SlideShare uma empresa Scribd logo
1 de 78
Department of Civil Engineering                                                              NPIC




                   XI.     GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg
    Prestressed Concrete Circular Storage Tanks and Shell Roofs

11.1.    esckþIepþIm                   Introduction
        CaTUeTA GagragmUlebtugeRbkugRtaMgCabnSMd¾l¥bMputénTMrg;eRKOgbgÁúM nigsMPar³sMrab;sþúksar-
Faturav nigsarFaturwg. kareFVIkarrbs;vaGs;ry³eBlCagknø³stvtSbgðajfa enAeBlEdleKsikSa
KNnavaCamYynwgCMnaj nigkarykcitþTukdak;KYrsm vaGaceFVIkar)an 50qñaM b¤eRcInCagenHedayKμan
karEfTaMFMdMueT.
        kic©xMRbwgERbgdMbUgkñúgkareRbIkMlaMgeRbkugRtaMgvNÐeTAelIeRKOgbgÁúMragmUlKWeFVIeLIgeday W.S.
Hewett Edl)anGnuvtþeKalkarN_ tie rod nigeKalkarN_rwtk,al (turnbuckle principle) enAedIm

TsSvtSqñaM 1920. b:uEnþEdkBRgwgEdlmanenAeBlenaHman yield strength TabNas; EdlkMNt;nUv
kugRtaMgTajGnuvtþn_mineGayFMCag 30,000 psi b¤ 35,000 psi ¬ 206.9 eTA 241.3MPa ¦. CakarBit
kMhatbg;eRbkugRtaMgry³eBlEvgd¾FMEdlbNþalBI concrete creep, shrinkage nig steel relaxation
swgEtlubbM)at;kMlaMgeRbkugRtaMg. edaysareRkaymk eKrkeXIjEdkEdlmanersIusþg;x<s; enAkñúg
TsSvtSqñaM 1940 J.M. Crom )anbegáItedayeCaKC½ynUveKalkarN_rMu high-tensile wire CMuvijCBa¢aMg
ragmUlrbs;GagebtugeRbkugRtaMg. taMgBIeBlenaHmk eRKOgbgÁúMsþúkragmUlCag 3,000 RtUv)anksag
eLIgedaymanTMhMGgát;p©itepSg². GagsþúkEdlmanTMhMFMCageKmanGgát;p©itrhUtdl; 300 ft (92m) .
        KuNsm,tþid¾cMbgkñúgkareFVIkar nigesdækic©énkareRbIkMlaMgeRbkugRtaMgvNÐkñúgGagebtugBIelI
EdkBRgwgFmμtaKWkarminGnuBaØateGaymansñameRbH. kugRtaMgsgát;vNÐ (circumferential “hugging”
hoop stress in compression) Edlpþl;edaykarrMuEdkeRbkugRtaMgBIxageRkACMuvijGagsþúkragmUlKWCa

bec©keTsFmμCatisMrab;lubbM)at;sñameRbH enAkñúgCBa¢aMgxageRkAEdlbNþalBIsMBaFrbs;sarFaturwg
sMBaF]sμ½n nigbnÞúksarFaturwgEdlGagsþúk. bec©keTsepSgeTotkñúgkareFVIeRbkugRtaMgvNÐedayeRbI
tendon mYy²f<k;Cab;eTAnwgCnÞl;RtUv)aneRbIR)as;y:agTUlMTUlayenAGWur:ubCagenAGaemricxageCIg eday

sarmUlehtuesdækic©kñúgtMbn; nigbec©keTs.
        GagsþúkEdleRbIeRbkugRtaMgvNÐ ehIyEdlGaccak;enAnwgkEnøg b¤cak;Rsab;CakMNat;² Edl
rYmmanGagsþúkTwk GagTwks¥úy silo GagsþúkeRbg nigsarFatuKImI eRKOgbgÁúMsßanIybUmeRbgenAkNþal
smuRT (offshore oil platform structure), cryogenic vessel nig nuclear reactor pressure vessels.
eKcat;TukeRKOgbgÁúMTaMgenHCakMralekagesþIg (thin shell) edaysarpleFobd¾EsntUcénkMras;elIGgát;
GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                  667
T.Chhay                                                                     viTüasßanCatiBhubec©keTskm<úCa

p©itrbs;va. edaysarminGnuBaØateGaymansñameRbHeRkamGMeBIbnÞúkeFVIkar eKrMBwgfa shell eFVIkarCa
lkçN³eGLasÞiceRkamGMeBIbnÞúkeFVIkar nigeRkamlkçN³bnÞúkelIs (overload condition).

11.2. eKalkarN_ nigdMeNIrkarsikSaKNna                         Design Principles and Procedures
11.2.1. kMlaMgxagkñúg     Internal Loads
        BicarNaBIkareFVIkarrbs;GagragmUlEdlBak;B½n§nwgkarBinitüTaMgsMBaFxagkñúgEdlbNþalBI
sMPar³EdlpÞúkenAxagkñúgmanGMeBIelImuxkat;kMralCBa¢aMgekagragsIuLaMgesþIg (thin-wall cylindrical
shell) nigkMlaMgeRbkugRtaMg radial xageRkA nigeBlxøHkMlaMgeRbkugRtaMgbBaÄrEdleFVIeGaykMlaMgxag

kñúgmanlMnwg. sMBaFxagkñúgCasMBaF radial edk b:uEnþERbRbYltamTisbBaÄrEdlGaRs½yeTAnwgRbePT
sMPar³EdlpÞúkenAkñúgGag. RbsinebIsMPar³CaTwk b¤CaGgÁFaturav sMBaFbBaÄrBRgayeTAelICBa¢aMgGag
manragRtIekaN CamYynwgGaMgtg;sIuetGtibrmaenARtg;)atrbs;CBa¢aMg. sarFatu]sμ½nnwgpþl;sMBaF
edkefrelIkMBs;TaMgmUlrbs;CBa¢aMg. karBRgaysMBaFbBaÄrrbs;sMPar³EdlmanlkçN³dMuRKab; dUcCa
FüÚgfμ b¤RKab;FBaØCatimanragRsedogKñaniwgkarBRgaysMBaFrbs;]sμ½nmkelICBa¢aMgGagEdr. rUbTI
11>1 bgðajBIkarBRgaysMBaDsMrab;krNIénkardak;bnÞúkTaMgbIenH.




Prestressed Concrete Circular Storage Tanks and Shell Roofs                                   668
Department of Civil Engineering                                                                NPIC




         RTwsþIeGLasÞicmUldæanrbs; cylindrical shell GnuvtþeTAelIkarsikSaviPaK nigeTAelIkarsikSa
KNnaCBa¢aMgrbs;GageRbkugRtaMg. kMlaMgkg (ring force) bgákMlaMgTajkg (ring tension) enAkñúg
CBa¢aMgsIuLaMgesþIg (thin cylindrical wall) edaysnμt;KμankarTb; (unrestrained) enAxagcugénmuxkat;
edknImYy²eT. TMhMrbs;kMlaMgKWsmamaRteTAnwgsMBaFEdlGnuvtþenAxagkñúg nigKμanm:Um:g;bBaÄrekIt
mantamkMBs;rbs;CBa¢aMgeT. RbsinebIcugrbs;CBa¢aMgRtUv)anTb; (restrained) TMhMrbs; ring force ERb
RbYl ehIym:Um:g;Bt;nwgekItmanenAkñúgmuxkat;bBaÄrrbs;CBa¢aMgGag. dUcenHTMhMrbs; ring force nigm:U
m:g;bBaÄrCaGnuKmn_énkMriténkarTb;rbs; cylindrical shell enARtg;RBMEdnrbs;va ehIyvaRtUv)anKNna
BIRTwsþkMralekageGLasÞic (elastic shell theory).

bnÞúksarFaturavenAelI)atrGiledayesrI         Liquid Load on Freely Sliding Base

       BIemkanicmUldæan (basic mechanics), ring force KW
                            pd
                     F=        = pr                                                  (11.1a)
                            2
ehIykugRtaMgkg (ring stress) KW
                              pd pr
                      fR =       =                                                   (11.1b)
                              2t   t
Edl        d=  Ggát;p©itrbs;sIuLaMg
          r = kaMrbs;sIuLaMg

          t = kMras;CBa¢aMg

           p = sMBaFÉktþaxagkñúgRtg;)atCBa¢aMg = γH

          γ = TMgn;maDrbs;sMPar³EdlpÞúkenAkñúgGag.
          Tensile ring stress enARtg;RKb;cMnucBIxageRkamépÞrbs;sMPar³EdlpÞúkenAkñúgGagkøayCa

                      f R = γ (H − y )       = γ (H − y )
                                          d               r
                                                                                     (11.2a)
                                          2t              t
Edl H CakMBs;rbs;sarFaturav ehIy y CacMgayBIelI)at. Ring force EdlRtUvKñaKW
                     F = γ (H − y )r                                                 (11.2b)
dUckñúgsmIkar 11.1b/ Tensile ring stress GtibrmaenARtg;)atrbs;CBa¢aMgEdlrGiledayesrIsMrab;
y = 0 køayCa
                                     γHd        γhr
                      f R (max ) =          =                                        (11.2c)
                                     2t          t




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                 669
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa

bnÞúk]s½μnenAelI)atEdlrGiledayesrI         Gaseous Load on Freely Sliding Base

       mþgeTotBIeKalkarN_emkanicmUldæan/ tensile ring stress efrKW
                             pd pr
                      fR =      =                                                     (11.3)
                             2t   t
cMNaMfa eKRtUveRbITMhMGgát;p©ittamRTwsþIEdlKitBI centerline EdlmanlkçN³suRkit Etedaysarpl
eFob t / d manTMhMtUceBk dUcenHeKGaceRbIGgát;p©itxagkñúg d )an.

bnÞúkGgÁFaturav nigbnÞúk]s½μnenAelI)atCBa¢aMgEdlTb;
Liquid and Gaseous Load on Restrained Wall Base
        RbsinebI)atrbs;CBa¢aMgRtUv)anbgáb; b¤ pinned/ enaHeKlubecal ring tension enARtg;)at.
edaysarkarbgáb;enARtg;)at enaHeKminGacGnuvtþ simple membrane theory rbs; shell EdlbNþal
BIkMhUcRTg;RTayedaysar restraining force enARtg;)atCBa¢aMg. eKcaM)ac;eFVIkarbMElgm:Um:g;Bt;eTACa
membrane stress ehIylMgakecj (deviation) rbs; ring tension enARtg;bøg;kNþalrbs;kMBs;CBa¢aMg

RtUv)anKitCatMélRbhak;RbEhl nigRtUv)anerobrab;enAkñúgEpñk 11.3.
        RbsinebIm:Um:g;Bt;bBaÄrenAkñúgbøg;edkrbs;CBa¢aMgenARtg;kMBs;NamYyKW M y / kugRtaMgbegáag
(flexural stress) ebtugrgkarsgát; b¤rgkarTajkøayCa
                            M y 6M y
                 ft = f c =     = 2 kñúgmYyÉktþakMBs;                                 (11.4)
                             S       t
karBRgaykugRtaMgbegáagelIkMras;rbs;CBa¢aMgGagRtUv)anbgðajenAkñúgrUbTI 11>2.




Prestressed Concrete Circular Storage Tanks and Shell Roofs                               670
Department of Civil Engineering                                                               NPIC




11.2.2.     m:Um:g;Tb; M nigkMlaMgkat; Radial Q enARtg;)atCBa¢aMgEdlrGiledayesrIEdl
                            o                     o

            ekItBIsMBaFsarFaturav
       Restraining Moment M o and Radial Shear Force Qo at Freely Sliding
       Wall Base Due to Liquid Pressure
11.2.2.1. Membrane Theory
         karsikSaBIkMlaMg nigkugRtaMgenAkñúgCBa¢aMgGagragmUlKμansñameRbHCakarviPaKkMralragekag
sIuLaMgEdleFVIkarCalkçN³eGLasÞic. RbsiinebI shell minxUcRTg;RTayeRkamT§iBlrbs;sMBaFsar-
Faturavxagkñúg eKGacGnuvtþsmIkarlMnwg basic membrane )an. kMlaMgtambeNþayÉktþa N y / kMlaMg
ÉktþavNÐ (circumferential unit force) Nθ nigkMlaMgkat;ÉktþaRtg;p©it N yθ nig Nθ y RtUv)anbgðaj
enAkñúg differential element énrUbTI 11>3 (b). cMNaMfa GBaØtiTaMgbYnenHeFVIGMeBIenAkñúgbøg;rbs; shell.




