p = c = e− ξ θ q
Kinematics                                ˆθ                 ˆ
Forward                                  eξ
               Set r ∈ l ξ ∩ l ξ
kinematics

Inverse


                           p − r = c − r = e− ξ θ (q − r), ⇒ eω         u = z = e−ω θ v
Kinematics
                      ˆθ                       ˆ
Manipulator          eξ                                       ˆ     θ             ˆ
Jacobian
                             u       z                   v
                            ω u=ω z
Redundant

                                                   = z       = v
Manipulators                  T      T

                            ωT v = ωT z
Reference            ⇒                  , u

               As ω , ω and ω × ω are linearly independent,
                            z = αω + βω + γ(ω × ω )
                            ⇒ z     = α + β + αβωT ω + γ ω × ω
                                                                   (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                   24
                                         ⎧
                                         ⎪α
                                         ⎪    =
                                                  (ωT ω )ωT u−ωT v
                       ωT u = αωT ω + β  ⎪
                                        ⇒⎨          (ωT ω ) −
                       ω v = α + βω ω    ⎪β
                                         ⎪    =
                                         ⎪
Chapter                 T           T             (ωT ω )ωT v−ωT u
                                         ⎩
 Manipulator
Kinematics                                          (ωT ω ) −
Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                24
                                            ⎧
                                            ⎪α
                                            ⎪              =
                                                               (ωT ω )ωT u−ωT v
                          ωT u = αωT ω + β  ⎪
                                           ⇒⎨                    (ωT ω ) −
                          ω v = α + βω ω    ⎪β
                                            ⎪              =
                                            ⎪
Chapter                    T           T                       (ωT ω )ωT v−ωT u
                                            ⎩
 Manipulator
Kinematics                                                       (ωT ω ) −

                                              − α − β − αβωT ω
Forward

                          = u    ⇒γ =                                             (∗)
kinematics                                u
                                                 ω ×ω
Inverse
                      z
Kinematics

Manipulator    (∗) has zero, one or two solution(s):
Jacobian


                                                  eξ θ p = c
Redundant                                              ˆ
Manipulators
                                Given z ⇒ c ⇒
                                                  eξ θ p = c
                                                   ˆ
Reference


               for θ and θ
                   Two solutions when the two circles intersect.
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                24
                                            ⎧
                                            ⎪α
                                            ⎪              =
                                                               (ωT ω )ωT u−ωT v
                          ωT u = αωT ω + β  ⎪
                                           ⇒⎨                    (ωT ω ) −
                          ω v = α + βω ω    ⎪β
                                            ⎪              =
                                            ⎪
Chapter                    T           T                       (ωT ω )ωT v−ωT u
                                            ⎩
 Manipulator
Kinematics                                                       (ωT ω ) −

                                              − α − β − αβωT ω
Forward

                          = u    ⇒γ =                                             (∗)
kinematics                                u
                                                 ω ×ω
Inverse
                      z
Kinematics

Manipulator    (∗) has zero, one or two solution(s):
Jacobian


                                                  eξ θ p = c
Redundant                                              ˆ
Manipulators
                                Given z ⇒ c ⇒
                                                  eξ θ p = c
                                                   ˆ
Reference


               for θ and θ
                   Two solutions when the two circles intersect.
                   One solution when they are tangent
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                24
                                            ⎧
                                            ⎪α
                                            ⎪              =
                                                               (ωT ω )ωT u−ωT v
                          ωT u = αωT ω + β  ⎪
                                           ⇒⎨                    (ωT ω ) −
                          ω v = α + βω ω    ⎪β
                                            ⎪              =
                                            ⎪
Chapter                    T           T                       (ωT ω )ωT v−ωT u
                                            ⎩
 Manipulator
Kinematics                                                       (ωT ω ) −

                                              − α − β − αβωT ω
Forward

                          = u    ⇒γ =                                             (∗)
kinematics                                u
                                                 ω ×ω
Inverse
                      z
Kinematics

Manipulator    (∗) has zero, one or two solution(s):
Jacobian


                                                  eξ θ p = c
Redundant                                              ˆ
Manipulators
                                Given z ⇒ c ⇒
                                                  eξ θ p = c
                                                   ˆ
Reference


               for θ and θ
                   Two solutions when the two circles intersect.
                   One solution when they are tangent
                   Zero solution when they do not intersect
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                  25
                Subproblem 3: Rotation to a given point
Chapter        Given a zero-pitch twist ξ, with unit magnitude and p, q ∈ ℝ ,
               find θ s.t. q − eξθ p = δ
 Manipulator
Kinematics
                                ˆ

Forward
kinematics

Inverse
Kinematics
                                                    p
Manipulator                                     u                                           u′
Jacobian                                   r        θ                    ξ         θ0 θ
Redundant
Manipulators                                                                    ωθ ′
                                                                               e u
Reference                                       v                                            v′
                                                          δ                            δ′

                                                                q
                                                    ω T (p−q)

                                                        Figure 3.7
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                      25
                Subproblem 3: Rotation to a given point
Chapter        Given a zero-pitch twist ξ, with unit magnitude and p, q ∈ ℝ ,
               find θ s.t. q − eξθ p = δ
 Manipulator
Kinematics
                                ˆ

Forward

               Define: u = p − r, v = q − r, v − eωθ u
                                                 ˆ
                                                            =δ
kinematics

Inverse
Kinematics
                                                        p

                  u = u − ωω u
                    ′
Manipulator                                        u                                            u′
                              T
Jacobian                                     r          θ

                   v′ = v − ωωT v
                                                                             ξ         θ0 θ
Redundant
Manipulators                                                                        ωθ ′
                                                                                   e u
Reference                                         v                                              v′
                                                              δ                            δ′

                                                                    q
                                                        ω T (p−q)

                                                            Figure 3.7
                    ⇒ u = u′ + ωωT u, v = v′ + ωωT v, δ ′ = δ − ωT (p − q)
                                                                    (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                    26


Chapter
 Manipulator      (v′ + ωωT v) − eωθ (u′ + ωωT u)
                                  ˆ
                                                     =δ ⇒
                                         v − e u + ωωT (v − u)            =δ
Kinematics
                                          ′   ωθ ′
                                              ˆ
Forward
kinematics

Inverse                                                ωωT (q−p)
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                        26


Chapter
 Manipulator       (v′ + ωωT v) − eωθ (u′ + ωωT u)
                                   ˆ
                                                        =δ ⇒
                                          v − e u + ωωT (v − u)               =δ
Kinematics
                                             ′   ωθ ′
                                                 ˆ
Forward
kinematics

Inverse                                                    ωωT (q−p)
Kinematics

Manipulator

                v′ − eωθ u′   = δ − ωT (p − q)    = δ′ ,
Jacobian              ˆ
Redundant

                          θ = atan (ωT (u′ × v′ ), u′T v′ ),
Manipulators


                           ϕ = θ − θ ⇒ u′ + v′ − u′ ⋅ v′ cos ϕ = δ ′ ,
Reference



                                         u′ + v′ − δ ′
                           θ = θ ± cos−                      (∗)
                                             u′ ⋅ v′
               Zero, one or two solutions!
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                               27
                 ◻ Solving inverse kinematics using
Chapter
               subproblems:
 Manipulator
Kinematics
                Technique 1: Eliminate the dependence on a joint
                eξθ p = p, if p ∈ l ξ . Given eξ θ eξ θ eξ θ = g, select p ∈ l ξ , p ∉ l ξ
Forward          ˆ                             ˆ    ˆ    ˆ
kinematics

Inverse         or l ξ , then:
                                             gp = eξ θ eξ
Kinematics                                          ˆ    ˆθ
Manipulator                                                   p
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                  27
                 ◻ Solving inverse kinematics using
Chapter
               subproblems:
 Manipulator
Kinematics
                Technique 1: Eliminate the dependence on a joint
                eξθ p = p, if p ∈ l ξ . Given eξ θ eξ θ eξ θ = g, select p ∈ l ξ , p ∉ l ξ
Forward          ˆ                             ˆ    ˆ    ˆ
kinematics

Inverse         or l ξ , then:
                                                gp = eξ θ eξ
Kinematics                                            ˆ    ˆθ
Manipulator                                                     p
Jacobian

Redundant
Manipulators
                Technique 2: subtract a common point
Reference

                                   = g, q ∈ l ξ ∩ l ξ ⇒ eξ θ eξ            p − q = gp − q ⇒
                   ˆ    ˆθ    ˆθ                          ˆ     ˆθ    ˆθ
                 eξ θ eξ     eξ               ˆ     ˆ                eξ

                                                  p − q = gp − q
                                            ˆθ
                                           eξ
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                                    28
                 Example: Elbow manipulator
Chapter
 Manipulator
                                      ξ1                                        ξ4
Kinematics                                       ξ2                       ξ3            ξ5
Forward
                                                 l1                  l2
kinematics                       pb                                                          ξ6
                                                                                qw
Inverse
Kinematics

Manipulator                                l0
Jacobian
                                      S
Redundant
Manipulators

Reference                                             Figure 3.7

                      gst (θ) = eξ θ eξ                                                gst ( ) = gd
                                 ˆ         ˆθ         ˆθ     ˆ θ      ˆθ         ˆ θ
                                                  eξ       eξ      eξ          eξ

                                                                               = gd ⋅ gst ( ) = g
                                                                                       −
                          ˆ    ˆ θ        ˆθ     ˆ θ       ˆθ      ˆ θ
                     ⇒ eξ θ eξ        eξ        eξ      eξ      eξ

                                                                                     (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                       29

                Step 1: Solve for θ

                                        qω = g ⋅ qω
Chapter                ˆ          ˆ θ
 Manipulator     Let eξ θ . . . eξ
Kinematics


                                                                 qω = g ⋅ qω
Forward                                         ˆ     ˆθ    ˆθ
kinematics                                ⇒ eξ θ eξ        eξ
Inverse
Kinematics     Subtract pb from g qω :
Manipulator

                                          (eξ       qω − pb ) = g qω − pb
Jacobian                      ˆ      ˆθ     ˆθ
Redundant
                            eξ θ eξ
                                                     qω − pb ≜ δ ← Subproblem 3
Manipulators
                                                ˆθ
Reference                               ⇒ eξ
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                       29

                Step 1: Solve for θ

                                        qω = g ⋅ qω
Chapter                ˆ          ˆ θ
 Manipulator     Let eξ θ . . . eξ
Kinematics


                                                                 qω = g ⋅ qω
Forward                                         ˆ     ˆθ    ˆθ
kinematics                                ⇒ eξ θ eξ        eξ
Inverse
Kinematics     Subtract pb from g qω :
Manipulator

                                          (eξ       qω − pb ) = g qω − pb
Jacobian                      ˆ      ˆθ     ˆθ
Redundant
                            eξ θ eξ
                                                     qω − pb ≜ δ ← Subproblem 3
Manipulators
                                                ˆθ
Reference                               ⇒ eξ

                Step 2: Given θ , solve for θ , θ

                            (eξ      qω ) = g qω , Subproblem 2 ⇒ θ , θ
                  ˆ    ˆθ     ˆθ
                 eξ θ eξ
                                                                (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                     30

                Step 3: Given θ , θ , θ , solve θ , θ

                                     = e− ξ
Chapter
                                               e− ξ    e− ξ θ g
                  ˆ θ    ˆθ    ˆ θ        ˆθ      ˆθ     ˆ
 Manipulator
Kinematics
                 eξ     eξ    eξ
Forward                                           g

                 let p ∈ l ξ , p ∉ l ξ or l ξ , e eξ         p = g p,
kinematics
                                                 ˆ
                                                 ξ θ    ˆθ
Inverse
Kinematics
                 Subproblem 2 ⇒ θ and θ .
Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                          30

                Step 3: Given θ , θ , θ , solve θ , θ

                                        = e− ξ
Chapter
                                                    e− ξ    e− ξ θ g
                  ˆ θ    ˆθ       ˆ θ          ˆθ      ˆθ     ˆ
 Manipulator
Kinematics
                 eξ     eξ    eξ
Forward                                                g

                 let p ∈ l ξ , p ∉ l ξ or l ξ , e eξ              p = g p,
kinematics
                                                      ˆ
                                                      ξ θ    ˆθ
Inverse
Kinematics
                 Subproblem 2 ⇒ θ and θ .
                Step 4: Given (θ , . . . , θ ), solve for θ
Manipulator
Jacobian

Redundant

                 eξ θ = (eξ θ . . . eξ θ )− ⋅ g ≜ g
Manipulators      ˆ           ˆ            ˆ

                 Let p ∉ l ξ ⇒ eξ θ p = g ⋅ p = q ⇐ Subproblem 1
Reference
                                  ˆ

                 Maximum of solutions:
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                                                      31
                 Example: Inverse Kinematics of SCARA
                                                                                           ⎡                                 ⎤
                                                                 θ3


                                                                                           ⎢                       l +l      ⎥
Chapter

                                                                                 gst ( ) = ⎢                                 ⎥
                                             θ2

                                                                                           ⎢                                 ⎥
 Manipulator

                                                                                           ⎢                                 ⎥
Kinematics                                         l2
                                                                                                                     l
                                                                                           ⎣                                 ⎦
                          θ1
                                                                       θ4
Forward                            l1


                                                                                 gst (θ) = e ξ θ . . . e ξ θ gst (      )
kinematics
                                                                                              ˆ              ˆ

                                                                                           ⎡ cϕ −sϕ                         ⎤
Inverse
                      z

                                                                                           ⎢                                ⎥
Kinematics                                        l0         T
                                                                                                                        x
                                                                                           ⎢                                ⎥
                 q1   S                 q2              q3


                                                                                         = ⎢ sϕ cϕ                          ⎥ ≜ gd
                               y
Manipulator                                                                                                             y
                                                                                           ⎢                                ⎥
                 x


                                                                                           ⎢                                ⎥
Jacobian
                                                                                                                        z
                                                                                           ⎣                                ⎦
Redundant
                                    Figure 3.8
Manipulators

                             ⎡               ⎤                              −l s − l s
                             ⎢               ⎥
Reference

                           p=⎢               ⎥ ⇒ p(θ) =
                                                                                                        x
                             ⎢               ⎥                              l c +l c         =          y    ⇒θ =z−l
                             ⎢               ⎥                                l +θ                      z
                             ⎣               ⎦
                                                                              = gd gst ( )e− ξ              ≜g
                                                   ˆ     ˆ θ           ˆ θ                        ˆ θ
                                                  eξ θ eξ             eξ            −


                                                                                                        (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                    32

                Let p ∈ l ξ , q ∈ l ξ ⇒ e ξ θ e ξ         p = g p,
                                                ˆ   ˆ θ

Chapter

                             e ξ θ (e ξ     p − q) = g p − q ,
 Manipulator                  ˆ       ˆ θ
Kinematics


                                                p − q = δ ← Subproblem 3 to get θ
Forward                                   ˆ
                                          ξ θ
kinematics                            e
Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                                    32

                Let p ∈ l ξ , q ∈ l ξ ⇒ e ξ θ e ξ            p = g p,
                                                ˆ      ˆ θ

Chapter

                             e ξ θ (e ξ        p − q) = g p − q ,
 Manipulator                  ˆ        ˆ θ
Kinematics


                                                p − q = δ ← Subproblem 3 to get θ
Forward                                   ˆ
                                          ξ θ
kinematics                            e
Inverse

                        ⇒ e ξ θ (e ξ         p) = g p ⇒ θ ← Subproblem 1 to get θ
Kinematics                   ˆ       ˆ θ
Manipulator

                                                    = e− ξ     e− ξ θ gd gst ( )e− ξ      ≜g
Jacobian                                  ˆ              ˆ θ     ˆ                 ˆ θ
                                          ξ θ                             −
Redundant
                                  ⇒e
                                                p = g p, p ∉ l ξ ← Subproblem 1 to get θ
Manipulators                             ˆ
                                         ξ θ
                                     e
Reference
                There are a maximum of two solutions!




                                                                                            † End of Section †
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                             33
                 Example: ABB IRB4400
                                                                                    θ
                                                                                                     x
Chapter                                                                                          θ
                                                                       l                 l
 Manipulator                                                                                                 z
Kinematics                                                     l                                         T
                                                                   θ         θ               y
Forward
kinematics                                           z y
                                                               l
Inverse                                                  l
                                                 S                 θ
Kinematics                                      θ    q
                                                           x
Manipulator
Jacobian

Redundant
Manipulators

Reference
                                                                                         −
                       ω =          , ω = −ω = −ω =                ,ω = ω =

                                     l           l                                           l +l
                 q =         ,q =        ,q =              , pw ∶= q = q = q =
                                                 l                                           l +l
                                                                       (Continues next slide)
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                            34
                               ⎡                       l +l +l ⎤
                               ⎢           −                   ⎥                    qi × ω i
                     gst ( ) = ⎢
                               ⎢                         l +l
                                                               ⎥ , ξi =
                                                               ⎥
                               ⎢                               ⎥
                                                                                       ωi
Chapter                        ⎣                               ⎦
                     gst (θ) = e ξ θ e ξ                                   gst ( ) ∶= gd
 Manipulator
                                 ˆ     ˆ θ      ˆ θ    ˆ θ    ˆ θ    ˆ θ
Kinematics
                                               eξ     eξ     eξ     eξ
Forward
kinematics

Inverse
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                                      34
                                     ⎡                          l +l +l ⎤
                                     ⎢           −                      ⎥                      qi × ω i
                           gst ( ) = ⎢
                                     ⎢                            l +l
                                                                        ⎥ , ξi =
                                                                        ⎥
                                     ⎢                                  ⎥
                                                                                                  ωi
Chapter                              ⎣                                  ⎦
                           gst (θ) = e ξ θ e ξ                                       gst ( ) ∶= gd
 Manipulator
                                        ˆ    ˆ θ      ˆ θ    ˆ θ     ˆ θ       ˆ θ
Kinematics
                                                     eξ     eξ     eξ         eξ
Forward

                                     pw = gd pw =∶ q ⇒ e ξ                         pw = e− ξ θ q
kinematics
                  ˆ    ˆ θ     ˆ θ                                 ˆ θ     ˆ θ             ˆ
Inverse          eξ θ eξ     eξ                                          eξ
Kinematics                                                                                                   qx
                                  ⇒ =[               ] ⋅ e− ξ θ q = cos θ qy − sin θ qx , q =
                                                            ˆ
Manipulator                                                                                                  qy
Jacobian                                                                                                     qz
Redundant                         ⇒ θ = tan− (qy qx )
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                                           34
                                        ⎡                            l +l +l ⎤
                                        ⎢           −                        ⎥                      qi × ω i
                              gst ( ) = ⎢
                                        ⎢                              l +l
                                                                             ⎥ , ξi =
                                                                             ⎥
                                        ⎢                                    ⎥
                                                                                                       ωi
Chapter                                 ⎣                                    ⎦
                              gst (θ) = e ξ θ e ξ                                         gst ( ) ∶= gd
 Manipulator
                                             ˆ      ˆ θ    ˆ θ    ˆ θ     ˆ θ       ˆ θ
Kinematics
                                                          eξ     eξ     eξ         eξ
Forward

                                          pw = gd pw =∶ q ⇒ e ξ                         pw = e− ξ θ q
kinematics
                  ˆ          ˆ θ    ˆ θ                                 ˆ θ     ˆ θ             ˆ
Inverse          eξ θ eξ           eξ                                         eξ
Kinematics                                                                                                        qx
                                         ⇒ =[             ] ⋅ e− ξ θ q = cos θ qy − sin θ qx , q =
                                                                 ˆ
Manipulator                                                                                                       qy
Jacobian                                                                                                          qz
Redundant                               ⇒ θ = tan− (qy qx )
Manipulators

                               pw − q        = e− ξ θ q − q             =∶ δ ← Subproblem 3 to get θ
                        ˆ θ                          ˆ
Reference
                      eξ
                              (e         pw ) = e
                       ˆ
                       ξ θ         ˆ
                                   ξ θ            ˆ
                                                 −ξ θ
                   e                                      q ← Subproblem 1 to get θ
Chapter 3 Manipulator Kinematics

               3.2 Inverse Kinematics
                                                                                                                                       34
                                         ⎡                                      l +l +l ⎤
                                         ⎢                   −                          ⎥                       qi × ω i
                               gst ( ) = ⎢
                                         ⎢                                        l +l
                                                                                        ⎥ , ξi =
                                                                                        ⎥
                                         ⎢                                              ⎥
                                                                                                                   ωi
Chapter                                  ⎣                                              ⎦
                               gst (θ) = e ξ θ e ξ                                                    gst ( ) ∶= gd
 Manipulator
                                                    ˆ        ˆ θ    ˆ θ     ˆ θ     ˆ θ       ˆ θ
Kinematics
                                                                   eξ     eξ       eξ        eξ
Forward