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                   671
T.Chhay                                                                      viTüasßanCatiBhubec©keTskm<úCa

          smIkarlMnwgmUldæanbIsMrab;kMlaMgÉktþaGBaØtiTaMgbYnenHKW
                     ∂Nθ       ∂N yθ
                            +r       + pθ r = 0                                            (11.5a)
                      ∂θ        ∂y
                       ∂N y     ∂Nθ y
                     r       +r       + pyr = 0                                            (11.5b)
                         ∂y      ∂θ
                     Nθ
                          + pz = 0                                                         (11.5c)
                       r
Edl ∂N yθ = ∂Nθ y KWbNþalmkBIkardak;sIuemRTI. dUcenHcMnYnGBaØtiRtUv)ankat;bnßymkenARtwmbIEdl
bgðajBIeRKOgbgÁúMkMNt;edaysþaTicEdlrgEtnwgkMlaMgedaypÞal;. sMrab;kardak;bnÞúk axisymmetic dUc
bgðajenAkñúgrUbTI 11>3 (d)/ pθ = p y = 0 ehIy p z = p ⋅ f ( y ) . kardak;bnÞúkEbbenHminGaRs½ynwg
θ eT. dUcenH
                     p z = −γ (H − γ )                                                     (11.6)
ehIydMeNaHRsayrbs;smirk 11.5 KW
                     N yθ = N y = 0

ehIy                 Nθ = γ (H − y )r                                                      (11.7)



11.2.2.2.      RTwsþIbTBt;begáag                    Bending Theory
         karENnaMBIkarTb; (restraint) enARtg;RBMEdnrbs;GagnaMeGayman radial horizontal shear
nigm:Um:g;bBaÄrenAkñúg shell. dUcenH smIkarkMlaMg membrane EdlbgðajenAkñúgEpñkelIkmunRtUv)an
EkERbedaykardak;bEnßmm:Um:g; nigkMlaMgkat;. smIkarEdlEkERbRtUvkMNt;Ca bending theory rbs;
circular shell EdlRTwsþIenHKitTaMgtMrUvkarPaBRtUvKñaénbMErbMrYlrageFob (strain compatibility) enA

kñúgkMhUcRTg;RTayEdlbgáeLIgedaykarekItmankMlaMgkat; nigm:Um:g;xagelI.
         m:Um:g;Bt; nig central shear enAkñúgkMralragekagsIuLaMgEdlrgbnÞúk axisymmetric RtUv)an
bgðajedayviucT½rkMlaMg nigviucT½rm:Um:g;enAkúñgrUbTI 11>4. FatuGnnþtUc ABCD bgðajBIcMnucGnuvtþn_
nigTisedArbs;m:Um:g;Éktþa M y eFobnwgG½kS x nig M θ eFobG½kS y / circumferential unit moment
M yθ nig M θ y / kMlaMgkat;EkgÉktþa Q y EdlmanGMeBIenAkñúgbøg;énkMragekagbBaÄr nigEkgeTAnwg

shell axis ehIy unit radial shear Qθ EdlmanGMeBIkat;tamkaM shell enAkñúgbøg;EdlRsbnwg shell.

         eFVItMrYlplénm:Um:g; nigkMlaMgkat;enAkñúgrUbTI 11>4 eTAelIkMlaMgenAkñúgrUbTI 11>3 (b) begáIt
)ansmIkarlMnwgxageRkam³


Prestressed Concrete Circular Storage Tanks and Shell Roofs                                    672
Department of Civil Engineering                                                        NPIC




                     ∂Nθ ∂N yθ
                          +         − Qθ + pθ r = 0                          (11.8a)
                      ∂θ      ∂y
                     ∂N y    ∂Nθ y
                          r+          + pyr = 0                              (11.8b)
                      ∂y       ∂θ
                     ∂Qθ ∂Q y
                          +       r + Nθ + p z r = 0                         (11.8c)
                      ∂θ     ∂y
                     ∂M y     ∂M yθ
                          r+           + Qy r = 0                            (11.8d)
                      ∂y        ∂y
                     ∂M θ ∂M yθ
                          +          r − Qθ r = 0                            (11.8e)
                      ∂θ       ∂y




      edaysarPaBsIuemRTIénkardak;bnÞúk/ N yθ = Nθ y = M θ y = M yθ = 0 ehIyeKGacminKit
dQθ Edlkat;bnßysmIkarDIepr:g;EsüledayEpñk 11.8 mkCasMnMuénsmIkarDIepr:g;EsülFmμta
(ordinary differential equation)
                dN y
                     r + pyr = 0                                             (11.9a)
                 dy
                dQ y
                     r + Nθ + p z r = 0                                      (11.9b)
                 dy
                  dM y
                −       r + Qy r = 0                                         (11.9c)
                   dy
CamYynwg central membrane forces N y efr ehIyeKykvaesμInwgsUnü enaHeKGacsresrsmIkar
EdlenAsl; 11.9b nig 11.9c kñúgTMrg;sMrYldUcxageRkamEdlmanGBaØtibI Nθ / Qy nig M y ³

GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                         673
T.Chhay                                                                       viTüasßanCatiBhubec©keTskm<úCa
                     dQ y       1
                            +     Nθ = − p z                                                (11.10a)
                      dy        r
                     dM y
                             − Qy = 0                                                       (11.10b)
                       dy
edIm,IedaHRsaysmIkarTaMgenH eKRtUvKitBIbMlas;TI nigsmIkarFrNImaRt.

smIkarkMlaMg
      RbsiebI v nig w CabMlas;TIenAkñúgTis y nig z enaHbMErbMrYlragÉktþaenAkñúgTisTaMgenHKW
                          dv
                     εy =
                          dy
ehIy                 εθ = −
                            w
                            r
ehIyeKTTYl)an
                     Ny =
                                Et
                                         (ε y + μεθ ) =       Et⎛ dv  w⎞
                                                                ⎜ −μ ⎟=0
                                                                ⎜ dy  r⎟
                                                                                            (11.11a)
                             1− μ    2
                                                          1− μ ⎝   2
                                                                        ⎠

nig                  Nθ =
                                Et
                                         (εθ + με y )   =
                                                           Et ⎛ w      dv ⎞
                                                                ⎜− + μ ⎟
                                                                ⎜ r    dy ⎟
                                                                                            (11.11b)
                             1− μ2                        1− μ2 ⎝         ⎠
Edl         pleFobB½rsug
           μ=
       t = kMras;rbs;CBa¢aMg

BIsmIkar 11.11a
                     dv    w
                        =μ                                                                  (11.12a)
                     dy    r
BIsmIkar 11.11b
                                     w
                     Nθ = − Et                                                              (11.12b)
                                     r
smIkarm:Um:g;
         edaysarPaBsIuemRTI kMeNagenAkñúgTisvNÐminmanERbRbYleT dUcenH kMeNagenAkñúgTis y RtUv
esμInwg − d 2v / dy 2 . edayeRbIsmIkarm:Um:g;dUcKñasMrab;kMraleGLasÞicesþIg (thin elastic plate) eKTTYl
)an
                     M θ = μM y                                                             (11.13a)
                                     d 2w
                     M y = −D                                                               (11.13b)
                                     dy 2
Edl D = Et 3 / 12(1 − μ 2 ) CaPaBrwgRkajTb;karBt;begáagrbs;kMralekag (shell) b¤kMral (plate)

Prestressed Concrete Circular Storage Tanks and Shell Roofs                                     674
Department of Civil Engineering                                                                          NPIC




          bBa©ÚlsmIkar 11.12 nig 11.13 eTAkñúgsmIkar 11.10 eKTTYl)an
                     d 2 ⎛ d 2 w ⎞ Et
                          ⎜D     ⎟ + w = pz                                                      (11.14)
                     dx 2 ⎜ dy 2 ⎟ r 2
                          ⎝      ⎠
RbsinebIkMras;CBa¢aMg t efr enaHsmIkar 11.14 køayCa
                         d 4w            Et
                     D             +          w = pz                                             (11.15)
                         dy 2            r2

edayyk               β =4          Et
                                              =
                                                  (
                                                  31− μ2    )
                                    2
                                 4r D              (rt )2


smIkar 11.15 køayCa
                     d 4w                          pz
                            4
                                + 4β 4 w =                                                       (11.16)
                      dy                           D

smIkar 11.16 RsedognwgsmIkarEdlTTYlsMrab;Ggát;FñwmEdlmanPaBrwgRkaj D EdlRTedayRKwHeG
LasÞicCab; nigRbQmnwgGMeBIénGaMgtg;sIuetbnÞúkÉktþa p z . dMeNaHRsayTUeTAénsmIkarenHsMrab;
radial displacement kñúgTis z KW
                   w = e βy (C1 cos β y + C2 sin βy ) + e − βy (C3 cos βy + C 4 sin βy ) + f ( y ) (11.17)
Edl     f (y)   CadMeNaHRsayTUeTAénsmIkar 11.16 Ca membrane solution EdleGaynUvbM;las;TI
                                pz r 2
                     w=
                                 Et


11.2.3.     smIkarTUeTAénkMlaMg nigbM;las;TI
            General Equations of Forces and Displacements
          edayedaHRsaysmIkar 11.17 nigbBa©ÚlnUvnimitþsBaØaxageRkam
                     Φ (βy ) = e − βy (cos β y + sin βy )

                     Ψ (β y ) = e − βy (cos βy − sin β y )

                     θ (βy ) = e − βy cos β y
                     ζ (βy ) = e − βy sin βy
eKGackMNt;smIkarsMrab; radial deformation tamTis z nigkargakecjbnþrbs;vaRtg;kMBs; y BI)at
CBa¢aMgBIsmIkarsMrYlxageRkamCaGnuKmn_énm:Um:g;ÉktþaRtg;)atCBa¢aMg M o nig radial shear Qo ³
               PaBdab w = − 2β13 D [βM o Ψ(βy ) + Qoθ (βy )]                         (11.18a)

                     mMurgVil dw = 2β12 D [2βM oθ (βy ) + QoΦ(βy )]
                              dy
                                                                                                 (11.18b)



GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                              675
T.Chhay                                                                    viTüasßanCatiBhubec©keTskm<úCa

                     d 2w
                               =−
                                     1
                                        [2βM o Φ(βy ) + 2Qoζ (βy )]                      (11.18c)
                      dy   2        2βD
                     d 3w
                               =
                                   1
                                     [2βM oζ (βy ) − Qo Ψ (βy )]                         (11.18d)
                      dy 3         D

GnuKmn_ shell Φ(βy ) / Ψ(βy ) / θ (βy ) nig ζ (βy ) RtUv)aneGayenAkñúgemKuNT§iBlsþg;dar
(standard influence coefficient) éntarag 11>1 sMrab;EdntMél 0 ≤ βy ≤ 3.9 .

       BIsmIkar 11.18a bMlas;TI radial Gtibrma b¤PaBdabenARtg;)atCBa¢aMgEdlTb;KW
                     (w) y = 0 = −         1
                                                 (βM o + Qo )                            (11.19a)
                                        2β 3 D
ehIyBIsmIkar 11.18b mMurgVil (rotation) Gtibrmarbs;CBa¢aMgRtg;)atkøayCa
                     ⎛ dw ⎞
                     ⎜
                     ⎜ dy ⎟
                          ⎟      =
                                    1
                                       (2βM o + Qo )                                     (11.19b)
                          ⎠ y = 0 2β D
                                     2
                     ⎝
Edl M o nig Qo Ca restraining moment nig ring shear enARtg;)atdUcbgðajenAkñúgrUbTI 11>1.
      sMrab;GagEdlmankMras;CBa¢aMgefr kMlaMgÉktþatamkMBs;CBa¢aMgmandUcxageRkam³
                            Etw
                     Nθ = −                                                              (11.20a)
                             r
                             d 3w
                     Qy = −D 3                                                           (11.20b)
                              dy
                     M θ = μM y                                                          (11.20c)
                                        d 2w
                     M y = −D                                                            (11.20d)
                                        dy 2
BIsmIkar 11.18c, 11.18d, 11.20b nig11.20d smIkarsMrab;m:Um:g;bBaÄr nig radial shear tamTisedk
enARtg;)atrbs;CBa¢aMg Edl y = 0 køayCa
                                                                γHrt
                     (M y )y = 0 = M o = ⎛1 − β1 ⎞
                                         ⎜       ⎟
                                                                (      )
                                         ⎜                                               (11.21a)
                                               H⎟⎝  ⎠ 12 1 − μ 2
                                                          γrt
                     (Q y )y = 0    = Qo = −(2 βH − 1)
                                              ( )
                                                                                         (11.21b)
                                                       12 1 − μ 2
eKGacTTYl)ansmIkarsMrab;m:Um:g;bBaÄrenARtg;kMBs; y BIelI)atCBa¢aMgBI
                     My = −
                                    1
                                        [βM o Φ(βy ) + Qoζ (βy )]                        (11.22)
                                   β
bMErbMrYlkMlaMg ring shear force ΔQ y EdlRtUvniwgbMlas;TI radial wy rbs;CBa¢aMgRtg;kMBs; y BIelI
)atenAeBlGagTeT CamYynwgtMélrbs; Qo nig M o EdlbNþalBIkardak;bBa©ÚlsarFaturav nig]sμ½n
eBj dUcbgðajenAkñúgrUbTI 11>5. eKGacsresrsmIkarkMlaMgenHCa

Prestressed Concrete Circular Storage Tanks and Shell Roofs                                  676
Department of Civil Engineering               NPIC




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg   677
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa

                               ΔQ y = +
                                             Et
                                             r
                                                 ( )
                                                wy

b¤                   ΔQ y =
                                     Et
                               2rβ 3 D
                                           [βM o Ψ (βy ) + Qoθ (βy )]

b¤                   ΔQ y =
                                 (
                               61− μ2      ) [βM Ψ(βy) + Q θ (βy )]
                                                  o           o                       (11.23)
                                 β 3rt 2
Ring shear Q yenARtg;bøg; y BIelI)atesμInwgplsgrvag ring force sMrab;)atEdlrGiledayesrI
CamYynwg ΔQ y ³
                     Q y = F − ΔQ y                                                   (11.24)




Prestressed Concrete Circular Storage Tanks and Shell Roofs                               678
Department of Civil Engineering                                                               NPIC




eKcaM)ac;eKarBtamkarkMNt;sBaØaEdleRbIkñúgdMeNaHRdayTaMgenH. viFIEdlgayRsYlKWKUrragEdlxUc
RTg;RTayrbs;CBa¢aMg ehIyeRbIsBaØabUksMrab;lkçxNÐxageRkam³
        !> m:Um:g;EdleFVIeGaymankugRtaMgTajenAelIsrésxageRkAbMputénépÞxageRkA.
        @> kMlaMg Ring tension radial.
        #> kMlaMg thrust EdlmanTisedAcUlkñúgeTArkG½kSbBaÄr. enATIenH eKeRbITisedAdUcKñasMrab;
           kMlaMg ring tension edIm,IKUrdüaRkamsMrab;kMlaMgeRbkugRtaMglMnwg (balancing prestressing
           forces) enAelIRCugdUcKñanwgkMlaMg ring tension sMrab;kareRbobeFob.