                                               pw = gd pw =∶ q ⇒ e ξ                              pw = e− ξ θ q
kinematics
                   ˆ          ˆ θ    ˆ θ                                          ˆ θ     ˆ θ               ˆ
Inverse           eξ θ eξ           eξ                                                  eξ
Kinematics                                                                                                                    qx
                                          ⇒ =[                     ] ⋅ e− ξ θ q = cos θ qy − sin θ qx , q =
                                                                            ˆ
Manipulator                                                                                                                   qy
Jacobian                                                                                                                      qz
Redundant                                ⇒ θ = tan− (qy qx )
Manipulators

                                pw − q              = e− ξ θ q − q                =∶ δ ← Subproblem 3 to get θ
                         ˆ θ                                  ˆ
Reference
                       eξ
                               (e         pw ) = e
                        ˆ
                        ξ θ         ˆ
                                    ξ θ                  ˆ
                                                        −ξ θ
                    e                                              q ← Subproblem 1 to get θ

                                                                   = e− ξ                 e− ξ θ gd gst ( ) =∶ g
                                         ˆ θ     ˆ θ     ˆ θ              ˆ θ       ˆ θ           ˆ
                                    eξ         eξ       eξ                       e− ξ                −


                Use subproblem 1,2 to solve for θ , θ , θ
                                                                                                                † End of Section †
Chapter 3 Manipulator Kinematics

               3.3 Manipulator Jacobian
                                                                                                 35
               Given gst ∶ Q → SE( ),
                        θ(t) = (θ (t) . . . θ n (t))T → eξ θ . . . eξn θ n gst ( )
                                                             ˆ        ˆ
Chapter

               and θ(t) = (θ (t) . . . θ n (t))T ,
 Manipulator
Kinematics         ˙       ˙           ˙
Forward
kinematics

Inverse
                         What is the velocity of the tool frame?
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

               3.3 Manipulator Jacobian
                                                                                                           35
               Given gst ∶ Q → SE( ),
                        θ(t) = (θ (t) . . . θ n (t))T → eξ θ . . . eξn θ n gst ( )
                                                                  ˆ             ˆ
Chapter

               and θ(t) = (θ (t) . . . θ n (t))T ,
 Manipulator
Kinematics         ˙       ˙           ˙
Forward
kinematics

Inverse
                         What is the velocity of the tool frame?
Kinematics
                                                 n
                       Vst = gst (θ)gst (θ) =         (        θ i )gst (θ)
Manipulator
                       ˆs ˙          −                    ∂gst ˙ −
Jacobian

Redundant                                        i=       ∂θ i
Manipulators                    n                                     n
                            =       (     g (θ))θ i ⇒ Vst =               (
                                                                          g (θ))∨ θ i
                                      ∂gst −    ˙      s              ∂gst −       ˙
Reference
                              i=      ∂θ i st                    i=   ∂θ i st
                                                                            ⎡ θ ⎤
                                                                            ⎢ ˙ ⎥
                            = [(     gst (θ))∨ , . . . , (      gst (θ))∨ ] ⎢    ⎥
                                 ∂gst −                    ∂gst −
                                                                            ⎢    ⎥
                                                                            ⎢ θn ⎥
                                                                            ⎣    ⎦
                                 ∂θ                        ∂θ n               ˙
                                              Jst (θ)∈ℝ
                                               s           ×n


                                                                          (Continues next slide)
Chapter 3 Manipulator Kinematics

                3.3 Manipulator Jacobian
                                                                                                  36
                        gst (θ) = e                        gst ( )
                                      ˆ
                                      ξθ          ˆ
                                                  ξn θ n
                                           ...e
                   ∂gst −
                       gst (θ) = ( ξ e ξ θ . . . e ξn θ n gst ( ))(gst (θ))− = ξ ⇒
                                   ˆ ˆ             ˆ                           ˆ
Chapter
 Manipulator
Kinematics
                   ∂θ
                 ∂gst −
               (     g (θ))∨ = ξ
Forward
kinematics

Inverse
                 ∂θ st
Kinematics

Manipulator
Jacobian

Redundant
Manipulators

Reference
Chapter 3 Manipulator Kinematics

                3.3 Manipulator Jacobian
                                                                                                   36
                         gst (θ) = e                        gst ( )
                                       ˆ
                                       ξθ          ˆ
                                                   ξn θ n
                                            ...e
                   ∂gst −
                       gst (θ) = ( ξ e ξ θ . . . e ξn θ n gst ( ))(gst (θ))− = ξ ⇒
                                   ˆ ˆ             ˆ                             ˆ
Chapter
 Manipulator
Kinematics
                   ∂θ
                 ∂gst −
               (     g (θ))∨ = ξ
Forward
kinematics

Inverse
                 ∂θ st
                   ∂gst −
                       gst (θ) = (e ξ θ ξ e ξ θ . . . e ξn θ n gst ( ))(gst (θ))−
Kinematics
                                     ˆ ˆ ˆ                  ˆ
Manipulator
Jacobian           ∂θ
                               = e ξ θ ξ e ξ θ . . . e ξn θ n gst ( )gst (θ) = e ξ θ ξ e−ξ θ ≜ ξ′
                                                                       −
Redundant                          ˆ ˆ ˆ                  ˆ                      ˆ ˆ     ˆ     ˆ
Manipulators

                 ∂gst −
               (     g (θ))∨ = Ade ξˆ θ ξ = ξ′ . . . . . .
Reference


                 ∂θ st
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3
[Download] Rev-Chapter-3

More Related Content

What's hot

Robot forward and inverse kinematics research using matlab by d.sivasamy
Robot forward and inverse kinematics research using matlab by d.sivasamyRobot forward and inverse kinematics research using matlab by d.sivasamy
Robot forward and inverse kinematics research using matlab by d.sivasamySiva Samy
 
Jacobian inverse manipulator
Jacobian inverse manipulatorJacobian inverse manipulator
Jacobian inverse manipulatorHitesh Mohapatra
 
Kinematics Modeling of a 4-DOF Robotic Arm
Kinematics Modeling of a 4-DOF Robotic ArmKinematics Modeling of a 4-DOF Robotic Arm
Kinematics Modeling of a 4-DOF Robotic ArmAmin A. Mohammed
 
ROBOTICS-ROBOT KINEMATICS AND ROBOT PROGRAMMING
ROBOTICS-ROBOT KINEMATICS AND ROBOT PROGRAMMINGROBOTICS-ROBOT KINEMATICS AND ROBOT PROGRAMMING
ROBOTICS-ROBOT KINEMATICS AND ROBOT PROGRAMMINGTAMILMECHKIT
 
Spacetime Meshing for Discontinuous Galerkin Methods
Spacetime Meshing for Discontinuous Galerkin MethodsSpacetime Meshing for Discontinuous Galerkin Methods
Spacetime Meshing for Discontinuous Galerkin Methodsshripadthite
 
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...
Nondeterministic testing of Sequential Quantum Logic  Propositions on a Quant...Nondeterministic testing of Sequential Quantum Logic  Propositions on a Quant...
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...Matthew Leifer
 
A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02IJERA Editor
 
Robotics: Introduction to Kinematics
Robotics: Introduction to KinematicsRobotics: Introduction to Kinematics
Robotics: Introduction to KinematicsDamian T. Gordon
 
Singularity condition of wrist partitioned 6-r serial
Singularity condition of wrist partitioned 6-r serialSingularity condition of wrist partitioned 6-r serial
Singularity condition of wrist partitioned 6-r serialeSAT Publishing House
 
Parallel communicating flip pushdown automata systems
Parallel communicating flip pushdown automata systemsParallel communicating flip pushdown automata systems
Parallel communicating flip pushdown automata systemsiaemedu
 
Parallel communicating flip pushdown automata systems communicating by stacks
Parallel communicating flip pushdown automata systems communicating by stacksParallel communicating flip pushdown automata systems communicating by stacks
Parallel communicating flip pushdown automata systems communicating by stacksIAEME Publication
 
Super-twisting sliding mode based nonlinear control for planar dual arm robots
Super-twisting sliding mode based nonlinear control for planar dual arm robotsSuper-twisting sliding mode based nonlinear control for planar dual arm robots
Super-twisting sliding mode based nonlinear control for planar dual arm robotsjournalBEEI
 
Singularity condition of wrist partitioned 6-r serial manipulator based on gr...
Singularity condition of wrist partitioned 6-r serial manipulator based on gr...Singularity condition of wrist partitioned 6-r serial manipulator based on gr...
Singularity condition of wrist partitioned 6-r serial manipulator based on gr...eSAT Journals
 

What's hot (20)

Robot forward and inverse kinematics research using matlab by d.sivasamy
Robot forward and inverse kinematics research using matlab by d.sivasamyRobot forward and inverse kinematics research using matlab by d.sivasamy
Robot forward and inverse kinematics research using matlab by d.sivasamy
 
10.1.1.2.9988
10.1.1.2.998810.1.1.2.9988
10.1.1.2.9988
 
Inverse Kinematics
Inverse KinematicsInverse Kinematics
Inverse Kinematics
 
Jacobian inverse manipulator
Jacobian inverse manipulatorJacobian inverse manipulator
Jacobian inverse manipulator
 
Kinematics Modeling of a 4-DOF Robotic Arm
Kinematics Modeling of a 4-DOF Robotic ArmKinematics Modeling of a 4-DOF Robotic Arm
Kinematics Modeling of a 4-DOF Robotic Arm
 
ROBOTICS-ROBOT KINEMATICS AND ROBOT PROGRAMMING
ROBOTICS-ROBOT KINEMATICS AND ROBOT PROGRAMMINGROBOTICS-ROBOT KINEMATICS AND ROBOT PROGRAMMING
ROBOTICS-ROBOT KINEMATICS AND ROBOT PROGRAMMING
 
Dynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether SystemDynamics of Satellite With a Tether System
Dynamics of Satellite With a Tether System
 
Spacetime Meshing for Discontinuous Galerkin Methods
Spacetime Meshing for Discontinuous Galerkin MethodsSpacetime Meshing for Discontinuous Galerkin Methods
Spacetime Meshing for Discontinuous Galerkin Methods
 
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...
Nondeterministic testing of Sequential Quantum Logic  Propositions on a Quant...Nondeterministic testing of Sequential Quantum Logic  Propositions on a Quant...
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...
 
Robotics - introduction to Robotics
Robotics -  introduction to Robotics  Robotics -  introduction to Robotics
Robotics - introduction to Robotics
 
M2l10
M2l10M2l10
M2l10
 
A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02A New Method For Solving Kinematics Model Of An RA-02
A New Method For Solving Kinematics Model Of An RA-02
 
Lecture2
Lecture2Lecture2
Lecture2
 
Robotics: Introduction to Kinematics
Robotics: Introduction to KinematicsRobotics: Introduction to Kinematics
Robotics: Introduction to Kinematics
 
Singularity condition of wrist partitioned 6-r serial
Singularity condition of wrist partitioned 6-r serialSingularity condition of wrist partitioned 6-r serial
Singularity condition of wrist partitioned 6-r serial
 
Parallel communicating flip pushdown automata systems
Parallel communicating flip pushdown automata systemsParallel communicating flip pushdown automata systems
Parallel communicating flip pushdown automata systems
 
Parallel communicating flip pushdown automata systems communicating by stacks
Parallel communicating flip pushdown automata systems communicating by stacksParallel communicating flip pushdown automata systems communicating by stacks
Parallel communicating flip pushdown automata systems communicating by stacks
 
Super-twisting sliding mode based nonlinear control for planar dual arm robots
Super-twisting sliding mode based nonlinear control for planar dual arm robotsSuper-twisting sliding mode based nonlinear control for planar dual arm robots
Super-twisting sliding mode based nonlinear control for planar dual arm robots
 
Kinematics Modeling and Simulation of SCARA Robot Arm
Kinematics Modeling and Simulation of SCARA Robot ArmKinematics Modeling and Simulation of SCARA Robot Arm
Kinematics Modeling and Simulation of SCARA Robot Arm
 
Singularity condition of wrist partitioned 6-r serial manipulator based on gr...
Singularity condition of wrist partitioned 6-r serial manipulator based on gr...Singularity condition of wrist partitioned 6-r serial manipulator based on gr...
Singularity condition of wrist partitioned 6-r serial manipulator based on gr...
 

Viewers also liked

Prototyping Dynamic Robots
Prototyping Dynamic RobotsPrototyping Dynamic Robots
Prototyping Dynamic RobotsNick Morozovsky
 
Differential kinematics robotic
Differential kinematics  roboticDifferential kinematics  robotic
Differential kinematics roboticdahmane sid ahmed
 
Introduction to robotics, Laws,Classification,Types, Drives,Geometry
Introduction to robotics, Laws,Classification,Types, Drives,Geometry  Introduction to robotics, Laws,Classification,Types, Drives,Geometry
Introduction to robotics, Laws,Classification,Types, Drives,Geometry Mohammad Ehtasham
 
Robotics: Forward and Inverse Kinematics
Robotics: Forward and Inverse KinematicsRobotics: Forward and Inverse Kinematics
Robotics: Forward and Inverse KinematicsDamian T. Gordon
 
State of Robotics 2015
State of Robotics 2015State of Robotics 2015
State of Robotics 2015HAX
 
Fundamental of robotic manipulator
Fundamental of robotic manipulatorFundamental of robotic manipulator
Fundamental of robotic manipulatorsnkalepvpit
 
ROBOTICS AND ITS APPLICATIONS
ROBOTICS AND ITS APPLICATIONSROBOTICS AND ITS APPLICATIONS
ROBOTICS AND ITS APPLICATIONSAnmol Seth
 
Basics of Robotics
Basics of RoboticsBasics of Robotics
Basics of RoboticsAmeya Gandhi
 

Viewers also liked (12)

Prototyping Dynamic Robots
Prototyping Dynamic RobotsPrototyping Dynamic Robots
Prototyping Dynamic Robots
 
Differential kinematics robotic
Differential kinematics  roboticDifferential kinematics  robotic
Differential kinematics robotic
 
Robot kinematics
Robot kinematicsRobot kinematics
Robot kinematics
 
Introduction to robotics, Laws,Classification,Types, Drives,Geometry
Introduction to robotics, Laws,Classification,Types, Drives,Geometry  Introduction to robotics, Laws,Classification,Types, Drives,Geometry
Introduction to robotics, Laws,Classification,Types, Drives,Geometry
 
Robotics: Forward and Inverse Kinematics
Robotics: Forward and Inverse KinematicsRobotics: Forward and Inverse Kinematics
Robotics: Forward and Inverse Kinematics
 
Lecture 01: Introduction
Lecture 01: IntroductionLecture 01: Introduction
Lecture 01: Introduction
 
State of Robotics 2015
State of Robotics 2015State of Robotics 2015
State of Robotics 2015
 
Fundamental of robotic manipulator
Fundamental of robotic manipulatorFundamental of robotic manipulator
Fundamental of robotic manipulator
 
ROBOTICS AND ITS APPLICATIONS
ROBOTICS AND ITS APPLICATIONSROBOTICS AND ITS APPLICATIONS
ROBOTICS AND ITS APPLICATIONS
 
Basics of Robotics
Basics of RoboticsBasics of Robotics
Basics of Robotics
 
robotics ppt
robotics ppt robotics ppt
robotics ppt
 
Robotics project ppt
Robotics project pptRobotics project ppt
Robotics project ppt
 

Similar to [Download] Rev-Chapter-3

Basics of Robotics
Basics of RoboticsBasics of Robotics
Basics of Robotics홍배 김
 
Lesson 10: The Chain Rule (handout)
Lesson 10: The Chain Rule (handout)Lesson 10: The Chain Rule (handout)
Lesson 10: The Chain Rule (handout)Matthew Leingang
 
Aerospace Engineering Seminar Series
Aerospace Engineering Seminar SeriesAerospace Engineering Seminar Series
Aerospace Engineering Seminar Seriestrumanellis
 
Diffusion Linear Chains V4
Diffusion Linear Chains V4Diffusion Linear Chains V4
Diffusion Linear Chains V4larry77
 
Synchronverters: Inverters that Mimic Synchronous Generators
Synchronverters: Inverters that Mimic Synchronous GeneratorsSynchronverters: Inverters that Mimic Synchronous Generators
Synchronverters: Inverters that Mimic Synchronous GeneratorsQing-Chang Zhong
 
MECH572-lecture8.ppt introduction to robotics
MECH572-lecture8.ppt introduction to roboticsMECH572-lecture8.ppt introduction to robotics
MECH572-lecture8.ppt introduction to roboticsShyamal25
 

Similar to [Download] Rev-Chapter-3 (7)

Basics of Robotics
Basics of RoboticsBasics of Robotics
Basics of Robotics
 
Lesson 10: The Chain Rule (handout)
Lesson 10: The Chain Rule (handout)Lesson 10: The Chain Rule (handout)
Lesson 10: The Chain Rule (handout)
 
Aerospace Engineering Seminar Series
Aerospace Engineering Seminar SeriesAerospace Engineering Seminar Series
Aerospace Engineering Seminar Series
 
Diffusion Linear Chains V4
Diffusion Linear Chains V4Diffusion Linear Chains V4
Diffusion Linear Chains V4
 
Synchronverters: Inverters that Mimic Synchronous Generators
Synchronverters: Inverters that Mimic Synchronous GeneratorsSynchronverters: Inverters that Mimic Synchronous Generators
Synchronverters: Inverters that Mimic Synchronous Generators
 
MECH572-lecture8.ppt introduction to robotics
MECH572-lecture8.ppt introduction to roboticsMECH572-lecture8.ppt introduction to robotics
MECH572-lecture8.ppt introduction to robotics
 
Tensor analysis
Tensor analysisTensor analysis
Tensor analysis
 

More from ATC, ECE, Hong Kong University of Science and Technology (6)

[Download] rev chapter-7-june26th
[Download] rev chapter-7-june26th[Download] rev chapter-7-june26th
[Download] rev chapter-7-june26th
 
[Download] rev chapter-8-june26th
[Download] rev chapter-8-june26th[Download] rev chapter-8-june26th
[Download] rev chapter-8-june26th
 
[Download] rev chapter-6-june26th
[Download] rev chapter-6-june26th[Download] rev chapter-6-june26th
[Download] rev chapter-6-june26th
 
[Download] rev chapter-1-july3rd
[Download] rev chapter-1-july3rd[Download] rev chapter-1-july3rd
[Download] rev chapter-1-july3rd
 
[Download] Rev-Chapter-4
[Download] Rev-Chapter-4[Download] Rev-Chapter-4
[Download] Rev-Chapter-4
 
[Download] Rev-Chapter-2
[Download] Rev-Chapter-2[Download] Rev-Chapter-2
[Download] Rev-Chapter-2
 

Recently uploaded

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 

Recently uploaded (20)

Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 

[Download] Rev-Chapter-3

  • 1. Chapter 3 Manipulator Kinematics 1 Chapter Lecture Notes for Manipulator Kinematics A Geometrical Introduction to Forward kinematics Robotics and Manipulation Inverse Kinematics Manipulator Richard Murray and Zexiang Li and Shankar S. Sastry Jacobian CRC Press Redundant Manipulators Reference Zexiang Li and Yuanqing Wu ECE, Hong Kong University of Science & Technology May ,
  • 2. Chapter 3 Manipulator Kinematics 2 Chapter Manipulator Kinematics Chapter Manipulator Kinematics Forward kinematics Forward kinematics Inverse Kinematics Inverse Kinematics Manipulator Jacobian Manipulator Jacobian Redundant Manipulators Reference Redundant Manipulators Reference
  • 3. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 3 Chapter Manipulator Kinematics Forward kinematics Inverse (a) Adept Cobra i600 (SCARA) (b) Forward kinematics of SCARA Kinematics Figure 3.1 Manipulator Lower Pair Joints: revolute joint S ↦ SO( ) prismatic joint ℝ ↦ T( ) Jacobian Redundant R T Manipulators Reference Li Li+ Li Li+ Forward kinematics: L joint L joint n Ln base: stationary Link : first movable link Link n: end-effector
  • 4. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 4 ◻ Joint space: Revolute joint: S , θ i ∈ S or θ i ∈ [−π, π] Chapter Prismatic joint: ℝ Q ∶ S × ⋯ × S ×ℝ × ⋯ × ℝ Manipulator Kinematics Joint space: Forward kinematics no. of R joint no. of P joint Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 5. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 4 ◻ Joint space: Revolute joint: S , θ i ∈ S or θ i ∈ [−π, π] Chapter Prismatic joint: ℝ Q ∶ S × ⋯ × S ×ℝ × ⋯ × ℝ Manipulator Kinematics Joint space: Forward kinematics no. of R joint no. of P joint Q ∶S ×S ×S ×ℝ Inverse Adept Q = Γ ∶S ×⋯×S Kinematics Manipulator Elbow Jacobian Redundant Manipulators Reference
  • 6. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 4 ◻ Joint space: Revolute joint: S , θ i ∈ S or θ i ∈ [−π, π] Chapter Prismatic joint: ℝ Q ∶ S × ⋯ × S ×ℝ × ⋯ × ℝ Manipulator Kinematics Joint space: Forward kinematics no. of R joint no. of P joint Q ∶S ×S ×S ×ℝ Inverse Adept Q = Γ ∶S ×⋯×S Kinematics Manipulator Elbow Jacobian Redundant θ = ( , ,..., ) ∈ Q Manipulators Reference (nominal) joint config: gst ( ) ∈ SE( ) Reference Reference (nominal) end-effector config:
  • 7. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 4 ◻ Joint space: Revolute joint: S , θ i ∈ S or θ i ∈ [−π, π] Chapter Prismatic joint: ℝ Q ∶ S × ⋯ × S ×ℝ × ⋯ × ℝ Manipulator Kinematics Joint space: Forward kinematics no. of R joint no. of P joint Q ∶S ×S ×S ×ℝ Inverse Adept Q = Γ ∶S ×⋯×S Kinematics Manipulator Elbow Jacobian Redundant θ = ( , ,..., ) ∈ Q Manipulators Reference (nominal) joint config: gst ( ) ∈ SE( ) Reference Reference (nominal) end-effector config: Arbitrary configuration gst (θ): gst ∶ θ ∈ Q ↦ gst (θ) ∈ SE( )
  • 8. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 5 ◻ Classical Approach: Chapter gst (θ , θ ) = gst (θ ) ⋅ gl l ⋅ gl t Manipulator Kinematics Disadvantage: A coordinate frame needed for each link Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 9. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 5 ◻ Classical Approach: Chapter gst (θ , θ ) = gst (θ ) ⋅ gl l ⋅ gl t Manipulator Kinematics Disadvantage: A coordinate frame needed for each link ◻ The product of exponentials formula: Forward kinematics Inverse Kinematics Consider Fig 3.2. Manipulator Jacobian θ2 Redundant Manipulators θ1 Reference L2 T L1 S Figure 3.2: A two degree of freedom manipulator (Continues next slide)
  • 10. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 6 Step 1: Rotating about ω by θ ξ = −ωω× q Chapter Manipulator Kinematics gst (θ ) = e ξ θ ⋅ gst ( ) ˆ Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 11. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 6 Step 1: Rotating about ω by θ ξ = −ωω× q Chapter Manipulator Kinematics gst (θ ) = e ξ θ ⋅ gst ( ) ˆ Forward kinematics Inverse Step 2: Rotating about ω by θ ξ = −ωω× q Kinematics gst (θ , θ ) = e ξ θ ⋅ e ξ θ ⋅ gst ( ) Manipulator Jacobian ˆ ˆ Redundant Manipulators o set Reference θ ∶ ( , ) ↦ ( , θ ) ↦ (θ , θ ) (Continues next slide)
  • 12. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 7 What if another route is taken? Chapter θ ∶ ( , ) ↦ (θ , ) ↦ (θ , θ ) Manipulator Kinematics Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 13. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 7 What if another route is taken? Chapter θ ∶ ( , ) ↦ (θ , ) ↦ (θ , θ ) Manipulator Kinematics Forward kinematics Step 1: Rotating about ω by θ ξ = −ωω× q Inverse Kinematics gst (θ ) = e ξ θ ⋅ gst ( ) Manipulator ˆ Jacobian Redundant Manipulators Reference Step 2: Rotating about ω′ by θ Let e ξ θ = R p ˆ ω′ = R ⋅ ω q′ = p + R ⋅ q (Continues next slide)
  • 14. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 8 −ω′ × q′ −R ω RT (p + R q ) ξ′ = = ˆ Chapter Manipulator Kinematics ω′ Rω Forward = R pRˆ −ω × q = Ad ˆ ⋅ ξ ⇒ ξ ′ = eξ θ ⋅ ξ ⋅ e− ξ θ ˆ ˆ ˆ ˆ kinematics R ω eξ θ Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 15. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 8 −ω′ × q′ −R ω RT (p + R q ) ξ′ = = ˆ Chapter Manipulator Kinematics ω′ Rω Forward = R pRˆ −ω × q = Ad ˆ ⋅ ξ ⇒ ξ ′ = eξ θ ⋅ ξ ⋅ e− ξ θ ˆ ˆ ˆ ˆ kinematics R ω eξ θ Inverse Kinematics Manipulator gst (θ , θ ) = eξ ⋅ eξ θ ⋅ gst ( ) Jacobian ˆ′ θ ˆ Redundant = ee ⋅ eξ θ ⋅ gst ( ) ˆ ˆ θ Manipulators ξ θ ⋅ ξ θ ⋅e− ξ ˆ ˆ Reference = eξ θ ⋅ eξ ⋅ e− ξ θ ⋅ eξ θ ⋅ gst ( ) ˆ ˆθ ˆ ˆ = eξ θ ⋅ eξ ⋅ gst ( ) ˆ ˆθ Independent of the route taken
  • 16. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 9 ◻ Procedure for forward kinematic map: Chapter Identify a nominal configuration: Manipulator Θ = (θ , . . . , θ n ) = , gst ( ) ≜ gst (θ , . . . , θ n ) Kinematics Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 17. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 9 ◻ Procedure for forward kinematic map: Chapter Identify a nominal configuration: Manipulator Θ = (θ , . . . , θ n ) = , gst ( ) ≜ gst (θ , . . . , θ n ) Kinematics Forward kinematics Inverse Kinematics Simplification of forward kinematics mapping: ξi = −ωωi qi Manipulator × Jacobian Revolute joint: Redundant Manipulators Choose qi s.t. ξi is simple. vi ξi = Reference Prismatic joint:
  • 18. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 9 ◻ Procedure for forward kinematic map: Chapter Identify a nominal configuration: Manipulator Θ = (θ , . . . , θ n ) = , gst ( ) ≜ gst (θ , . . . , θ n ) Kinematics Forward kinematics Inverse Kinematics Simplification of forward kinematics mapping: ξi = −ωωi qi Manipulator × Jacobian Revolute joint: Redundant Manipulators Choose qi s.t. ξi is simple. vi ξi = Reference Prismatic joint: Write gst (θ) = e ξ θ . . . e ξn θ n ⋅ gst ( ) (product of exponential ˆ ˆ mapping)
  • 19. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 10 Example: SCARA manipulator θ3 ⎡ ⎤ ⎢ ⎥ Chapter θ2 gst ( ) = ⎢ I l +l ⎥ Manipulator θ1 l2 ⎢ ⎥ θ4 Kinematics ⎢ ⎥ l1 l ⎣ ⎦ Forward kinematics z T ω =ω =ω = l0 q1 S q2 q3 Inverse y Kinematics x Manipulator Jacobian Figure 3.3 Redundant Manipulators Reference
  • 20. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 10 Example: SCARA manipulator θ3 ⎡ ⎤ ⎢ ⎥ Chapter θ2 gst ( ) = ⎢ I l +l ⎥ Manipulator θ1 l2 ⎢ ⎥ θ4 Kinematics ⎢ ⎥ l1 l ⎣ ⎦ Forward kinematics z T ω =ω =ω = l0 q1 S q2 q3 Inverse y Kinematics x Manipulator Jacobian Figure 3.3 q = ,q = ,q = l +l Redundant Manipulators l Reference
  • 21. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 10 Example: SCARA manipulator θ3 ⎡ ⎤ ⎢ ⎥ Chapter θ2 gst ( ) = ⎢ I l +l ⎥ Manipulator θ1 l2 ⎢ ⎥ θ4 Kinematics ⎢ ⎥ l1 l ⎣ ⎦ Forward kinematics z T ω =ω =ω = l0 q1 S q2 q3 Inverse y Kinematics x Manipulator Jacobian Figure 3.3 q = ,q = ,q = l +l Redundant Manipulators l Reference ⎡ ⎤ ⎡ l ⎤ ⎡ l +l ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⇒ξ =⎢ ⎥, ξ = ⎢ ⎥, ξ = ⎢ ⎥, ξ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (Continues next slide)