        $> clnaCBa¢aMgxagcUlkñúgeTArkG½kSbBaÄr.
        %> muMrgVilbRBa©asTisRTnicnaLika.

sMBaFsarFaturavmanGMeBIelICBa¢aMgEdlman)atCaTMr Pinned (Pinned Wall Base, Liquid Pressure)
      enAeBl)atCBa¢aMgmanTMr pinned ehIyrgnUvm:Um:g;bnÞúksarFaturav M o = 0 enARtg;)at
                                  2β 3γH (rt )2
                     Qo = +
                                      (
                                   12 1 − μ 2        )
                                                               1/ 2
                                          γH              ⎛ rt ⎞
b¤                   Qo = +                          1/ 4 ⎜ 2 ⎟
                                  [12(1 − μ )]
                                                                                     (11.25)
                                                2         ⎝ ⎠

eKGacKNnarktMélrbs; shell constant β , β 2 , nig β 4 sMrab;eRbIenAkñúgsmIkarelIkmun)any:aggay
BIsmIkarsMrab; β 4 dUcxageRkam³
                         Et    3( − μ 2 )
                                1
                β4 =         =                                                     (11.26a)
                               4r 2 D               (rt )2
                     β   3
                             =
                               [3(1 − μ )]2 3/ 4
                                                                                     (11.26b)
                                   (rt )3 / 2
                     β   2
                             =
                               [3(1 − μ )]2 1/ 2
                                                                                     (11.26c)
                                      (rt )
                     β=
                        [3(1 − μ )]     2 1/ 4
                                                                                     (11.26d)
                                  (rt )1/ 2

11.2.4. Ring Shear Qo and Moment β 4 Gas Containment
           RbsinebIEKmrbs; shell manlkçN³esrIenARtg;)atCBa¢aMg sMBaFxagkñúgbegáItEtkugRtaMg
hoop     f R = pr / t ehIykaMrbs;sIuLaMgnwgekIneLIgedayTMhM



GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                  679
T.Chhay                                                                               viTüasßanCatiBhubec©keTskm<úCa

                        rf R   pr 2
                     w=      =                                                                      (11.27)
                         E     Et
dUcKña sMrab; full restraint enARtg;)atCBa¢aMg
                     (w) y =0 =       1
                                              (βM o + Qo )                                          (11.28a)
                                  2β 3 D
                     ⎛ dw ⎞
nig                  ⎜
                     ⎜ dy ⎟
                          ⎟     =
                                    1
                                       (2βM o + Qo ) = 0                                            (11.28b)
                          ⎠ y =0 2 β D
                                     2
                     ⎝

edaHRsayrk M o nig Qo eyIgTTYl)an
                                                   p                    prt
                     M o = − β 2 Dw = −                    =−
                                                                       (          )
                                                                                                    (11.29a)
                                                 2β    2
                                                                   12 1 − μ 2
                                                                  p (2rt )1 / 2
nig                  Qo = +4 β 3 Dw = +
                                                  p
                                                      =+
                                                             [12(1 − μ )]
                                                                                                    (11.29b)
                                                  β                        2 1/ 4




sMBaFsarFatu]sμ½nmanGMeBIelICBa¢aMgEdlman)atCaTMr Pinned (Pinned Wall Base, Gas Pressure)
      RbsinebI)atCBa¢aMgCaTMr pinned ehIyrgm:Um:g;bnÞúk]sμ½n M o = 0 enARtg;)at
                                ⎛ pr 2 ⎞
                     Qo = 2β 3 D⎜      ⎟
                                ⎜ Et ⎟
                                ⎝      ⎠
                                                           1/ 2
                                                  ⎛ rt ⎞
b¤                   Qo =
                                     p
                                                  ⎜ ⎟
                             [12(1 − μ )]
                                                                                                    (11.30)
                                          2       ⎝ ⎠
                                              1/ 4 2


tarag 11>2 bgðajkarsegçbénsmIkarKNnasMrab;GagsþúksarFaturav ehIytarag 11>3 bgðajBI
taragsegçbRsedogKñasMrab;GagpÞúksarFatu]sμ½n.

11.3.     m:Um:g; M nig kMlaMg Ring Shear Q enAkñúgGagsþúksarFaturav
                     o                                            o
          Moment M o and Ring Force Qo in Liquid Retaining Tank
]TahrN_ 11>1³ GagragmUlebtugeRbkugRtaMgRtUv)anTb;eBlelj (full restrained) enARtg;)at
CBa¢aMg. vamanGgát;p©itxagkñúg d = 125 ft (38.1m) nigpÞúkTwkEdlmankMBs; H = 25 ft (7.62m) .
kMras;CBa¢aMg t = 10in(25cm) . KNna (a) m:Um:g;bBaÄrÉktþa M o nigkMlaMg radial ring force Qo
enARtg;)atrbs;CBa¢aMg nig (b) m:Um:g;bBaÄrÉktþa M y enARtg;kMBs; 7.5 ft (2.29m) BIelI)at. eRbIpl
eFobB½rsug μ = 0.2 ehIyTMgn;maDrbs;Twk γ = 62.4lb / ft 3 (1,000kg / m3 ) .



Prestressed Concrete Circular Storage Tanks and Shell Roofs                                             680
Department of Civil Engineering               NPIC




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg   681
T.Chhay                                                                             viTüasßanCatiBhubec©keTskm<úCa

dMeNaHRsay³
(a)    enARtg;)atCBa¢aMg
                     r = × 125 = 62.5 ft (19m )
                        1
                        2
                     t = 10in. = 0.83 ft (0.25m )
BIsmIkar 11.26d
                     β=
                        [3(1 − μ )]  2 1/ 4
                                              =
                                                  [3(1 − 0.2 × 0.2)]1 / 4 = 0.181
                               (rt )1 / 2           (62.5 × 0.83)1 / 2
BIsmIkar 11.21a
                            ⎛    1 ⎞ γHrt
                            ⎜ βH ⎟
                     M o = −⎜1 −
                            ⎝
                                   ⎟
                                   ⎠ 12 1 − μ 2     (         )
                              ⎛     1     ⎞ 62.4 × 25 × 62.5 × 0.83
                           = −⎜1 −        ⎟×
                              ⎝ 0.181× 25 ⎠       12(1 − 0.04)

                           = −18,574 ft. − lb / ft (7.68kN .m / m )
BIsmIkar 11.21b
                                                   γrt
                     Qo = +(2 β H − 1)
                                        12 1 − μ 2 (          )
                                                 62.4 × 62.5 × 0.83
                          = +(2 × 0.181× 25 − 1)
                                                    12(1 − 0.04 )

                          = +7,677lb / ft (112kN / m )

(b)       enARtg;kMBs; 7.5 ft BI)atCBa¢aMg
                     y = 7.5 ft
                    kMBs;Twk = (H − y ) = 25 − 7.5 = 17.5 ft (5.33m)
                    pleFobkMBs; = ⎛1 − H ⎞ = 1 − 7.5 = 0.7
                                     ⎜
                                     ⎝
                                           y
                                              ⎟
                                              ⎠       25

                     βy = 0.181 × 7.5 = 1.36
BIsmIkar 11.22
                     My = +
                                 1
                                     [βM o Φ(βy ) + Qoζ (βy )]
                                 β
BItarag 11.1 sMrab; β y = 1.36
                     Φ = 0.311
                     ζ = 0.252


Prestressed Concrete Circular Storage Tanks and Shell Roofs                                           682
Department of Civil Engineering                                                                          NPIC




                     My = +
                                    1
                                        (− 0.181 × 18,574 × 0.311 + 7,677 × 0.252)
                                  0.181
                           = +4,912 ft − lb / ftt



11.4.    kMlaMg Ring Shear Q enARtg;Bak;kNþalkMBs;rbs;CBa¢aMg
                                          y
         Ring Force Q y at Intermediate Heights of Wall
]TahrN_ 11>2³ KNna radial ring force Q enAkñúg]TahrN_ 11>1 Rtg; (a) y = 7.5 ft (2.29m)
                                                          y

nig (b) y = 10 ft (3.05m) BIxagelI)atrbs;CBa¢aMg sMrab;CBa¢aMgrGiledayesrI.
dMeNaHRsay³
       kMlaMg ring force enARtg;)atEdlrGilesrI F = γHr = 62.4 × 25 × 62.5 = 97,500lb / ft
(1,423kN / m ) . BIsmIkar 11.23/ bMErbMrYlkMlaMg ring force KW
                                  6(1 − μ )
                     ΔQ y = +                 [βM o Ψ (βy ) + Qoθ (βy )]
                                   β 3 rt 2
BIsmIkar 11.1/ β = 0.181 . dUcenH β 3 = 0.0059
(a) Q y enARtg; 7.5 ft BIelI)atCBa¢aMg

                     βy = 0.181× 7.5 = 1.36
BItarag 11.1 sMrab; βy = 1.36
                     Ψ (βy ) = −0.1965

                     θ (βy ) = +0.0543

                                         6(1 − 0.04 )
                     ΔQ y = +                                 [0.181(− 18,574)(− 0.1965) + 7,677(+ 0.0543)]
                                  0.0059 × 62.5(0.83)2

                             = 24,431lb / ft (356kN / m )
BIsmIkar 11.2b/ ring force F = γ (H − y )r = 62.4 × (25 × 7.5) × 62.5 = 68,250lb / ft . dUcenH
Q7.5 = F − ΔQ y = 68,250 − 24,431 = 43,819lb / ft (705kN / m ) dUcbgðajenAkñúgrUbTI 11>6(a).

(a) enARtg;kMBs; 7.5 ft BI)at (b) enARtg;kMBs; 10 ft BI)at.

(b) Q y enARtg;kMBs; 10 ft BI)atrbs;CBa¢aMg


                     βy = 0.181 × 10 = 1.81

BItarag 11>1 sMrab; βy = 1.81 /

GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                              683
T.Chhay                                                                                   viTüasßanCatiBhubec©keTskm<úCa

                     Ψ (β y ) = −0.1984

                     θ (β y ) = −0.0387

                                      6(1 − 0.04 )
                     ΔQ y =                                   [0.181(− 18,574)(− 0.1984) + 7,677(− 0.0387 )]
                               0.0059 × 62.5(0.83)2

                            = 8,387lb / ft
kMlaMg ring force F = γ (H − y )r = 62.4(25 − 10) = 62.5 = 58,500lb / ft . dUcenH Q10 = F − ΔQ y
= 58,500 − 8,387 = 50,113lb / ft (731kN / m ) dUcbgðajenAkñúgrUbTI 11>6 (b). eRbobeFobCamYynwg

tMél Q y = 50,115lb / ft EdlTTYl)anedayeRbI membrane coefficient enAkñúg]TahrN_ 11>3.




11.5. Cylindrical Shell Membrane Coefficients
        eKGackMNt;m:Um:g;Bt;enARtg;kMBs;Nak¾edayBI)atrbs;GagragsIuLaMgBIsmIkarm:Um:g;Bt;sMrab;
Fñwmkugs‘ul (cantilever beam). eKTTYl)ansmIkarenHedayKuNm:Um:g; cantilever edayemKuNEdl
TMhMrbs;vaCaGnuKmn_eTAnwgTMhMFrNImaRtrbs;Gag ehIyRtUv)aneGayeQμaHfa membrane coeffi-
cients. eKGacerobcMsmIkarm:Um:g;mUldæanEdl)anbegáItenAkñúgEpñk 11.2 sMrab;GagsþúkragmUleLIg

vijedaybBa©ÚlemKuN H 2 / dt EdltMNageGayragFrNImaRt nigemKuN γH 3 b¤ pH 2 EdltMNag
eGayT§iBl cantilever sMrab;kardak;bnÞúksarFaturav nigsarFatu]sμ½n.
Prestressed Concrete Circular Storage Tanks and Shell Roofs                                                 684
Department of Civil Engineering                                                               NPIC




     tMélefr β enAkñúgsmIkar 11.26d CaGnuKmn_én rt b¤ dt Edl d CaGgát;p©itGag. edayeRbI
pleFobB½rs‘ug μ ≅ 0.2 sMrab;ebtug eyIg)an
                     β=
                        [3(1 − μ )]       2 1/ 4
                                                   =
                                                        1.30
                                                                   =
                                                                        1.84
                                  (rt )
                                      1/ 2
                                                       (rt )
                                                           1/ 2
                                                                       (dt )1 / 2
eKGacsresremKuN 1 / βH EdleRbIenAkñúgsmIkarm:Um:g;Bt;begáagmUldæanénEpñk 11.2 edayeRbItY
(dt / H 2 )1 / 2 edaysar β = 1.84 /(dt )1 / 2 . eKk¾GacsresrplKuN βy eLIgvijedayeRbItY
λ (H 2 / dt ) edayeRbI y = λH Edl y CakMBs;BI)at.
              1/ 2


         dUcenH eKGacbgðajm:Um:g; M y énsmIkar 11.22 enAkñúgmuxkat;CBa¢aMgEdlmancMgay y BI)at
edayeRbIemKuNrag (form factor) H 2 / dt CamYynwgemKuN cantilever γH 3 b¤ pH 2 dUcxageRkam³
                     M y = numerical variant × form factor × cantilever facotor


b¤                         ⎡
                     M y = ⎢ variant ×
                                       H2⎤
                                          ⎥ × γH or pH
                                                3      2
                                                               (                    )   (11.31)
                           ⎢
                           ⎣           dt ⎥
                                          ⎦

emKuNrag (form factor) H 2 / dt CatMélefrsMrab;eRKOgbgÁúMCak;lak;. dUcenH plKuNén variant nig
form factor begáIt)an membrane coefficient C dUcenH smIkar 11.31 køayCa

                     M y = CγH 3                                                        (11.32a)

sMrab;bnÞúksarFaturav ehIy
                     M y = CpH 2                                                        (11.32b)

sMrab;bnÞúksarFatu]sμ½n.
        tarag 11>4 dl; 11>16 bgðajBI membrane coefficient C sMrab; form factor H 2 / dt Ca
mYynwglkçxNÐRBMEdnEdlniymeRbICageK niglkçxNÐbnÞúkepSg². vakat;bnßykarKNnaCaeRcInEdl
TamTarCaTUeTAenAkñúgkarKNna nigkarviPaK shell edayminman)at;bg;suRkitPaBénlT§pleT. eday
eRbI membrane coefficient sMrab;dMeNaHRsayénkMlaMg nigm:Um:g;GagragmUl vanwgpþl;lT§plRsedog
 KñanwglT§plEdlTTYl)anBIdMeNaHRsaym:Um:g;Bt;EdlbgðajenAkñúgEpñk 11>2 nigsMnMuénsmIkarEdl
manenAkñúgtarag 11>2 nig 11>3 .


GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                   685
T.Chhay                                                       viTüasßanCatiBhubec©keTskm<úCa




Prestressed Concrete Circular Storage Tanks and Shell Roofs                     686
Department of Civil Engineering               NPIC




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg   687
T.Chhay                                                       viTüasßanCatiBhubec©keTskm<úCa




Prestressed Concrete Circular Storage Tanks and Shell Roofs                     688
Department of Civil Engineering               NPIC




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg   689
T.Chhay                                                       viTüasßanCatiBhubec©keTskm<úCa




Prestressed Concrete Circular Storage Tanks and Shell Roofs                     690
Department of Civil Engineering               NPIC




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg   691
T.Chhay                                                       viTüasßanCatiBhubec©keTskm<úCa




Prestressed Concrete Circular Storage Tanks and Shell Roofs                     692
Department of Civil Engineering               NPIC




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg   693
T.Chhay                                                                        viTüasßanCatiBhubec©keTskm<úCa

11.6. Prestressing Effects on Wall Stresses for Fully Hinged, Partially
      Sliding and Hinged, Fully Fixed, and Partially Fixed Bases
        sarFaturav b¤]sμ½nEdlsþúkenAkñúgGagragsIuLaMgGnuvtþsMBaF radial ecjeRkA γh b¤ p enAelI
CBa¢aMgGag EdlbegáIt ring tension enAkñúgmuxkat;edknImYy²Rtg;srésxageRkAbMputrbs;CBa¢aMgEdl
begáItCasñameRbHEdlminGacGnuBaØat)an. edIm,Ikat;bnßysñameRbHTaMgenHEdlbNþaleGayRCab nig
eFVIeGayeRKOgbgÁúMeFVIkarminl¥ eKRtUvGnuvtþkMlaMgeRbkugRtaMgedkxageRkAEdlbegáIt radial thrust cUl
kñúgEdlGaceFVIeGay radial tension ecjeRkAmanlMnwg. elIsBIenH edIm,IkarBarkarekItmansñameRbH
enAelIépÞxagkñúgrbs;CBa¢aMgenAeBlGagTwkTeT eKRtUvbBa©ÚlkMlaMgeRbkugRtaMgbBaÄredIm,Ikat;bnßykug
RtaMgTajEdlenAsl; (residual tension) eGayenAkñúgEdnénm:UDuldac;rbs;ebtug nigedIm,IbMeBjlkç-
xNÐemKuNsuvtßiPaB.
        edIm,IFanakarRbqaMgnwgkarekItmansñameRbHenAépÞxageRkArbs;CBa¢aMgGag eKKYrGnuvtþkMlaMg
eRbkugRtaMgedkFMCagkMlaMgEdlvaRtUvkarbnþicedIm,IeFVIeGaykMlaMg radial ecjeRkAEdlbgáedaysar-
Faturav b¤]sμ½nxagkñúgmanlMnwg GBa©WgehIyvabegáIteGaymankugRtaMgsgát;EdlenAesssl; (residual
compression) enAkñúgGagenAeBlvaeBj. karekIneLIgénkMlaMgeRbkugRtaMgvNÐ (circumferential

prestressing forces) tamry³kareRbIEdkeRbkugRtaMgedkbEnßm nigeBlxøHmanEdkbBaÄrFmμtak¾RbqaMg

nwgT§iBlrbs;sItuNðPaB nigbMErbMrYlsMeNIm (moisture gradient) Edlqøgkat;kMras;CBa¢aMgkñúgbrisßan
minl¥pgEdr.

11.6.1.     )atCBa¢aMgrGiledayesrI                  Freely Sliding Wall Base
       enAeBllkçxNÐRBMEdnén)atrbs;CBa¢aMgGacrGiledayesrI enaHeBlGagrgbnÞúkxagkñúg vanwg
minmanm:Um:g;enAkñúgCBa¢aMgbBaÄrEdlbNþalBIbnÞúksarFaturav b¤k¾bNþalBIkMlaMgeRbkugRtaMg eTaHbIenA
eBlGageBjdl;kMBs; H k¾eday. manEt nominal moment d¾tUcb:ueNÑaHekItmanenAeBlGagmineBj
b¤rgeRbkugRtaMgedayEpñk b¤k¾TeT ehIyvaminRtUvkarkMlaMgeRbkugRtaMgbBaÄreT. rUbragxUcRTg;RTay
rbs;GagEdlrGiledayesrIRtUv)anbgðajenAkñúgrUbTI 11>7.
       enAeBlEdlkarrGiledayesrICalkçxNÐd¾l¥Edlpþl;nUveRKOgbgÁúMkMNt;edaysþaTic ehIyman
lkçN³esdækic©CaeK b:uEnþeKBi)aknwgTTYl)ankñúgkarGnuvtþCak;Esþg. kMlaMgkkit (frictional force)
EdlekItmanenARtg;)atCBa¢aMgeRkayeBlEdleKdak;eGayGagdMeNIrkareRbIR)as; dUcenHCMerIsenHmin
GaceRbIkar)aneT.

Prestressed Concrete Circular Storage Tanks and Shell Roofs                                      694
Department of Civil Engineering                                                              NPIC




11.6.2.     )atCBa¢aMgCaTMrsnøak;            Hinged Wall Base
         sMrab;CBa¢aMgEdlmantMNsnøak;enA)at kMlaMg radial force GtibrmaEdlbNþalBIsarFaturav
EdlvapÞúk ehIyeRbkugRtaMgenARtg;muxkat;eRKaHfñak;Rtg;cMgay y BIelI)atswgEtesμInwgeRbkugRtaMgkñúg
krNI)atrGiledayesrIRtg;kMBs; y Edr. b:uEnþeKRtUvbBa©Úlm:Um:g;bBaÄr ehIykMlaMgeRbkugRtaMgbBaÄr
køayCacMa)ac;edIm,Ikat;bnßykugRtaMgTajenAkñúgebtugenARtg;épÞCBa¢aMgxageRkA.
         rUbragxUcRTg;RTayrbs;CBa¢aMgEdlmanTMr hinged RtUv)anbgðajenAkñúgrUbTI 11>8. cMNaMfa
muxkat;eRKaHfñak;sMrab; ring force mincaM)ac;enARtg;kMBs;dUcKñanwgmuxkat;eRKaHfñak;sMrab;m:Um:g;eT.
         edIm,Ikat;bnßysñameRbHEdlGacekItmanrhUtdl;cMnYnGb,brma/ eKcaM)ac;RtUvkar residual
ring compression EdlmantMélGtibrma 200 psi(1.38MPa ) sMrab; wire-wrapped presstressed

tank Edlminman diaphragm nigmantMélGtibrma 100 psi (0.7 MPa ) sMrab;GagEdlman continuous

metal diaphragm. kugRtaMgTajGtibrmaenAépÞxagkñúgrbs;CBa¢aMgminRtUvFMCag 3 f 'c eRkamGMeBIbnÞúk

eFVIkar (working load) dUcEdleGayenAkñúgtarag 11>17 enAkñúgEpñkxagmux. rUbragxUcRTg;RTay
rbs;GacCBa¢aMg nigbMErbMrYlkugRtaMgenAkñúgebtugEdlkat;tamkMras;rbs;muxkat;enAeBlGagTeT nigenA
eBlvaeBj dUcbgðajenAkñúgrUbTI 11>8. sMrab;GagEdlrgeRbkugRtaMgCamYynwg pretensioned tendon
nig post-tensioned tendons kugRtaMgsgát;EdlenAesssl;Gb,brmaKYrmantMéldUcGVIEdlerobrab;enA
kñúgEpñk 11.10.

GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                 695
T.Chhay                                                       viTüasßanCatiBhubec©keTskm<úCa




Prestressed Concrete Circular Storage Tanks and Shell Roofs                     696
Department of Civil Engineering                                                             NPIC




11.6.3.     )atCBa¢aMgrGiledayEpñk nigmanTMrsnøak;
             Partially Sliding and Hinged Wall Base
         edIm,ITTYl)an partially slinging and hinged wall-base system eKRtUveFVIrn§enAkñúgkMralRT
)atCBa¢aMgy:agNaedIm,IeGayCBa¢aMgGacrGilkñúgGMLúgeBlrgeRbkugRtaMg. eRkayeBlrgeRbkugRtaMg
nigkMhatbg;eRbkugRtaMgedaysar creep, shrinkage nig relaxation, eKRtUvbiTrn§ ehIyCBa¢aMgGageFVI
karCa hinged eRkamGMeBIlkçxNÐ service load. eKRtUvRKb;RKgTMhMénkarrGil eTaHbIvaCa full sliding
b¤ partial sliding k¾eday edIm,IeGayvasßitkñúgkMritGnuBaØatmunnwgeKTTYl)anTMr hinged. karrGil
edayEpñkRbEhl 50% énkarrGileBjelj nigedaymansnøak;enAxagcugrbs;CBa¢aMg vapþl;RbeyaCn_
dl;clnarbs;eRKOgbgÁúMTaMgsMrab;)atrGileBjelj nigTaMgsMrab;)atmansnøak; ehIykarbiTrn§enARtg;
tMN pinned Rtg;)atCBa¢aMgRbqaMgnwgkarelcRCabénsarFaturav b¤]sμ½nKWvakan;EtGaRs½yeTAnwgkMrit
rGil EdleKGnuBaØatcMeBaH full sliding CagcMeBaH anchorage. rUbragxUcRTg;RTayrbs;CBa¢aMgkñúg
GMLúgdMeNIrkarGnuvtþeRbkugRtaMg rYmCamYynwg ring force/ m:Um:g;bBaÄr nigbMErbMrYlkugRtaMgebtugkñúg
kMras;CBa¢aMg RtUv)anbgðajenAkñúgrUbTI 11>9. eRbkugRtaMgbBaÄrEdlRtUvkarsMrab;krNI partial slide-
pinned mantMéltUcCagkrNI fully pinned EdlminmankarrGileRcInNas;.



11.6.4.     )atCBa¢aMgbgáb;eBlelj
             Fully Fixed Wall Base
         PaBbgáb;eBjeljrbs;CBa¢aMgenARtg;)atmann½yfaTb; (restraint) mineGayvilTaMgRsugenA
Rtg;)atCBa¢aMg. eKGacTTYl)anlkçxNÐenH RbsinebIkMNat;TabCageKrbs;CBa¢aMgRtUv)ancak;kñúgeBl
CamYyKñanwgkMral ehIymankarf<k;)any:agl¥eTAkñúgkMral)atEdlmanPaBrwgRkajdUcKña. b:uEnþeKBi)ak
nwgTTYl)anRbB½n§minkMNt;EbbenHNas; ehIyvak¾minmanlkçN³esdækic©pg edaysarépÞ)atGagman
TMhMFM ehIyPaBbgáb;edayEpñkkøayCacaM)ac;. kMlaMg radial tamTisedkEdl)anBIkMlaMgeRbkugRtaMg
nig)anBIsMBaFxagkñúgminmankarERbRbYlBIragRtIekaNsMrab;sarFaturag ragctuekaNsMrab;]sμ½n nigrag
ctuekaNBñaysMrab;GgÁFatuRKab;eT. b:uEnþ restraint EdlbegáItedaykMral)atEkERb ring force nig
bBa©Úlm:Um:g;bEnßmeTAkñúgmuxkat;bBaÄrrbs;CBa¢aMg. edaysarPaBbgáb;enARtg;)at vanwgminmanbMlas;
TIekItmanenARtg;)at b¤kMBUlrbs;CBa¢aMgeT ehIykarERbRbYlénkMeNagrbs;kMBs;CBa¢aMgekItmanenA
eBlGagTeT dUcbgðajenAkñúgrUbTI 11>10. cMNaMfa eKKYrsikSaKNnaCBa¢aMgeGayQrRtg; CamYynwg
kugRtaMgsgát;Edlesssl;Gb,brmaEdlbNþalBIkMlaMgeRbkugRtaMg 200 psi dUckñúgkrNIelIkmun.

GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                 697
T.Chhay                                                                viTüasßanCatiBhubec©keTskm<úCa

eRbkugRtaMgbBaÄrEdlRtUvkarsMrab;GagEdlman)atCBa¢aMgbgáb;eBjeljmantMélFMCagsMrab;krNI
lkçxNÐRBMEdkdéTeTotxøaMgNas;. eKcaM)ac;eFVIeGaymanbMErbMrYlkugRtaMgTajenAkñúg)atCBa¢aMgRtg;épÞ
xageRkAEdlbNþalBIm:Um:g;GviC¢mand¾FMenARtg;)ateGaymantMélFM ¬emIlrUbTI 11>10 a nig b¦ ehIy
bRBa©askMeNagEdlenAEk,rva. eBlxøH vamanlkçN³esdækic©CagedayeRbIEdkBRgwgFmμtaenAEpñkxag
eRkamrbs;CBa¢aMgbEnßmBIelIEdk eRbkugRtaMg edIm,IGaceRbIeRbkugRtaMgbBaÄrtUcCag nigeGayEdkBRgwg
FmμtaTTYlnUvm:Um:g;GviC¢mand¾FMenaH. eKk¾Gackat;bnßykugRtaMgTajenAkñúgebtugedayeRbIkMlaMgeRbkug
RtaMgbBaÄrcakp©itCamYynwgcMNakp©itsmrmü rYmCamYynwgEdkBRgwgFmμtabEnßm. b:uEnþ EdkeRbkugRtaMg




Prestressed Concrete Circular Storage Tanks and Shell Roofs                              698
Department of Civil Engineering                                                        NPIC




bBaÄrEdleRbIenAkñúgGagsþúkmantMéléfø edaysartMrUvkar anchorage enAxagcug nig)atrbs;CBa¢aMg
Gag. dUcenH eKRtUvkarkat;bnßyeRbkugRtaMgbBaÄrkñúgkarsikSaKNnaedIm,IbEnßmlkçN³esdækic©dl;
karsikSaKNna RbB½n§eRKOgbgÁúMGagTaMgmUl.



GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                            699
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa

11.6.5. )atCBa¢aMgbgáb;mineBjelj Partially Fixed Wall Base
11.6.5.1. karTb;nwgkarvil       Rotational Restraint
         dUckarbgðajBIxagedIm eKBI)akkñúgkareFVIeGay)ankarTb;eBleljRbqaMgnwgkarvilenARtg;)at
CBa¢aMgNas;. mUlehtusMxan;manbI³ ¬!¦ eKRtUvpþl;nUvPaBrwgRkajcaM)ac;enAkñúgkMral)atGagRtg;kEnøg
RbsBVCamYyCBa¢aMgedIm,ITTYl)ankarbgáb;eBjelj. ¬@¦ clnarbs;dIxageRkamCBa¢aMgGacbgákarvil
rbs;)atCBa¢aMg. nig ¬#¦ eKTamTarkarRb mUlpþúM anchorage sMrab;TaMgeRbkugRtaMgbBaÄr nigTaMgeRb
kugRtaMgvNÐedkrbs;kMNat;CBa¢aMg-)at edaysarCBa¢aMg nig)atrgeRbkugRtaMgdac;edayELkBIKña.
         edaysarkMral)atmanépÞFM T§iBlénkarTb; b¤kareFVIeGayrwgrbs;vaRtUv)ankMNt;RtwmbrievN
toe d¾tUcceg¥ótEdleFVIkarCalkçN³ cantilever BI)atCBa¢aMg. CMerIsd¾RtwmRtUvénTTwgrbs; toe b¤ base

ring kMNt;nUvPaBRtwmRtUvéntMélPaBrwgRkajkñúgkarKNnaEdl)anBIdWeRkénkarbgáb;snμt;rbs;)at

CBa¢aMg. rUbTI 11>11 bgðajBIT§iBlénTTwg base ring eTAelImMurgVilrbs;CBa¢aMg nigbMlas;TIrbs;
ring. Epñk (c) rbs;rUbbgðajBIsßanPaBlMnwgEdlcugrbs; ring sßitenAelInIv:UdUcKñanwg)atrbs;CBa¢aMg

b:uEnþlkçxNÐEdlbgðajenAkñúgEpñk (a) nig (b) Bak;B½n§nwgbMlas;TIBIxageRkam)atrbs;CBa¢aMg ehIyva
min)anbMeBjlkçxNÐeT.




Prestressed Concrete Circular Storage Tanks and Shell Roofs                               700
Department of Civil Engineering                                                            NPIC




       eKGacTTYl)anrUbmnþkñúgkaredaHRsayrkTTwg ring base eRKaHfñak;tamry³kareRbIeKalkarN_
tMrYtpl (superposition) edaybUkbBa©ÚlkrNIénCBa¢aMgviledayesrI (freely rotating wall) CamYYynwg
krNICBa¢aMgbgáb;eBjelj dUcbgðajenAkñúgrUbTI 11>12. eKyk
        M o = m:Um:g;bgáb;eBjeljtamRTwsþIenARtg;)atCBa¢aMg

        M p = m:Um:g;edayEpñkenARtg;)atCBa¢aMgEdlbNþalBI loaded cantilever toe

       θ1 = mMurvilesrIrbs;)atCBa¢aMgsMrab;EtTMr pinned EdlRtUvnwgPaBdab Δ1 rbs; stiff unloaded
                  toe
          θ2 =   mMurgVil)atCBa¢aMgEdlbNþalBI restraining moment M p EdlRtUvnwgPaBdab Δ 2 én
                  straight unloaded toe
          θ3 =  mMurgVileFobxagcugén stiffening toe EdlmanlkçN³Ca cantilever eRkamGMeBIbnÞúkbBaÄr
                EdlRtUvnwgPaBdab Δ3 rbs;cug toe EdlbNþalBIbnÞúkbBaÄr.
           L = TTwgrbs; stiffening toe.

           q = bnÞúkÉktþaEdlGnuvteTAelI stiffening toe = γH Edl H CakMBs;rbs;Gag EdlGgát;p©it

                rbs;vaesμInwg d / kMras;CBa¢aMgrbs;vaesμInwg t ehIykMras;kMralrbs;vaesμInwg h .




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                701
T.Chhay                                                                viTüasßanCatiBhubec©keTskm<úCa

        eKTTYl)anmMurgVilÉktþaθ rbs;CBa¢aMgRtg;)atrbs;vaEdlbNþalBIm:Um:g; M o b:uEnþminmanbMlas;
TI radial BIsmIkar 11.18a edayeGay w = 0 edIm,ITTYl)an Q = −βM . smIkar 11.18b sMrab;mMurgVil
ÉktþakøayCa
                             Mo                               Mp
                     θ1 =                           θ2 =                             (11.33)
                             2βD                              2βD
dUcenH eyIg)an
                              LM o                            LM p
                     Δ1 =                           Δ2 =                             (11.34)
                              2βD                             2βD
RbsinebIeKcat;Tuk stiffening wall toe Ca cantilever Edlrg transverse load γH / Cantilever
moment Gtibrma M p ehIyPaBdabEdlRtUvKña Δ 3 KW
                               γHL2                           3γHL4
                     Mp =                           Δ3 =                             (11.35)
                                  2                           2 Eh 3
eKGacTTYl)anm:Um:g;enARtg;)atCBa¢aMgEdlbgáb;edayeRbI membrane coefficient C BItarag 11>4 sMrab;
form factor H 2 / dt nigRbePTbnÞúk. sMrab;bnÞúksarFaturag
                     M o = CγH 3                                                     (11.36)
BIsmIkar 11.12(c) rUbragEdlxUcRTg;RTayedaysarbnÞúkeBjKW
                     Δ1 = Δ 2 + Δ 3
snμt;          μ = 0.2 nig β = 2 / dt
edayCMnYs Δ 2 nig Δ 3 BIsmIkar 11.34 eTAkñúgsmIkar 11.35 nig 11.36 enaHeyIg)an
                                         2CH 2
                     L2 =                                                            (11.37)
                             1+
                                (t / h )3 (L = 1)
                                (dt )1 / 2
                               γHL2
nig                  Mo =
                                  2
                                                                                     (11.38)

yktY                 S=
                            (t / h )3                                                (11.39)
                            (dt )1 / 2
tY S énsmIkar 11.39 enHRtUv)aneKeGayeQμaHfa modifying factor sMrab;karbgáb;edayEpñk. em
KuNenHCaTUeTAmantMéltUc ehIybgðajnUvplsgrvagm:Um:g;bgáb;srub M o nigm:Um:g;Tb;edayEpñk
(partial restraint moment) M p . dUcenH
                     M p = M o (1 − S )                                              (11.40)

tMélrbs; L enAkñúgPaKEbgénsmIkar 11.37 RtUv)ansnμt;esμInwg 1 sMrab;karsMrYlenAkñúgkarEkERb
emKuN S .
Prestressed Concrete Circular Storage Tanks and Shell Roofs                              702
Department of Civil Engineering                                                             NPIC




       RbsinebItMélrbs; S tUcEmnETn dUckñúgkrNIGagEdlmanGgát;p©itFM ¬Ggát;p©itFMCag 125 ft
eTA 150 ft ¦ smIkarkarsMrab; L nig M p køayCasmIkrsMrab;karbgáb;eBjelj
                     L2 = 2CH 2
nig                  M p = CγH 3


11.6.5.2. Base Radial Deformation
        kMhUcRTg;RTay radial Δ s én base ring EdlrgkMlaMg radial enAkñúgbøg;rbs;vaGacTTYlBIRTwsþI
rbs;kMralmUlEdlmanRbehagcMp©it. smIkarsMrab;PaBdabrbs;kMralEdlbgðajenAkñúgrUbTI 11>13
(a) KW
                             d oQ ⎛ d o + d 2
                                  ⎜
                                      2          ⎞
                     Δs =                     − μ⎟                                  (11.41)
                             2hE ⎜ d o − d 2
                                  ⎝
                                      2          ⎟
                                                 ⎠
Edl μ = pleFobB½rs‘ug ~ 0.2 sMrab;ebtug ehIy E Cam:UDuleGLasÞic. kMlaMg radial edkÉktþaEdl
RtUvkarsMrab;begáItbMlas;TIÉktþaenAkñúgkMlagmYltan;KW




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                703
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa
                             2.5hE
                     Q2 =                                                             (11.42)
                               do
ehIytMélRtUvKñaén radiant thrust EdlGnuvtþeTAelI ring xageRkAKW
                             2hE
                     Q3 =                                                             (11.43)
                             do K
              ⎛d2 + d2     ⎞
Edl        K =⎜ o
              ⎜ d2 − d2
                        − μ⎟
                           ⎟
              ⎝ o          ⎠
ehIy d = Ggát;p©itxagkñúgrbs; base ring = (do − 2L) .
         eKkMNt;PaBrwgRkaj relative rbs;CBa¢aMgedayeRbItYénkMlaMgEdlRtUvkarsMrab;begáItbMlas;TI
ÉktþaenAkñúgCBa¢aMg nigkMral)atBIeKalkar virtual work dUcEdlbgðajenAkñúgrUbTI 11>13 (b) nig
(c). kar BRgayfamBleRbkugRtaMgcenøaHCBa¢aMg nig base slab ring CaGnuKmn_én relative radial

stiffness rbs;va dUcenHeKcaM)ac;RtUvkMNt;PaBrwgRkaj relative. b:uEnþ eKRtUvdwgfa PaBrwgRkajrbs;

base ring enAkñúgGageRbkugRtaMgEdlmankugRtaMgsgát; radial enAkñúgbøg;rbs;vamantMélFMCagPaBrwg

RkajénCBa¢aMgsIuLaMgrbs;GageRkamsMBaF radial xagkñúg. dUcenH kMhatbg;eRbkugRtaMgBIPaBxusKña
énPaBrwgRkajminsMxan;eTsMrab;GagGgát;p©itFM EteKRtUvBicarNavasMrab;GagGgát;p©ittUc.
         eKGacTTYlbMlas;TIÉktþa Δ EdlbNþalBIkMlaMg radial Q' EdlminmanmMurgVilenARtg;)at
CBa¢aMgBIsmIkar 11.8 b edayeRbI 2βM = −Q sMrab;mMurgVil dw / dy = 0 . PaBdabÉktþa Δ enAkñúg
smIkar 11.18a køayCa
                              Q3
                      Δ=
                            4β 3 D

b¤                   Δ=
                             Q'
                           4β 3 D
                                                                                      (11.44)

                               Et 3
Edl                  D=
                      ( )  12 1 − μ 2
edayeRbI μ ~ 0.2 / smIkar 11.44 sMrab;bMlas;TI radial Éktþarbs;CBa¢aMgenARtg;)atCBa¢aMgEdlmin
manmMurgVilkøayCa
                                         3/ 2
                                  ⎛t⎞
                     Q ' = 2 .2 E ⎜ ⎟                                                 (11.45)
                                  ⎝d ⎠
Edl E Cam:UDuleGLasÞicrbs;ebtug. BIsmIkar 11.42/ kMlaMg radial EdlRtUvkarsMrab;begáItbMlas;TI
radial ÉktþaenAkñúgkMlagragmUltan;KW
                                ⎛ h ⎞
                     Q2 = 2.5 E ⎜ ⎟
                                ⎜d ⎟                                                  (11.46)
                                ⎝ o⎠


Prestressed Concrete Circular Storage Tanks and Shell Roofs                               704
Department of Civil Engineering                                                               NPIC




edaybUk Q' nig Q2 enaHkMlaMgsrubEdlmanGMeBIenARtg;kEnøgRbsBVrvagCBa¢aMg nig)atRtUv)anEbg
EckeTACBa¢aMg nigeTA)atedayQrelIsmamaRténfamBl relative EdlRtUvkarsMrab;begáItbMlas;TI
ÉktþanImYy².
        smamaRténkMlaMgsrub Q'+Q2 EdlRtUv)anRTedayCBa¢aMgKW
                           Q'
                     R=
                        Q'+Q2

edayyk               R=
                           1
                        1 + S1
kMNt; S1 edayCMnYssmIkar 11.45 nig11.46 eTAkñúgsmIkarxagelI eyIg)an
                              2.5(h / d )
                     S1 =
                            2.2(t / d )3 / 2
edaysnμt; d ~ do / b¤
                                               1/ 2
                             ⎛h⎞ ⎛d ⎞
                     S1 = 1.1⎜ ⎟ × ⎜ ⎟                                                (11.47)
                             ⎝t⎠ ⎝t ⎠
RbsinebI S1 tUc enaHeKGacyksmamaRténkMlaMgedkEdlepÞrBI)atkMraleTACBa¢aMg ¬suRkitRKb;RKan;¦
                            100
                     R=         %                                                     (11.48)
                             S1
enAeBlEdl ring xageRkArbs;kMralrgkugRtaMgsgát;eday radial thrust enARtg;EKm eKRtUvEksMrYl
tMélrbs; Q2 EdlTTYlBIsmIkar 11.42 ehIy S1 enAkñúgssmIkar 11.48køayCa
                                               1/ 2
                         1 ⎛h⎞ ⎛d ⎞
                     S1 = ⎜ ⎟ × ⎜ ⎟                                                   (11.49)
                         K⎝t⎠ ⎝t ⎠
Edl BIelIkmun
                       ⎛ do + d 2
                          2         ⎞
                       ⎜
                     K= 2         −μ⎟
                       ⎜d −d2       ⎟
                       ⎝ o          ⎠
EdlkñúgenaH d CaGgát;p©itxagkñúgrbs; slab ring = d o = 2L ehIy d o CaGgát;p©itxageRkA.

11.7. Recommended Practice for Situ-Cast and Precast Prestressed
      Concrete Circular Storage Tanks
11.7.1.     kugRtaMg                      Stresses
        eKalkarN_ENnaMTUeTAsMrab;GagsþúkragmUlebtugeRbkugRtaMgEdlcak;enAnwgkEnøgRtUv)anpþl;
eGayeday Prestressed Concrete Institute/ American Concrete Institute nig Post-Tensioning
Institute sMrab;eRCIserIskugRtaMgGnuBaØat/ karkMNt;TMhM kMras;CBa¢aMgGb,brma nigdMeNIrkardMeLIg nig



GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                  705
T.Chhay                                                                    viTüasßanCatiBhubec©keTskm<úCa

sagsg;. kugRtaMgGnuBaØatenAkñúgebtug nig shotcrete RtUv)aneGayenAkñúgtarag 11>17. kugRtaMg
GnuBaØatenAkñúgEdkBRgwgRtUv)aneGayenAkñúgtarag 11>18.