  • 22. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 11 gst (θ) = eξ θ ⋅ eξ ⋅ eξ ⋅ eξ ⋅ gst ( ) = R(θ) p(θ) ˆ ˆ θ ˆθ ˆ θ Chapter Manipulator Kinematics Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 23. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 11 gst (θ) = eξ θ ⋅ eξ ⋅ eξ ⋅ eξ ⋅ gst ( ) = R(θ) p(θ) ˆ ˆ θ ˆθ ˆ θ Chapter ⎡ c −s ⎤ ⎡ ls ⎤ ⎥ ξ θ ⎢ c −s Manipulator ⎢ l s ⎥, =⎢ s ⎥, e ˆ = ⎢ s ⎥ Kinematics ⎢ ⎥ ⎢ ⎥ e ˆ ξθ c c ⎢ ⎥ ⎢ ⎥ Forward ⎣ ⎦ ⎣ ⎦ kinematics ⎡ c −s (l s )s ⎤ ⎡ ⎤ ⎢ ⎥ ˆ Inverse ⎢ (l s )v ⎥, eξ θ = ⎢ I ⎥ Kinematics =⎢ s ⎥ ⎢ ⎥ ⎢ ⎥ ˆ c ⎢ ⎥ ξ θ e ⎢ ⎥ Manipulator ⎢ ⎥ θ ⎣ ⎦ Jacobian Redundant ⎣ ⎦ Manipulators Reference
  • 24. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 11 gst (θ) = eξ θ ⋅ eξ θ ⋅ eξ θ ⋅ eξ θ ⋅ gst ( ) = R(θ) p(θ) ˆ ˆ ˆ ˆ Chapter ⎡ c −s ⎤ ⎡ ls ⎤ ⎥ ξ θ ⎢ c −s Manipulator ⎢ s l s ⎥, ⎢ ⎥, e ˆ = ⎢ s ⎥ Kinematics =⎢ c ⎥ ⎢ c ⎥ ˆ ξθ e ⎢ ⎥ ⎢ ⎥ Forward ⎣ ⎦ ⎣ ⎦ kinematics ⎡ c −s (l s )s ⎤ ⎡ ⎤ ⎢ ⎥ ˆ Inverse ⎢ s (l s )v ⎥, eξ θ = ⎢ I ⎥ Kinematics =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ˆ c ⎢ ⎥ ξ θ e ⎢ ⎥ Manipulator ⎢ ⎥ θ ⎣ ⎦ Jacobian ⎣ ⎦ ⎡ −s −l s − l s ⎤ Redundant ⎢ c ⎥ ⎢ l c +l c ⎥ Manipulators gst (θ) = ⎢ s c ⎥ ⎢ l +θ ⎥ Reference ⎢ ⎥ ⎣ ⎦ in which, c = cos(θ + θ + θ ) and c = cos(θ + θ ).
  • 25. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 12 Example: Elbow manipulator Chapter Manipulator ξ1 ξ4 ξ2 ξ3 ξ5 ⎡ ⎤ Kinematics ⎢ l +l ⎥ l1 l2 gst ( ) = ⎢ I ⎥ Forward q1 q2 ξ6 ⎢ ⎥ kinematics T ⎢ l ⎥ ⎣ ⎦ Inverse Kinematics l0 Manipulator S Jacobian Redundant Figure 3.4 ⎡ ⎤ ⎡ ⎤ Manipulators ⎢ − × ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Reference ⎢ ⎥ ⎢ ⎥ ξ =⎢ l ⎥=⎢ ⎥, ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ (Continues next slide)
  • 26. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 13 ⎡ − ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ − × ⎥ ⎢ −l ⎥ ⎢ −l ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ l ⎥ ξ =⎢ − l ⎥ = ⎢ − ⎥, ξ = ⎢ − ⎥, ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Chapter ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Manipulator ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ Kinematics ⎡ l +l ⎤ ⎡ ⎤ ⎡ −l ⎤ ⎢ ⎥ ⎢ −l ⎥ ⎢ ⎥ Forward ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ kinematics ⎢ ⎥ ⎢ l +l ⎥ ⎢ ⎥ ξ =⎢ ⎥, ξ = ⎢ − ⎥, ξ = ⎢ ⎥ Inverse ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ Kinematics ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ Manipulator Jacobian Redundant → gst (θ , . . . θ ) = eξ θ . . . eξ ⋅ gst ( ) = Manipulators ˆ ˆ θ R(θ) p(θ) Reference ⎡ −s (l c + l c ) ⎤ ⎢ ⎥ p(θ) = ⎢ c (l c + l c ) ⎥ , R(θ) = [rij ] ⎢ l −l s −l s ⎥ ⎣ ⎦ (Continues next slide)
  • 27. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 14 in which, r = c (c c − s c s ) + s (s s c + s c c s + c s s ) Chapter r = −c (s c c + c s ) + s s s r = c (−c s s − (c c s + c s )s ) + (c c − c s s )s Manipulator Kinematics r = c (c s + c c s ) − (c c s + (c c c − s s )s )s Forward kinematics r = c (c c c − s s ) − c s s Inverse Kinematics Manipulator Jacobian r = c (c c s + (c c c − s s )s ) + (c s + c c s )s Redundant r = −(c s s ) − (c c − c s s )s r = −(c c s ) − c s Manipulators Reference r = c (c c − c s s ) − s s s
  • 28. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 14 in which, r = c (c c − s c s ) + s (s s c + s c c s + c s s ) Chapter r = −c (s c c + c s ) + s s s r = c (−c s s − (c c s + c s )s ) + (c c − c s s )s Manipulator Kinematics r = c (c s + c c s ) − (c c s + (c c c − s s )s )s Forward kinematics r = c (c c c − s s ) − c s s Inverse Kinematics Manipulator Jacobian r = c (c c s + (c c c − s s )s ) + (c s + c c s )s Redundant r = −(c s s ) − (c c − c s s )s r = −(c c s ) − c s Manipulators Reference r = c (c c − c s s ) − s s s Simplify forward Kinematics Map: Choose base frame or ref. Config. s.t. gst ( ) = I
  • 29. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 15 ◻ Manipulator Workspace: Chapter Manipulator W = {gst (θ) ∀θ ∈ Q} ⊂ SE( ) Kinematics Forward Reachable Workspace: kinematics Inverse Kinematics WR = {p(θ) ∀θ ∈ Q} ⊂ ℝ Manipulator Jacobian Redundant Manipulators Reference
  • 30. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 15 ◻ Manipulator Workspace: Chapter Manipulator W = {gst (θ) ∀θ ∈ Q} ⊂ SE( ) Kinematics Forward Reachable Workspace: kinematics Inverse Kinematics WR = {p(θ) ∀θ ∈ Q} ⊂ ℝ Manipulator Jacobian Redundant Dextrous Workspace: Manipulators WD = {p ∈ ℝ ∀R ∈ SO( ), ∃θ, gst (θ) = (p, R)} Reference
  • 31. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 16 Example: A planar serial 3-bar linkage Chapter (a) Workspace calculation: θ3 g = (x, y, ϕ) θ2 Manipulator l2 l3 x =l c +l c +l c Kinematics y =l s +l s +l s θ1 l1 Forward kinematics ϕ=θ +θ +θ (a) (b) Inverse Kinematics (b) Construction of Workspace: Manipulator Jacobian (c) Reachable Workspace: l1 l2 l3 2l3 2l3 Redundant (d) Dextrous Workspace: Manipulators (c) (d) Reference Figure 3.5
  • 32. Chapter 3 Manipulator Kinematics 3.1 Forward kinematics 16 Example: A planar serial 3-bar linkage Chapter (a) Workspace calculation: θ3 g = (x, y, ϕ) θ2 Manipulator l2 l3 x =l c +l c +l c Kinematics y =l s +l s +l s θ1 l1 Forward kinematics ϕ=θ +θ +θ (a) (b) Inverse Kinematics (b) Construction of Workspace: Manipulator Jacobian (c) Reachable Workspace: l1 l2 l3 2l3 2l3 Redundant (d) Dextrous Workspace: Manipulators (c) (d) Reference Figure 3.5 ◻ R manipulator with maximum workspace (Paden): Elbow manipulator and its kinematics inverse. † End of Section †
  • 33. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 17 Definition: Inverse kinematics Given g ∈ SE( ), find θ ∈ Q s.t. gst (θ) = g, where gst ∶ Q ↦ SE( ) Chapter Manipulator Kinematics Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 34. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 17 Definition: Inverse kinematics Given g ∈ SE( ), find θ ∈ Q s.t. gst (θ) = g, where gst ∶ Q ↦ SE( ) Chapter Manipulator Kinematics Forward kinematics Example: A planar example Inverse Kinematics (x, y) (x, y) Manipulator l2 Jacobian θ2 θ2 r Redundant y α Manipulators l1 β Reference θ1 φ θ1 B x (a) (b) Figure 3.6 x = l cos θ + l cos (θ + θ ) y = l sin θ + l sin (θ + θ ) Given (x, y), solve for (θ , θ ).
  • 35. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 18 Review: Chapter Polar Coordinates: (r, ϕ), r = x +y Manipulator Kinematics Forward Law of cosines: θ = π ± α, α = cos− kinematics l +l −r Inverse Flip solution: π + α Kinematics ll Manipulator r +l −l Jacobian Redundant Manipulators θ = atan (y, x) ± β, β = cos− lr Reference
  • 36. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 18 Review: Chapter Polar Coordinates: (r, ϕ), r = x +y Manipulator Kinematics Forward Law of cosines: θ = π ± α, α = cos− kinematics l +l −r Inverse Flip solution: π + α Kinematics ll Manipulator r +l −l Jacobian Redundant Manipulators θ = atan (y, x) ± β, β = cos− lr Reference Hight Lights: Subproblems Each has zero, one or two solutions!
  • 37. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 19 ◻ Paden-Kahan Subproblems: Chapter Subproblem 1: Rotation about a single axis Manipulator Kinematics Let ξ be a zero-pitch twist, with unit magnitude and two points p, q ∈ ℝ . Find θ s.t. eξθ p = q Forward kinematics ˆ Inverse Kinematics Manipulator p Jacobian u Redundant u′ Manipulators r θ ξ θ Reference v′ v q (a) (b) Figure 3.6
  • 38. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 19 ◻ Paden-Kahan Subproblems: Chapter Subproblem 1: Rotation about a single axis Manipulator Kinematics Let ξ be a zero-pitch twist, with unit magnitude and two points p, q ∈ ℝ . Find θ s.t. eξθ p = q Forward kinematics ˆ Inverse Kinematics Manipulator p Jacobian u Redundant u′ Manipulators r θ ξ θ Reference v′ v q (a) (b) Figure 3.6 Solution: Let r ∈ l ξ , define u = p − r, v = q − r, eξθ r = r ˆ (Continues next slide)