11.7.2.     emKuNbnÞúk nigersIusþg;tMrUvkar                   Required Strength Load Factors
         eRKOgbgÁúM rYmCamYynwgrcnasm<½n§rbs;va nigeCIgtag KYrRtUv)ansikkSaKNnay:agNaeGay
ersIusþg;KNna (design strength) FMCagT§iBlrbs;bnSMbnÞúkemKuNEdlkMNt;eday ACI 318, ANSI/
ASCE 7-95 b¤GaRs½yelIkarEksMrYledayvisVkrEdlQrelIkarviPaKd¾smehtupl CamYynwglkçxNÐ

xageRkam³

Prestressed Concrete Circular Storage Tanks and Shell Roofs                                  706
Department of Civil Engineering                                                           NPIC




smIkarersIusþg;m:Um:g; nominal M n RsedogKñanwgsmIkarEdleRbIsMrab; linear prestressing
                                     ⎛      a⎞
                     M n = A ps f ps ⎜ d p − ⎟                                      (11.50a)
                                     ⎝      2⎠
                                     ⎛      a⎞          ⎛    a⎞
b¤                   M n = A ps f ps ⎜ d p − ⎟ + As f y ⎜ d − ⎟
                                     ⎝      2⎠          ⎝    2⎠
                                                                                    (11.50b)

enAeBlEdleKeRbI As ehIy
Edl Aps = EdkeRbkugRtaMgbBaÄrkñúgTTwgmYyÉktþa
       f ps = kugRtaMgenAkñúgEdkeRbkugRtaMgRtg;ersIusþg; nominal

       f y = yield strength rbs;EdkFmμta



11.7.3.     tMrUvkarGb,brmakñúgkarKNnaCBa¢aMg
             Minimum Wall-Design Requirements
11.7.3.1.      kMlaMgvNÐ                Circumferential Forces
sarFaturav
                     kMlaMgedIm Fi = γr (H − γ ) ff pi                              (11.51a)
                                                    ps

karcak;bMeBj (backfill)
               kMlaMgedIm Fbi = p(r + t )                                           (11.51b)

Edl t CakMras;CBa¢aMgsrub.

11.7.3.2.    kMras; nigkugRtaMg                Thickness and Stresses
kMras;CBa¢aMg (Core Wall Thickness)
                              Fi
                     t co =                                                         (11.52)
                              f ci



GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                               707
T.Chhay                                                                     viTüasßanCatiBhubec©keTskm<úCa

b:uEnþminRtUvtUcCagkMras;CBa¢aMgGb,brmaEdlmanerobrab;enAkñúgEpñk 11.7.3.6.
kugRtaMgcugeRkayEdlbNþalBIkarcak;bMeBj nigeRbkugRtaMgedIm
                            Fbi Fi f pe
                      f =      +                                                          (11.53)
                             t   t co f pi



11.7.3.3.      PaBdab                    Deflections
          PaBdab radial eGLasÞicedImrbs;CBa¢aMgEdlbNþalBIkMlaMgeRbkugRtaMgedImKW
                               Fi r
                     Δi =                                                                 (11.54)
                            t co Ec
Edl        kaMxagkñúgrbs;Gag
           r=

      t co = kMras;rbs;CBa¢aMgenAxagcug xag)atrbs;CBa¢aMg

      Ec = 57,000 f 'c psi (4,700 f 'c MPa ) sMrab;ebtugTMgn;Fmμta nig shotcrete.

      PaBdab radial cugeRkay Δf GacmantMélesμInwg1.5 eTA3dgénPaBdabdMbUg. sMrab;lkçxNÐ
eKGacykPaBdab radial EdlGnuBaØatcugeRkaydUcxageRkam
                     Δf = 1.7 Δ i                                                         (11.55)



11.7.3.4.   T§iBlTb;          Restraint Effects
m:Um:g;Bt;bBaÄrGtibrmarbs;CBa¢aMgEdlbNþalBIkMlaMgkat; radial
                     M f = 0.24Qo rt co                                                   (11.56a)

m:Um:g;enHekItmanenAcMgay
                     y = 0.68 rt co                                                       (11.56b)

BI)at b¤cugEKm
kMlaMgkat; radial sMrab;)atEdlcak;rYmKñaEdlsnμt;favaCatMNsnøak;
                                        t co
                     Qo = 0.38 Fi                                                         (11.57)
                                          r
       RbePTénkarlMGitenaHRtUv)aneRbIsMrab;EtGagsþúkEdlcak;enAnwgkEnøgEdlsagsg;edayman
diaphragm enAkñúgCBa¢aMgrbs;vab:ueNÑaH.



11.7.3.5.      EdkFmμtasMrab;karf<k;enA)at                    Mild Steel for Base Anchorage
          RbsinebIeKeRbI diaphragm/ eKRtUvbgðÚtEdkxagkñúgEdlmanragGkSr UTaMgGs;cMgay
Prestressed Concrete Circular Storage Tanks and Shell Roofs                                   708
Department of Civil Engineering                                                          NPIC




                      y1 = 1.4 rt co                                              (11.58a)

BIelI)at. RbsinebIeKmineRbI diaphragm eKRtUvbgðÚtvacMgay
                      y2 = 1.8 rtco                                               (11.58b)

BIelI)at. cMNaMfa eKRtUvbUkbEnßmRbEvgf<k; (anchorage length) BIelI y1 b¤ y2 . RkLaépÞGb,brma
rbs;EdkbBaÄr nominal enARtg;tMbn;)atKW
                     As = 0.005t co                                               (11.59)
ehIyeKRtUvbgðÚtvaBI)atnUvcMgay 3 ft b¤
                      y3 = 0.75 rt co                                             (11.60)

edayykmYyNaEdlFMCag.

11.7.3.6.   kMras;CBa¢aMgGb,brma             Minimum Wall Thickness
CBa¢aMgcak;enAnwgkEnøg




CBa¢aMgcak;Rsab;




       eKRtUvcMNaMfa sMrab;GagEdlrgeRbkugRtaMgCamYynwg tendon, eKENnaMkMras;CBa¢aMgminRtUvtUc
Cag 9in. sMrab;kargarGnuvtþn_.

GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                              709
T.Chhay                                                                        viTüasßanCatiBhubec©keTskm<úCa

11.8.     RKb;RKgsñameRbHenAkñúgCBa¢aMgrbs;GagebtugeRbkugRtaMgragmUl
          Crack Control in Walls of Circular Prestressed Concrete Tanks
            nig Preston ENnaMsmIkarxageRkamedayQrelIkargarrbs; Nawy sMrab;TMhMsñameRbH
          Vessy

GtibrmaenAépÞxageRkArbs;CBa¢aMgGageRbkugRtaMg³
                      wmax = 4.1 ⋅10 −6 ε ct E ps I x                                        (11.61)

Edl        ε ct =   bMErbMrYlrageFobrbs;épÞrgkarTaj (tensile surface strain) enAkñúgebtug
                                    8 ⎛ s 2 s1tb   ⎞
           I x = grid index =         ⎜            ⎟
                                    π ⎜ φ1
                                      ⎝
                                                   ⎟
                                                   ⎠
           s2 = KMlatEdkkñúgTiselx “2”
           s1 = KMlatEdkkñúgTisEkgelx “1” ¬Tisedk¦

          tb = kMras;karBarEdkKitdl;G½kSEdk

          φ1 = Ggát;p©itEdkkñúgTisem “1”
          eKGacKNnabMErbMrYlrageFobrgkarTajBI
                              α t f pi
                     ε ct =                                                                  (11.62)
                               E ps

Edl       αt =  )a:ra:Em:RtkugRtaMg (stress parameter) ≅ f p / f pi
          f p = kugRtaMgCak;EsþgenAkñúgEdkeRbkugRtaMg

          f pi = eRbkugRtaMgedImmuneBlkMhatbg;

          sMrab;GagEdlsþúksarFaturav TMhMsñameRbHGnuBaØaGtibrmaKW 0.004in.

11.9.     karsikSaKNnadMbUg                            Roof Design
        dMbUlsMrab;GagEdlsagsg;kñúgTMrg;ekag (shell dome) b¤ CadMbUlrabesμIEdlRTenAelIssr
xagkñúg. CaTUeTA tMélrbs;dMbUlRbEhlCamYyPaKbIéntMéleRKOgbgÁúMTaMgmUl. kñúgkrNIdMbUlrabesμI
¬eTaHcak;Rsab; b¤cak;enAnwgkEnøg¦ karKNnaeFVItameKalkarN_KNnaRbB½n§kMralebtugGarem: b¤ebtug
eRbkug RtaMgmYyTis b¤BIrTisFmμta dUcEdlerobrab;enAkñúg ACI 318 Code. RbsinebI dMbUlCaRbePT
ebtugeRbkugRtaMgcak;Rsab; ehIyGgát;p©itGagminFM enaHeKmincaM)ac;eRbIssrxagkñúgeT. ebIminGBa©wg
eT tMélrbs;ssrxagkñúgbEnßm nigeCIgtagrbs;vaGacbegáIntMélrbs;eRKOgbgÁúMTaMgmUl.
        dMbUlekagmanRbeyaCn_sMrab;GagEdlmanGgát;p©itminFMCag 150 ft edaysarvaminRtUvkar
ssrTMrxagkñúg nigehIyvamanlkçN³esdækic©sMrab;GagEdlbgáb;eRkamdIkñúgkarTb;Tl;nwgbnÞúkcak;bM

Prestressed Concrete Circular Storage Tanks and Shell Roofs                                      710
Department of Civil Engineering                                                            NPIC




eBj (backfill). dUcenH TMrg; shell nigtMNrbs;vaeTAnwgCBa¢aMgGagmanT§iBly:agxøaMgeTAelItMél.
CakareBjniym dMbUl shell RtUv)anRTedayCBa¢aMgGagCamYynwgtMNEdlman flexible completely
ebImindUecñaHeT eKRtUvEksMrYlkarKNnaTaMgCBa¢aMgGag nigTaMg roof dome EdlTak;TgnwgdWeRkénkar
Tb; nigPaBrwgRkaj relative CamYynwgtMélsagsg;bEnßmkñúgeBlCamYyKña.
         dMbUlekagragEsV‘rEdlman rise-to-diameter ratio h' / d tUc eKeRcInyktMélRbEhl 1/ 8 .
dMbUlekagEbbenH b¤ axisymmetrical shell begáItkMlaMgedkEdlmanTisecjeRkAenARtg; springing
EdlvaRtUv)anTb;Tl;eday ring beam eRbkugRtaMgEdlKNnay:agRtwmRtUvenARtg;TMr. RbePT ring
beam kMNt;RbtikmμelIs nigm:Um:g;elIsEdlbNþalBIkugRtaMgbEnßmedaypÞal; nigkugRtaMgBt;enARtg;

cugbgáb;enAkñúg shell Ek,r springing. eKGacniyaymüa:geTotfa membrane solution RtUvbMeBjkar
EkERbedaydak;vabEnßmBIelIT§iBlm:Um:g;Bt;EdlkMNt;edaytMrUvkar strain compatibility én bending
theory.


11.9.1. Membrane Theory of Spherical Domes
11.9.1.1. Shell of Revolution
          smIkarlMnwg membrane sMrab;kMlaMgedaypÞal;enAkñúg shell of revolution dUcEdlbgðajenA
kñúgrUbTI 11>14 RtUveRbIsMrab;kMNt; kMlaMg meridional Éktþa Nφ / kMlaMg tangential Éktþa Nθ nig
kMlaMg central Éktþa Nφθ nig Nθφ edayeRbItYbnÞúkTMnaj pφ / pθ nig p z . smIkarTaMgenHman³
          Meridional:
                                   (
                                  ∂ Nφ ro   )− N        ∂r ∂Nθφ
                                                          +     r1 + pφ ro r1 = 0   (11.63a)
                                                   θ
                                      ∂φ               ∂φ   ∂θ
                                  ∂Nθ                  ∂ro ∂Nθφ
          Tangential:                   r1 + Nθφ          +     + po ro r1 = 0      (11.63b)
                                   ∂θ                  ∂φ   ∂φ
                                  N φ Nθ
       Tis z ³                     r1
                                       +
                                          r2
                                              + pz = 0                            (11.63c)

edaysarbnÞúkmanlkçN³sIuemRTI/ RKb;tYTaMgGs;EdlTak;Tgnwg ∂θ RtUv)anbM)at; ehIyeKGacsresr
tYEdlTak;Tgnwg ∂φ eLIgvijCaDIepr:gEsülsrub dφ edaysarKμantYNamYyERbRbYlGaRs½ynwgtY θ .
ehIybgÁúM circumferential load pθ = 0 edaysarkMlaMgpÁÜbkMlaMgkat;RtUv)anbM)at;tambeNþay
meridional nigrgVg;EdlRsb. dUcenH eKGacsresrsmIkar 11.63 eLIgvijCa
                     d
                     dφ
                          (        )
                         Nφ ro − Nθ r1 cos φ + p y r1ro = 0                         (11.64a)

                     N φ Nθ
                         +     + pz = 0                                             (11.64b)
                      r1   r2


GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                               711
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<úCa




11.9.1.2. dMbUlekagragEsV‘r       Spherical Dome
smIkarlMnwgrbs; Membrane Analysis
        dMbUlekagragEsV‘rmankMeNagefr. dUcenH r1 = r2 = ro . edaysnμt;fa kaMrbs;EsV‘resμInwg a
enaH ro = a sin φ enAkñúgrUbTI 11>14(c) ehIyedayyk p z = wD sMrab;bnÞúkpÞal; enaHsmIkarlMnwg

Prestressed Concrete Circular Storage Tanks and Shell Roofs                               712
Department of Civil Engineering                                                           NPIC




TUeTA 11.64 køayCa
                              ⎛     1             ⎞
                              ⎜ 1 + cos φ − cos φ ⎟
                     Nθ = awD ⎜                   ⎟                                (11.65a)
                              ⎝                   ⎠

nig                  Nφ = −
                                   awD
                                  1+ cos φ
                                                                                   (11.65b)


Edl wD CaGaMgtg;sIuetrbs;bnÞúkpÞal;kñúgmYyÉktþaépÞ. eyIgeXIjy:agc,as;BIsmIkar 11.65 b fa
kMlaMg meridional Nφ nwgGviC¢manCanic©. dUcenH kMlaMgsgát;nwgekItmantambeNþay meridian
ehIyvanwgekIneLIgenAeBlEdlmMu φ ekIneLIg³ enAeBl φ = 0 / Nφ = −awD / 2 ehIyenAeBlEdl
φ = π / 2 / Nφ = −awD .
         kMlaMg tangential Nθ mantMélGviC¢man ¬kMlaMgsgát;¦ sMrab;EttMélkMNt;énmMu φ b:ueNÑaH.
edayyk Nθ = 0 enAkñúgsmIkar 11.65a/ 1/(1 + cosφ ) − cosφ = 0 eKTTYl)an φ = 51o 49' . kar
kMNt;bgðajfa sMrab; φ > 51o 49' kugRtaMgTajekItmanenAkñúgTisEkgnwg meridian. karEbgEckkug
RtaMg meridional Nφ ehIykarEbgEckkugRtaMg tangential Nθ sMrab;TaMgbnÞúkpÞal; wD nigbnÞúk
GefrxageRkA wL RtUv)anbgðajenAkñúgrUbTI 11>15.
         RbsinebIbnÞúkxageRkAefr ¬bnÞúkRBil¦ EdleGayGaMgtg;sIuet wL / kMlaMg meridional Nφ
RtUv)anTTYlBIlMnwgénGgÁesrIedayeGaybnÞúkxageRkAesμInwgkMlaMg meridional xagkñúg mann½yfa
− π (d / 2)2 wL = 2π (a sin φ )Nφ . edaysar d / 2 = a sin φ eyIgTTYl)an

                                  wL a
                     Nφ = −                                                        (11.66a)
                                   2
dUcenH Nφ CatMélefrelIkMBs; shell TaMgmUl dUcEdleXIjenAkñúgrUbTI 11.15.
       Nθ EdlbNþalBIbnÞúkGefr wL KW

                                             awL       ⎛1          ⎞ awL
                     Nθ = −awL cos 2 φ +         = awL ⎜ − cos 2 φ ⎟ =   cos 2φ    (11.66b)
                                              2        ⎝2          ⎠   2
sMrab;krNI Nθ = 0 / mMu φ = 45o . dUcenH kugRtaMg shell EdlbNþalBIkMlaMg tangential Nθ sMrab;
φ < 45o CakugRtaMgsgát; Edlkat;bnßysñameRbH. BIkarEbgEckkugRtaMg tangential Nθ eKGacsnñi-
dæan)anfadMbUlrbs;GagsþúkmanlkçN³ flat ¬pleFob h' / d enAkñúgrUbTI 11>15(b) minRtUvFMCag
1 / 8 ¦ EdlebtugTaMgGs;nwgrgkugRtaMgsgát;EdlbNþalBI Nφ nig Nθ enAeBlEdlmMu φ < 51o 49'

sMrab;kMlaMg meridianal nig 45o sMrab;kMlaMg tangential.

GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                               713
T.Chhay                                                               viTüasßanCatiBhubec©keTskm<úCa

        dUcEdl)anerobrab;BIxagedIm RbePTTMrenARtg; springing ¬RbsinebIva restrained¦vanwgbegáIt
RbtikmμminkMNt;EdlbgáeGayekItmankugRtaMgedaypÞal; nigkugRtaMgBt;enAkñúg shell Ek,r springing.
dUcenH eKGacGnuvtþ bending theory sMrab; plate nig shell edIm,IkMNt;kugRtaMgBt;. xageRkamenH
Cakarerobrab;BIkarsikSaKNna ring beam eRbkugRtaMgenARtg; springing edIm,IRbqaMgnwgbgÁúMkMlaMg
sgát; meridional edk Nφ EdkeFVIeGayEKmrbs; dome cl½tcUlkñúg.




Prestressed Concrete Circular Storage Tanks and Shell Roofs                             714
Department of Civil Engineering                                                           NPIC




       BIsmIkar 11.65b nig11.66a eKGacsresrkMlaMg meridional Nφ sMrab;bnÞúkpÞal; wD kñúgmYy
ÉktþaépÞ nigbnÞúkGefrBRgayesμI wL kñúgmYyÉktþaépÞRbeyal (unit projected area)
                              ⎛ wD         wL    ⎞
                     N φ = − a⎜
                              ⎜ 1 + cos φ + 2    ⎟
                                                 ⎟                                 (11.67)
                              ⎝                  ⎠

Edl a = d / 2 sin φ CakaMrbs; sheall.
        cMNaMfakMlaMg (thrust) Nφ køayCakMlaMgbBaÄrRtg; springing ¬ φ = π / 2 ¦ én hemisphe-
rical dome nigesμInwg W = a / 2(2 wD + wL ) kñúgmYyÉktþaTTwg. cMeBaHtMélepSgeTotrbs; φ / Nφ

manlkçN³eRTt ehIyeKRtUvtMélénbgÁúMedkrbs;vasMrab;karsikSaKNna ring beam eRbkugRtaMgenA
Rtg; springing EdleKGacehAfa shell rim. bgÁúMkMlaMgedkenHKW p = Nφ cosφ . RbsinebI P Ca
kMlaMgeRbkugRtaMgkñúgmYykMBs;FñwmenAkñúg ring beam enaHBIsmIkar 11.1a P = pd / 2 ehIy

                     P=
                           d
                           2
                              (
                             Nφ cos φ   )                                          (11.68)


        Cak;Esþg RbsinebIeKGacGnuvtþ P edaypÞal;eTAelI dome rim enaHeKGackMNt;kugRtaMgenA
kñúg dome edaysmIkar 11.67. CaTUeTA vamingayRsYleT edaysareKRtUvkarEdkeRbkugRtaMgkñúg
brimaNd¾eRcIn Edl P minGacsßitenAkñúgkMras;d¾esþIgrbs;CBa¢aMg)an ehIykugRtaMgenAkñúgebtugRtg;
tMbn; rim GacmantMélx<s;Nas;. dUcenH eKRtUvkardak; edge beam EdlbMElg shell eGayeTAeRKOg
bgÁúMkMNt;edaysþaTic

kMraldMbYlekagminkMNt;edaysþaTiceRbkugRtaMg
        lkçxNÐRBMEdnd¾samBaØbMputEdlTTYl)anenAeBlEdlRbtikmμ edge beam manTisbBaÄr nig
TMrminman restraint dUcbgðajenAkñúgrUbTI 11>16 Edl dome thrust Nφ qøgkat;TIRbCMuTMgn;rbs;Fñwm.
RbsinebIeKkat;vatamExS A − A kMlaMgedk Nφ cosφ eFVIeGayEKm dome cl½tcUlkñúg)ancMgay

                     Δs =
                              d
                             2 Et
                                  (
                                  Nθ − μNφ   )                                     (11.69)

Edl        μ=  pleFobB½rs‘ug ~ 0.2 sMrab;ebtug
           d = ElVg shell (shell aspan)




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                               715
T.Chhay                                                                           viTüasßanCatiBhubec©keTskm<úCa




ehIyeKTTYl)ankMlaMgÉktþa tangential BIsmIkar 11.65 dUcxageRkam
                               wD d ⎛                     ⎞ wL d
                                      ⎜ 1 + cos φ − cos φ ⎟ − 4 sin φ (cos 2φ )
                                            1
                      Nθ =            ⎜                   ⎟                                     (11.70)
                              2 sin φ ⎝                   ⎠

Rcasmkvij kMlaMg meridional Nφ eFVIeGay ring beam cl½tecjeRkA)ancMgay
                             Nφ (cos φ )d 2
                     Δb =                                                                       (11.71)
                                   4 Ebh

dUcenHeKRtUvmankMlaMgeRbkugRtaMgRKb;RKan;edIm,Icl½t ring beam cUlkñúgCamYynwgcMgaysrub
                     ΔT = Δ s + Δ b

dUcenHkMlaMgsrubEdlmanGMeBIelImuxkat; ring beam KW
                     P=
                           bh
                            t
                               (
                              Nθ − μNφ +
                                             2
                                              ) (
                                         d Nφ cos φ           )                                 (11.72)


Edl h CakMBs; ring beam srub. kareRbobeFobrvagsmIkar 11.72 nig 11.68 bgðajfakMlaMgeRbkug
RtaMgRbsiT§PaBEdlRtUvkarelIkmunmantMélFMCagkMlaMgeRbkugRtaMgRbsiT§PaBEdlRtUvkarelIkeRkay.
TMhMénkarekIneLIgenHmanRbEhlBI 5% eTA10%. lkçxNÐdUcKñamanlkçN³Bit sMrab; dome EdlExS

Prestressed Concrete Circular Storage Tanks and Shell Roofs                                         716
Department of Civil Engineering                                                           NPIC




rbs;kMlaMgBI dome minkat;tamTIRbCMuTMgn;rbs; ring beam ehIyFñwmRtUv)anP¢ab;y:agrwgeTAnwgCBa¢aMg
dUcenAkñúgrUbTI 11>17 (a). eKGacTTYltMélRbhal;RbEhlrbs;kMlaMgeRbkugRtaMgtMrUvkar P eday
begáIntMélrbs; P enAkñúgsmIkar 11.68 cMnYn 10%. kñúgkrNIEbbenH kugRtaMgenAkñúg shell Rtg;tMbn;
springing GacxusBIkugRtaMgEdlTTYl)anBI membrane solution y:agxøaMg ehIyeKRtUveFVIkarEktMrUv

bending solution.




        RbsinebIkMlaMgeRbkugRtaMg radial edkenAkñúg ring beam mantMélFMCagtMrUvkar enaHkMhUcRTg;
RTayedaysarkarBt;d¾FMnwgekItmanenAkñúg shell beam dUcbgðajenAkñúgrUbTI 11>17 (b) CamYynwg
karekIneLIgéntMélrbs;kMlaMg tangential Nθ y:agxøaMg ebIeRbobeFobCamYynwgkarekIneLIgénkMlaMg
meridional Nφ . CalT§pl kugRtaMgBt;enAkñúgebtugenARtg;tMbn;EdlT§iBlGacelIskugRtaMgGnuBaØat

GtibrmaeRkamGMeBI service load. RbsinebI kMlaMgeRbkugRtaMgedImmuneBlrgkMhatbg;KW Pi enaHRk-
LaépÞrbs;muxkat;FñwmKW
                             Pi
                     Ac =                                                          (11.73)
                             fc

Edl        Pi =   kMlaMgeRbkugRtaMgedIm P / γ

GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                               717
T.Chhay                                                                    viTüasßanCatiBhubec©keTskm<úCa

             kugRtaMgsgát;GnuBaØatenAkñúgebtug
             fc =

       γ = PaKrykugRtaMgEdlenAesssl;.
       eKcg;rkSaeGaytMélrbs; f c mantMélTab Rbhak;RbEhlnwg 0.2 f 'c nigminelIs 800 psi
eTA 900 psi eT edIm,IeFVIeGaybMErbMrYlrageFobd¾FMEdlekItmanenAkñúg edge ring beam mantMélGb,-
brma EdlRtLb;mkvijeKGacbegáItkugRtaMgFMenAkñúg shell Rtg;tMbn; springing.
       RkLaépÞrbs;EdkeRbkugRtaMgenAkñúg dome ring KW
                               Pi
                      A ps =                                                             (11.74b)
                               f pi

Edl      CakugRtaMgGnuBaØatenAkñúgEdkrgeRbkugRtaMgmuneBlxatbg;. RbsinebIeKminRtUvkarkMNt;
          f pi

A ps CatMélsuRkit enaHeKGacykRkLaépÞEdkeRbkugRtaMg


                               W cot φ
                      A ps =                                                             (11.74b)
                               2πf pe

Edl         W=    bnÞúkefr nigbnÞúkGefrsrubenAelI dome EdlbNþalBI wD + wL
             f pe = eRbkugRtaMgRbsiT§PaBeRkayeBlkMhatbg;

            eKGacykkMras;Gb,bramrbs; dome EdlRtUvkaredIm,ITb;Tl; buckling dUcxageRkam
                                 1.5 pu
                      hd = a                                                             (11.75)
                                φβ i β c Ec

Edl          a= kaMrbs; dome shell
             pu = sMBaFKNnaÉktþaBRgayesμI ultimate EdlbNþalBIbnÞúkefr nigbnÞúkGefr

                  = (1.2 D + 1.6 L ) / 144
            φ=    emKuNkat;bnßyersIusþg;sMrab;sMPar³EdlrgkugRtaMgsgát; = 0.65
             β i = emKuNkat;bnßy buckling sMrab;bMErbMrYlrbs;épÞragEsV‘rEdlbNþalBIPaBminl¥
             β i = (a / ri )2 / Edl ri ≤ 1.4a
             β c = emKuNkat;bnßy buckling sMrab; creep/ sMPar³Edl nonlinearity nigsñameRbH
                 = 0.44 + 0.003WL / b:uEnþminFMCag 0.53 .

             Ec = m:UDuleGLasÞicedImrbs;ebtug = 57,000 f 'c psi (4,700 f 'c MPa )



Prestressed Concrete Circular Storage Tanks and Shell Roofs                                  718
Department of Civil Engineering                                                             NPIC




11.10.     GagebtugeRbkugRtaMgEdlmanEdkeRbkugRtaMgvNÐ
            Prestressed Concrete Tanks with Circumferential Tendons
        CMnYseGaykarrMuEdkeRbkugRtaMg (wire or strand) dUcEdl)aneFVIenAkñúg preload system eKeRbI
EdkeRbkugRtaMg (tendons) edkxagkñúg b¤xageRkA. kabeRbkugRtaMgTaMgenHrgkugRtaMgeRkayeBleK
dak;BYkvaenAkñúgCBa¢aMg. Edk post-tensioning bBaÄrRtUv)aneKeRbIkñúgCBa¢aMgCaEpñkmYyénEdkBRgwg
bBaÄr. CBa¢aMgebtugGaccak;enAnwgkEnøg b¤cak;Rsab; ehIyeKcat;TuksñÚlCBa¢aMgCaEpñkmYyénCBa¢aMg
ebtugEdlrgeRbkugRtaMgvNÐ. RbePTsMNg;enHminmaneRbIEdk diaphragm dUcRbePTGagEdlrMuEdk
eRbkugRtaMg ( wrapped-wire prestressing) EdlCBa¢aMgGagGacman b¤k¾KμanEdk diaphragm.
        EdkEdlrgeRbkugRtaMgxagkñúgRtUv)ankarBaredaykMras;ebtugkarBardUctMrUvkarrbs; ACI 318
ehIyeKRtUvbMeBjkñúgbMBg; (duct or sheathing) CamYynwgsMPar³EdlkarBarERcH b¤ grouted. eKRtUv
karBarEdk bonded post-tensioned eday portland cement grout dUckarTamTarenAkñúg ACI 318
ehIyeKRtUvkarBarkabeRbkugRtaMgxageRkACamYynwg shotcrete cover EdlmankMras;Gb,brma 1in.
(25mm ) .
        dMeNIrkarsikSaKNnaCBa¢aMgmanlkçN³RsedogKñanwgkarsikSaKNnaGagragmUlEdlrgeRbkug
RtaMgedaykarrMuEdkeRbkugRtaMg ehIyvaTamTarnUvkarRtYtBinitüsñameRbHdUcKña. eKRtUvykkugRtaMg
sgát;esssl;Gb,brmaenAkñúgebtugCBa¢aMgeRkayeBlrgkMhatbg;eRbkugRtaMgTaMgGs;esμInwg 200 psi
(1.4MPa ) kñúgkarsikSaKNna enAeBlEdlGagRtUv)anbMeBjdl;nIv:UKNna. RbsinebIGagKμanKMrb eK
RtUvykkugRtaMgesssl;enAcugCBa¢aMgesμInwg 400 psi(2.8MPa ) Edlkat;bnßyCaragbnÞat;rhUtdl;
tMélmYyEdlmintUcCag 200 psi enAcMgay 0.6 Rh BIcugénnIv:UsarFaturav.