  • 39. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 20 Moreover, Chapter Manipulator ⇒ eξθ p = q ⇒ eξθ (p − r) = q − r ⇒ ˆ ˆ eωθ ˆ ∗ u = v Kinematics u v w u=w v Forward ⇒ eωθ u = v kinematics T T ˆ Inverse Kinematics u = v Manipulator Jacobian p Redundant Manipulators u u′ Reference r θ ξ θ v′ v q (a) (b) Figure 3.6 (Continues next slide)
  • 40. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 21 u′ = (I − ωωT )u, v′ = (I − ωωT )v u′ = v′ Chapter Manipulator ωT u = ωT v Kinematics The solution exists only if Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 41. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 21 u′ = (I − ωωT )u, v′ = (I − ωωT )v u′ = v′ Chapter Manipulator ωT u = ωT v Kinematics The solution exists only if Forward kinematics If u′ ≠ , then Inverse Kinematics Manipulator u′ × v′ = ω sin θ u′ v′ Jacobian Redundant Manipulators u′ ⋅ v′ = cos θ u′ v′ Reference ⇒ θ = atan (ωT (u′ × v′ ), u′T v′ )
  • 42. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 21 u′ = (I − ωωT )u, v′ = (I − ωωT )v u′ = v′ Chapter Manipulator ωT u = ωT v Kinematics The solution exists only if Forward kinematics If u′ ≠ , then Inverse Kinematics Manipulator u′ × v′ = ω sin θ u′ v′ Jacobian Redundant Manipulators u′ ⋅ v′ = cos θ u′ v′ Reference ⇒ θ = atan (ωT (u′ × v′ ), u′T v′ ) If u′ = , ⇒ Infinite number of solutions!
  • 43. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 22 Subproblem 2: Rotation about two subsequent axes Chapter Let ξ and ξ be two zero-pitch, unit magnitude twists, with intersecting axes, and p, q ∈ R . find θ and θ s.t. Manipulator Kinematics eξ θ eξ θ p = q. Forward ˆ ˆ kinematics Inverse Kinematics p ξ2 Manipulator Jacobian θ2 Redundant Manipulators c Reference r θ1 ξ1 q Figure 3.6 (Continues next slide)
  • 44. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 23 Solution: If two axes of ξ and ξ coincide, then we get: Subproblem 1: θ + θ = θ Chapter Manipulator Kinematics Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 45. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 23 Solution: If two axes of ξ and ξ coincide, then we get: Subproblem 1: θ + θ = θ Chapter Manipulator If the two axes are not parallel, ω × ω ≠ , then, let c satisfy: p = c = e− ξ θ q Kinematics ˆθ ˆ Forward eξ kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 46. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 23 Solution: If two axes of ξ and ξ coincide, then we get: Subproblem 1: θ + θ = θ Chapter Manipulator If the two axes are not parallel, ω × ω ≠ , then, let c satisfy: p = c = e− ξ θ q Kinematics ˆθ ˆ Forward eξ Set r ∈ l ξ ∩ l ξ kinematics Inverse p − r = c − r = e− ξ θ (q − r), ⇒ eω u = z = e−ω θ v Kinematics ˆθ ˆ Manipulator eξ ˆ θ ˆ Jacobian u z v ω u=ω z Redundant = z = v Manipulators T T ωT v = ωT z Reference ⇒ , u
  • 47. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 23 Solution: If two axes of ξ and ξ coincide, then we get: Subproblem 1: θ + θ = θ Chapter Manipulator If the two axes are not parallel, ω × ω ≠ , then, let c satisfy: p = c = e− ξ θ q Kinematics ˆθ ˆ Forward eξ Set r ∈ l ξ ∩ l ξ kinematics Inverse p − r = c − r = e− ξ θ (q − r), ⇒ eω u = z = e−ω θ v Kinematics ˆθ ˆ Manipulator eξ ˆ θ ˆ Jacobian u z v ω u=ω z Redundant = z = v Manipulators T T ωT v = ωT z Reference ⇒ , u As ω , ω and ω × ω are linearly independent, z = αω + βω + γ(ω × ω ) ⇒ z = α + β + αβωT ω + γ ω × ω (Continues next slide)
  • 48. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 24 ⎧ ⎪α ⎪ = (ωT ω )ωT u−ωT v ωT u = αωT ω + β ⎪ ⇒⎨ (ωT ω ) − ω v = α + βω ω ⎪β ⎪ = ⎪ Chapter T T (ωT ω )ωT v−ωT u ⎩ Manipulator Kinematics (ωT ω ) − Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 49. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 24 ⎧ ⎪α ⎪ = (ωT ω )ωT u−ωT v ωT u = αωT ω + β ⎪ ⇒⎨ (ωT ω ) − ω v = α + βω ω ⎪β ⎪ = ⎪ Chapter T T (ωT ω )ωT v−ωT u ⎩ Manipulator Kinematics (ωT ω ) − − α − β − αβωT ω Forward = u ⇒γ = (∗) kinematics u ω ×ω Inverse z Kinematics Manipulator (∗) has zero, one or two solution(s): Jacobian eξ θ p = c Redundant ˆ Manipulators Given z ⇒ c ⇒ eξ θ p = c ˆ Reference for θ and θ Two solutions when the two circles intersect.
  • 50. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 24 ⎧ ⎪α ⎪ = (ωT ω )ωT u−ωT v ωT u = αωT ω + β ⎪ ⇒⎨ (ωT ω ) − ω v = α + βω ω ⎪β ⎪ = ⎪ Chapter T T (ωT ω )ωT v−ωT u ⎩ Manipulator Kinematics (ωT ω ) − − α − β − αβωT ω Forward = u ⇒γ = (∗) kinematics u ω ×ω Inverse z Kinematics Manipulator (∗) has zero, one or two solution(s): Jacobian eξ θ p = c Redundant ˆ Manipulators Given z ⇒ c ⇒ eξ θ p = c ˆ Reference for θ and θ Two solutions when the two circles intersect. One solution when they are tangent
  • 51. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 24 ⎧ ⎪α ⎪ = (ωT ω )ωT u−ωT v ωT u = αωT ω + β ⎪ ⇒⎨ (ωT ω ) − ω v = α + βω ω ⎪β ⎪ = ⎪ Chapter T T (ωT ω )ωT v−ωT u ⎩ Manipulator Kinematics (ωT ω ) − − α − β − αβωT ω Forward = u ⇒γ = (∗) kinematics u ω ×ω Inverse z Kinematics Manipulator (∗) has zero, one or two solution(s): Jacobian eξ θ p = c Redundant ˆ Manipulators Given z ⇒ c ⇒ eξ θ p = c ˆ Reference for θ and θ Two solutions when the two circles intersect. One solution when they are tangent Zero solution when they do not intersect
  • 52. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 25 Subproblem 3: Rotation to a given point Chapter Given a zero-pitch twist ξ, with unit magnitude and p, q ∈ ℝ , find θ s.t. q − eξθ p = δ Manipulator Kinematics ˆ Forward kinematics Inverse Kinematics p Manipulator u u′ Jacobian r θ ξ θ0 θ Redundant Manipulators ωθ ′ e u Reference v v′ δ δ′ q ω T (p−q) Figure 3.7
  • 53. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 25 Subproblem 3: Rotation to a given point Chapter Given a zero-pitch twist ξ, with unit magnitude and p, q ∈ ℝ , find θ s.t. q − eξθ p = δ Manipulator Kinematics ˆ Forward Define: u = p − r, v = q − r, v − eωθ u ˆ =δ kinematics Inverse Kinematics p u = u − ωω u ′ Manipulator u u′ T Jacobian r θ v′ = v − ωωT v ξ θ0 θ Redundant Manipulators ωθ ′ e u Reference v v′ δ δ′ q ω T (p−q) Figure 3.7 ⇒ u = u′ + ωωT u, v = v′ + ωωT v, δ ′ = δ − ωT (p − q) (Continues next slide)
  • 54. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 26 Chapter Manipulator (v′ + ωωT v) − eωθ (u′ + ωωT u) ˆ =δ ⇒ v − e u + ωωT (v − u) =δ Kinematics ′ ωθ ′ ˆ Forward kinematics Inverse ωωT (q−p) Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 55. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 26 Chapter Manipulator (v′ + ωωT v) − eωθ (u′ + ωωT u) ˆ =δ ⇒ v − e u + ωωT (v − u) =δ Kinematics ′ ωθ ′ ˆ Forward kinematics Inverse ωωT (q−p) Kinematics Manipulator v′ − eωθ u′ = δ − ωT (p − q) = δ′ , Jacobian ˆ Redundant θ = atan (ωT (u′ × v′ ), u′T v′ ), Manipulators ϕ = θ − θ ⇒ u′ + v′ − u′ ⋅ v′ cos ϕ = δ ′ , Reference u′ + v′ − δ ′ θ = θ ± cos− (∗) u′ ⋅ v′ Zero, one or two solutions!
  • 56. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 27 ◻ Solving inverse kinematics using Chapter subproblems: Manipulator Kinematics Technique 1: Eliminate the dependence on a joint eξθ p = p, if p ∈ l ξ . Given eξ θ eξ θ eξ θ = g, select p ∈ l ξ , p ∉ l ξ Forward ˆ ˆ ˆ ˆ kinematics Inverse or l ξ , then: gp = eξ θ eξ Kinematics ˆ ˆθ Manipulator p Jacobian Redundant Manipulators Reference
  • 57. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 27 ◻ Solving inverse kinematics using Chapter subproblems: Manipulator Kinematics Technique 1: Eliminate the dependence on a joint eξθ p = p, if p ∈ l ξ . Given eξ θ eξ θ eξ θ = g, select p ∈ l ξ , p ∉ l ξ Forward ˆ ˆ ˆ ˆ kinematics Inverse or l ξ , then: gp = eξ θ eξ Kinematics ˆ ˆθ Manipulator p Jacobian Redundant Manipulators Technique 2: subtract a common point Reference = g, q ∈ l ξ ∩ l ξ ⇒ eξ θ eξ p − q = gp − q ⇒ ˆ ˆθ ˆθ ˆ ˆθ ˆθ eξ θ eξ eξ ˆ ˆ eξ p − q = gp − q ˆθ eξ
  • 58. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 28 Example: Elbow manipulator Chapter Manipulator ξ1 ξ4 Kinematics ξ2 ξ3 ξ5 Forward l1 l2 kinematics pb ξ6 qw Inverse Kinematics Manipulator l0 Jacobian S Redundant Manipulators Reference Figure 3.7 gst (θ) = eξ θ eξ gst ( ) = gd ˆ ˆθ ˆθ ˆ θ ˆθ ˆ θ eξ eξ eξ eξ = gd ⋅ gst ( ) = g − ˆ ˆ θ ˆθ ˆ θ ˆθ ˆ θ ⇒ eξ θ eξ eξ eξ eξ eξ (Continues next slide)
  • 59. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 29 Step 1: Solve for θ qω = g ⋅ qω Chapter ˆ ˆ θ Manipulator Let eξ θ . . . eξ Kinematics qω = g ⋅ qω Forward ˆ ˆθ ˆθ kinematics ⇒ eξ θ eξ eξ Inverse Kinematics Subtract pb from g qω : Manipulator (eξ qω − pb ) = g qω − pb Jacobian ˆ ˆθ ˆθ Redundant eξ θ eξ qω − pb ≜ δ ← Subproblem 3 Manipulators ˆθ Reference ⇒ eξ
  • 60. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 29 Step 1: Solve for θ qω = g ⋅ qω Chapter ˆ ˆ θ Manipulator Let eξ θ . . . eξ Kinematics qω = g ⋅ qω Forward ˆ ˆθ ˆθ kinematics ⇒ eξ θ eξ eξ Inverse Kinematics Subtract pb from g qω : Manipulator (eξ qω − pb ) = g qω − pb Jacobian ˆ ˆθ ˆθ Redundant eξ θ eξ qω − pb ≜ δ ← Subproblem 3 Manipulators ˆθ Reference ⇒ eξ Step 2: Given θ , solve for θ , θ (eξ qω ) = g qω , Subproblem 2 ⇒ θ , θ ˆ ˆθ ˆθ eξ θ eξ (Continues next slide)
  • 61. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 30 Step 3: Given θ , θ , θ , solve θ , θ = e− ξ Chapter e− ξ e− ξ θ g ˆ θ ˆθ ˆ θ ˆθ ˆθ ˆ Manipulator Kinematics eξ eξ eξ Forward g let p ∈ l ξ , p ∉ l ξ or l ξ , e eξ p = g p, kinematics ˆ ξ θ ˆθ Inverse Kinematics Subproblem 2 ⇒ θ and θ . Manipulator Jacobian Redundant Manipulators Reference
  • 62. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 30 Step 3: Given θ , θ , θ , solve θ , θ = e− ξ Chapter e− ξ e− ξ θ g ˆ θ ˆθ ˆ θ ˆθ ˆθ ˆ Manipulator Kinematics eξ eξ eξ Forward g let p ∈ l ξ , p ∉ l ξ or l ξ , e eξ p = g p, kinematics ˆ ξ θ ˆθ Inverse Kinematics Subproblem 2 ⇒ θ and θ . Step 4: Given (θ , . . . , θ ), solve for θ Manipulator Jacobian Redundant eξ θ = (eξ θ . . . eξ θ )− ⋅ g ≜ g Manipulators ˆ ˆ ˆ Let p ∉ l ξ ⇒ eξ θ p = g ⋅ p = q ⇐ Subproblem 1 Reference ˆ Maximum of solutions:
  • 63. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 31 Example: Inverse Kinematics of SCARA ⎡ ⎤ θ3 ⎢ l +l ⎥ Chapter gst ( ) = ⎢ ⎥ θ2 ⎢ ⎥ Manipulator ⎢ ⎥ Kinematics l2 l ⎣ ⎦ θ1 θ4 Forward l1 gst (θ) = e ξ θ . . . e ξ θ gst ( ) kinematics ˆ ˆ ⎡ cϕ −sϕ ⎤ Inverse z ⎢ ⎥ Kinematics l0 T x ⎢ ⎥ q1 S q2 q3 = ⎢ sϕ cϕ ⎥ ≜ gd y Manipulator y ⎢ ⎥ x ⎢ ⎥ Jacobian z ⎣ ⎦ Redundant Figure 3.8 Manipulators ⎡ ⎤ −l s − l s ⎢ ⎥ Reference p=⎢ ⎥ ⇒ p(θ) = x ⎢ ⎥ l c +l c = y ⇒θ =z−l ⎢ ⎥ l +θ z ⎣ ⎦ = gd gst ( )e− ξ ≜g ˆ ˆ θ ˆ θ ˆ θ eξ θ eξ eξ − (Continues next slide)
  • 64. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 32 Let p ∈ l ξ , q ∈ l ξ ⇒ e ξ θ e ξ p = g p, ˆ ˆ θ Chapter e ξ θ (e ξ p − q) = g p − q , Manipulator ˆ ˆ θ Kinematics p − q = δ ← Subproblem 3 to get θ Forward ˆ ξ θ kinematics e Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 65. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 32 Let p ∈ l ξ , q ∈ l ξ ⇒ e ξ θ e ξ p = g p, ˆ ˆ θ Chapter e ξ θ (e ξ p − q) = g p − q , Manipulator ˆ ˆ θ Kinematics p − q = δ ← Subproblem 3 to get θ Forward ˆ ξ θ kinematics e Inverse ⇒ e ξ θ (e ξ p) = g p ⇒ θ ← Subproblem 1 to get θ Kinematics ˆ ˆ θ Manipulator = e− ξ e− ξ θ gd gst ( )e− ξ ≜g Jacobian ˆ ˆ θ ˆ ˆ θ ξ θ − Redundant ⇒e p = g p, p ∉ l ξ ← Subproblem 1 to get θ Manipulators ˆ ξ θ e Reference There are a maximum of two solutions! † End of Section †
  • 66. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 33 Example: ABB IRB4400 θ x Chapter θ l l Manipulator z Kinematics l T θ θ y Forward kinematics z y l Inverse l S θ Kinematics θ q x Manipulator Jacobian Redundant Manipulators Reference − ω = , ω = −ω = −ω = ,ω = ω = l l l +l q = ,q = ,q = , pw ∶= q = q = q = l l +l (Continues next slide)
  • 67. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 34 ⎡ l +l +l ⎤ ⎢ − ⎥ qi × ω i gst ( ) = ⎢ ⎢ l +l ⎥ , ξi = ⎥ ⎢ ⎥ ωi Chapter ⎣ ⎦ gst (θ) = e ξ θ e ξ gst ( ) ∶= gd Manipulator ˆ ˆ θ ˆ θ ˆ θ ˆ θ ˆ θ Kinematics eξ eξ eξ eξ Forward kinematics Inverse Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 68. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 34 ⎡ l +l +l ⎤ ⎢ − ⎥ qi × ω i gst ( ) = ⎢ ⎢ l +l ⎥ , ξi = ⎥ ⎢ ⎥ ωi Chapter ⎣ ⎦ gst (θ) = e ξ θ e ξ gst ( ) ∶= gd Manipulator ˆ ˆ θ ˆ θ ˆ θ ˆ θ ˆ θ Kinematics eξ eξ eξ eξ Forward pw = gd pw =∶ q ⇒ e ξ pw = e− ξ θ q kinematics ˆ ˆ θ ˆ θ ˆ θ ˆ θ ˆ Inverse eξ θ eξ eξ eξ Kinematics qx ⇒ =[ ] ⋅ e− ξ θ q = cos θ qy − sin θ qx , q = ˆ Manipulator qy Jacobian qz Redundant ⇒ θ = tan− (qy qx ) Manipulators Reference
  • 69. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 34 ⎡ l +l +l ⎤ ⎢ − ⎥ qi × ω i gst ( ) = ⎢ ⎢ l +l ⎥ , ξi = ⎥ ⎢ ⎥ ωi Chapter ⎣ ⎦ gst (θ) = e ξ θ e ξ gst ( ) ∶= gd Manipulator ˆ ˆ θ ˆ θ ˆ θ ˆ θ ˆ θ Kinematics eξ eξ eξ eξ Forward pw = gd pw =∶ q ⇒ e ξ pw = e− ξ θ q kinematics ˆ ˆ θ ˆ θ ˆ θ ˆ θ ˆ Inverse eξ θ eξ eξ eξ Kinematics qx ⇒ =[ ] ⋅ e− ξ θ q = cos θ qy − sin θ qx , q = ˆ Manipulator qy Jacobian qz Redundant ⇒ θ = tan− (qy qx ) Manipulators pw − q = e− ξ θ q − q =∶ δ ← Subproblem 3 to get θ ˆ θ ˆ Reference eξ (e pw ) = e ˆ ξ θ ˆ ξ θ ˆ −ξ θ e q ← Subproblem 1 to get θ
  • 70. Chapter 3 Manipulator Kinematics 3.2 Inverse Kinematics 34 ⎡ l +l +l ⎤ ⎢ − ⎥ qi × ω i gst ( ) = ⎢ ⎢ l +l ⎥ , ξi = ⎥ ⎢ ⎥ ωi Chapter ⎣ ⎦ gst (θ) = e ξ θ e ξ gst ( ) ∶= gd Manipulator ˆ ˆ θ ˆ θ ˆ θ ˆ θ ˆ θ Kinematics eξ eξ eξ eξ Forward pw = gd pw =∶ q ⇒ e ξ pw = e− ξ θ q kinematics ˆ ˆ θ ˆ θ ˆ θ ˆ θ ˆ Inverse eξ θ eξ eξ eξ Kinematics qx ⇒ =[ ] ⋅ e− ξ θ q = cos θ qy − sin θ qx , q = ˆ Manipulator qy Jacobian qz Redundant ⇒ θ = tan− (qy qx ) Manipulators pw − q = e− ξ θ q − q =∶ δ ← Subproblem 3 to get θ ˆ θ ˆ Reference eξ (e pw ) = e ˆ ξ θ ˆ ξ θ ˆ −ξ θ e q ← Subproblem 1 to get θ = e− ξ e− ξ θ gd gst ( ) =∶ g ˆ θ ˆ θ ˆ θ ˆ θ ˆ θ ˆ eξ eξ eξ e− ξ − Use subproblem 1,2 to solve for θ , θ , θ † End of Section †
  • 71. Chapter 3 Manipulator Kinematics 3.3 Manipulator Jacobian 35 Given gst ∶ Q → SE( ), θ(t) = (θ (t) . . . θ n (t))T → eξ θ . . . eξn θ n gst ( ) ˆ ˆ Chapter and θ(t) = (θ (t) . . . θ n (t))T , Manipulator Kinematics ˙ ˙ ˙ Forward kinematics Inverse What is the velocity of the tool frame? Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 72. Chapter 3 Manipulator Kinematics 3.3 Manipulator Jacobian 35 Given gst ∶ Q → SE( ), θ(t) = (θ (t) . . . θ n (t))T → eξ θ . . . eξn θ n gst ( ) ˆ ˆ Chapter and θ(t) = (θ (t) . . . θ n (t))T , Manipulator Kinematics ˙ ˙ ˙ Forward kinematics Inverse What is the velocity of the tool frame? Kinematics n Vst = gst (θ)gst (θ) = ( θ i )gst (θ) Manipulator ˆs ˙ − ∂gst ˙ − Jacobian Redundant i= ∂θ i Manipulators n n = ( g (θ))θ i ⇒ Vst = ( g (θ))∨ θ i ∂gst − ˙ s ∂gst − ˙ Reference i= ∂θ i st i= ∂θ i st ⎡ θ ⎤ ⎢ ˙ ⎥ = [( gst (θ))∨ , . . . , ( gst (θ))∨ ] ⎢ ⎥ ∂gst − ∂gst − ⎢ ⎥ ⎢ θn ⎥ ⎣ ⎦ ∂θ ∂θ n ˙ Jst (θ)∈ℝ s ×n (Continues next slide)
  • 73. Chapter 3 Manipulator Kinematics 3.3 Manipulator Jacobian 36 gst (θ) = e gst ( ) ˆ ξθ ˆ ξn θ n ...e ∂gst − gst (θ) = ( ξ e ξ θ . . . e ξn θ n gst ( ))(gst (θ))− = ξ ⇒ ˆ ˆ ˆ ˆ Chapter Manipulator Kinematics ∂θ ∂gst − ( g (θ))∨ = ξ Forward kinematics Inverse ∂θ st Kinematics Manipulator Jacobian Redundant Manipulators Reference
  • 74. Chapter 3 Manipulator Kinematics 3.3 Manipulator Jacobian 36 gst (θ) = e gst ( ) ˆ ξθ ˆ ξn θ n ...e ∂gst − gst (θ) = ( ξ e ξ θ . . . e ξn θ n gst ( ))(gst (θ))− = ξ ⇒ ˆ ˆ ˆ ˆ Chapter Manipulator Kinematics ∂θ ∂gst − ( g (θ))∨ = ξ Forward kinematics Inverse ∂θ st ∂gst − gst (θ) = (e ξ θ ξ e ξ θ . . . e ξn θ n gst ( ))(gst (θ))− Kinematics ˆ ˆ ˆ ˆ Manipulator Jacobian ∂θ = e ξ θ ξ e ξ θ . . . e ξn θ n gst ( )gst (θ) = e ξ θ ξ e−ξ θ ≜ ξ′ − Redundant ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Manipulators ∂gst − ( g (θ))∨ = Ade ξˆ θ ξ = ξ′ . . . . . . Reference ∂θ st