RbePT)atCBa¢aMg nigtMNdMbUgragekag
       BIkarerobrab;xagelI eyIgeXIjy:agc,as;falkçxNÐRBMEdnenARtg;)atrbs;GageRbkugRtaMgrag
mUl nigenARtg; ring beam support sMrab;dMbUgragekagkMNt;nUvlkçN³énkarGnuvtþ lkçN³esdækic©
nigeCaKC½yénkarsikSaKNnaTaMgmUl. Cavi)ak bTBiesFn_CaeRcInEdlTTYl)anBIkarbegáIttMNeRkam
lkçxNÐTaMgenHKWmantMélxøaMgNas;. karlMGitBItMNRtUv)anbgðajenAkñúgrUbTI 11>18 dl;TI 11>22.




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                719
T.Chhay                                                       viTüasßanCatiBhubec©keTskm<úCa




Prestressed Concrete Circular Storage Tanks and Shell Roofs                     720
Department of Civil Engineering               NPIC




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg   721
T.Chhay                                                       viTüasßanCatiBhubec©keTskm<úCa




Prestressed Concrete Circular Storage Tanks and Shell Roofs                     722
Department of Civil Engineering                                                           NPIC




11.11. Step-by-Step Procedure for the Design of Circular Prestressed
       Concrete Tanks and Dome Roofs
        viFIsakl,g nigEktMrUv (trial-and adjustment procedure) RtUv)anENnaMsMrab;karsikSaKNna
GagragmUlebtugeRbkugRtaMg nigdMbUg shell³
   !> eRCIserIsRbB½n§eRbkugRtaMg RbePTEdkeRbkugRtaMg ersIusþg;ebtug nigRbePTTMr EdleyIgGac
      rk)anenAkñúgtMbn;.
   @> kMNt;sMBaFsMPar³EdlsþúkkñúgGagmanGMeBIelICBa¢aMg γH sMrab;sarFaturav nig p sMrab;sarFatu

GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                              723
T.Chhay                                                                   viTüasßanCatiBhubec©keTskm<úCa

         ]sμ½n. eRbIkarBRgayragctuekaNBñaysMrab;GgÁFaturwgEdlpÞúkenAxagkñúgGag.
        kMNt;kMlaMg ring Éktþa F = γ (H − y )r sMrab;)atrGileBjelj Edl r CakaMGag nig y Ca
        cMgayBI)at.
     #> BItarag 11>4 dl; 11>16 eRCIserIsemKuNm:Um:g;bBaÄreTAtamRbePTbnÞúk niglkçxNÐ
        restraint rbs;)atEdlbNþaledaysMBaFsarFaturav

                     My =+
                                  1
                                      [βM oφ (βy ) + Qoζ (βy )]
                                  β
          nigkMNt;kMlaMgTaj ring radial edk
                                                    γrt
                     Qo = +(2 βH − 1)
                                    ( )          12 1 − μ 2
          ehIy Q = (F − ΔQ ) EdlbMErbMrYlén
                    y                  y

                         6( − μ )            2
                ΔQ = +
                          1
                          y       (βM Ψ (βy ) + Q θ (βy ))
                                                      o           o
                                      β 3 rt 2

          nig β = [3(1 − μ )]
                               2 1/ 4

                         (rt )1 / 2
         Edl μ = 0.2 sMrab;ebtug.
     $> kMNt;emKuN membrane C BItarag 11>4 rhUtdl; 11>16. KNnakMlaMg ring F = CγHr .
     %> KNnam:Um:g;bBaÄreRKaHfñak;enAkñúgCBa¢aMgEdleRbIemKuN membrane C . smIkarsMrab;m:Um:g;
        EdlbNþalBIbnÞúksarFaturavKW
                  M y = C (γH 3 + pH 2 )

        b¤        M y = CpH 2

      EdlbNþalBIbnÞúk]sμn½. KNnam:Um:g;enARtg;)at nigRtg;cMnuceRKaHfñak;EdlmancMgay y BI)at.
     ^> eRCIserIskMlaMgeRbkugRtaMgbBaÄr.
     &> KNnakugRtaMgebtugkat;tamkMras;rbs;CBa¢aMgsMrab;lkçxNÐGagTeT nigsMrab;GageBj.
        eKGnuBaØatkugRtaMgsgát;tamG½kSesssl;Gtibrma f cv = 200 psi eRkamGMeBIr service load
        ehIykugRtaMgTajGtibrma f t = 3 f 'c dUcbgðajenAkñúgtarag 11>17.
     *> sikSaKNnaEdkeRbkugRtaMgedk nigEdkeRbkugRtaMgbBaÄrEdlkugRtaMgkMNt;manenAkñúgtarag
        11>18.
     (> KNnam:Um:g;emKuN M u EdleRbIemKuNbnÞúkEdleGayenAkñúgEpñk 11.7.2. m:Um:g;tMrUvkar M n =
        M u / φ Edl φ = 0.9 . KNnaersIusþg;m:Um:g; nominal EdlGacman M n = A ps f ps (d p − a / 2 )


Prestressed Concrete Circular Storage Tanks and Shell Roofs                                 724
Department of Civil Engineering                                                                     NPIC




       b¤ M n = Aps f ps (d p − a / 2)+ As f y (d − a / 2) . m:Um:g;EdlGacman M n RtUvEtFMCag b¤esμInwg
       m:Um:g;tMrUvkar M n .
     !0> sikSaKNnaRbEvg L rbs; ring enARtg;)atrbs;CBa¢aMgBIsmIkar
                                  2CH 2
                     L =
                       2

                            1+
                                   (t / h )3
                                    (dt )2
        Edl t CakMras;rbs;CBa¢aMg nig h CakMras;rbs;kMral)at.
     !!> KNnaPaKryrbs;eRbkugRtaMgenAkñúg)atEdlRtUvepÞreTACBa¢aMgBIrUbmnþ
                            1
                     R=
                           1+ S
        Edl S = 1.1(h / t )× (d / t )1 / 2 .
        enAeBlEdl rim xageRkArbs; slab ring rgkMlaMgsgát;edaykMlaMg radial Rtg; rim enaHtMél
        rbs; S RtUv)anEksMrYleTACa
                                               1/ 2
                         1 ⎛ h ⎞⎛ d ⎞
                     S1 = ⎜ ⎟⎜ ⎟
                         K ⎝ t ⎠⎝ t ⎠
                        ⎛d2 +d2   ⎞
        Edl          K =⎜ o
                        ⎜d −d
                          2   2
                                −μ⎟
                                  ⎟
                        ⎝ o       ⎠
        EdlkñúgenH              Ggát;p©itxagkñúg
                                  do =

                           d = Ggát;p©itkMral ring xagkñúg = d o − 2 L .

     !@> RtYtBinitütMrUvkarkMras;CBa¢aMgGb,brma nigKNnaPaBdab radial eGLasÞicedImEdlKμanTb;
          (unrestrained initial elastic radial deflection)

                                Fi r
                     Δi =
                             t co Ec
        E;dl                               (
                     Ec = 57,000 f 'c psi 4,700 f 'c MPa      )
                     t co = kMras;rbs;sñÚlCBa¢aMgenARtg;cug b¤)atrbs;CBa¢aMg
                           d
                     r=
                           2
       PaBdab radial cugeRkay Δ f = 1.7Δ i .
     !#> f<k;EdkBI)ateTACBa¢aMgEbbNaedayeGayEdkbgðÜscUleTAkñúgCBa¢aMgcMgay y2 = 1.8 rtco
       b¤ 3 ft.(0.9m) edayykmYyNaEdlFMCag. dUcKña eKRtUvFanafaEdkbBaÄr nominal Gb,brma
       enARtg;tMbn;)atKW
GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                        725
T.Chhay                                                                    viTüasßanCatiBhubec©keTskm<úCa

                     As = 0.005t co
     !$> epÞógpÞat;TMhMsñameRbHGtibrma wmax = 4.1×10−6 ε ct E ps I x
         Edl ε ct = bMErbMrYlrageFobépÞrgkarTajenAkñúgebtug = (λt f p )/ E ps
                   f p = kugRtaMgCak;EsþgenAkñúgEdk

                   f pi = eRbkugRtaMgedImmuneBlxatbg;

                     λt ~ f p / f pi
                                              8 ⎛ s 2 s1tb    ⎞
                     I x = grid index =         ⎜             ⎟
                                              π ⎜ φ1
                                                ⎝
                                                              ⎟
                                                              ⎠
                     KMlatEdkkñúgTis “1”
                     s1 =

                φ1 = Ggát;p©itrbs;EdkenAkñúgTis “1”
                s 2 = KMlatEdkkñúgTis “2”

                tb = kMras;karBarEdkEdlKitdl;p©itrbs;Edk

       cMNaMfa TTwgsñameRbHGnuBaØatGtibrma wmax = 0.004in. sMrab;GagsþúksarFaturav.
     !%> sikSaKNnadMbUgragekageRkaykareRCIserIsRbePTtMNenARtg;cugrbs;CBa¢aMgGag. kMNt;pl
       eFobénkMBs;rbs;dMbUgragekag h' elI)at d rbs;vay:agNamineGay h' / d > 1/ 8 .
                KNnakMlaMgeRbkugRtaMg radial tamTisedktMrUvkar P sMrab; edge beam BIsmIkar
                                bh
                               P=  (Nθ − μNθ ) + φ
                                                   d N cos φ      (   )]
                                 t                      2
                          w d ⎡ 1                   ⎤ w d
          Edl        Nθ = D ⎢
                         2 sin φ ⎣1 + cos φ
                                            − cos φ ⎥ − L (cos 2φ )
                                                    ⎦ 4 sin φ
                              ⎛ wD         wL ⎞
                     N φ = − a⎜
                              ⎜ 1 + cos φ + 2 ⎟
                                              ⎟
                              ⎝               ⎠
          nig      kMBs;srubrbs;Fñwm rim
                     h=

               b = TTwgFñwm rim

               wD = GaMgtg;sIueténbnÞúkpÞal;rbs; shell kñúgmYyÉktþaépÞ ¬bnÞúkefr¦

               wL = GaMgtg;sIuetrbs;bnÞúkGefrRbeyal

     !^> KNnamuxkat; ring-edge beam
                                       Pi
                                Ac =
                                       fc




Prestressed Concrete Circular Storage Tanks and Shell Roofs                                  726
Department of Civil Engineering                                                                   NPIC




        Edl          kMlaMgeRbkugRtaMgedIm = P / γ
                     Pi =

               γ = PaKrykugRtaMgesssl;
                f c = kugRtaMgsgát;GnuBaØatenAkñúgebtug ¬minRtUvFMCag 0.2 f 'c ¦ b:uEnþminRtUvFMCag

                      800 ~ 900 psi enAkñúg edge beam.

     !&> KNnaRkLaépÞrbs;EdkeRbkugRtaMgrbs; edge beam
                                           Pi
                                  A ps =
                                           f si

          Edl f si CakugRtaMgGnuBaØatenAkñúgEdkeRbkugRtaMgmuneBlxatbg; b¤
                                           W cot φ
                                  A ps =
                                           2πf pe

         RbsinebIeKminviPaKedaysuRkit. kñúgtYcugeRkay W CabnÞúksrubefr nigGefrenAelIdMbUgrag
         ekag EdlbNþalBI wD + wL nig f pe CaeRbkugRtaMgRbsiT§PaBeRkayeBlxatbg;.
     !*> RtYtBinitükMras;kMraldMbUgekagGb,brmaEdlRtUvkaredIm,ITb;Tl;nwg buckling
                                              1 .5 p u
                                  hd = a
                                             φβ i β c Ec

          Edl        a=  kaMrbs; dome shell
                      pu = sMBaFKNnaÉktþaBRgayesμI ultimate EdlbNþalBIbnÞúkefr nigbnÞúkGefr

                          = (1.2 D + 1.6 L ) / 144
                     φ=   emKuNkat;bnßyersIusþg;sMrab;sMPar³EdlrgkugRtaMgsgát; = 0.65
                     β i = emKuNkat;bnßy buckling sMrab;bMErbMrYlrbs;épÞragEsV‘rEdlbNþalBIPaBminl¥
                     β i = (a / ri )2 / Edl ri ≤ 1.4a
                     β c = emKuNkat;bnßy buckling sMrab; creep/ sMPar³Edl nonlinearity nigsñameRbH
                         = 0.44 + 0.003WL / b:uEnþminFMCag 0.53 .

                     Ec = m:UDuleGLasÞicedImrbs;ebtug = 57,000 f 'c psi (4,700 f 'c MPa )



          rUbTI 11>23 bgðajBI step-by-step flowchart sMrab;CMhanEdlENnaMkñúgkarsikSaKNnaGag
          ebtugeRbkugRtaMgragmUl nigdMbUgragekagrbs;va.

GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg                                                      727
T.Chhay                                                       viTüasßanCatiBhubec©keTskm<úCa




Prestressed Concrete Circular Storage Tanks and Shell Roofs                     728
Department of Civil Engineering               NPIC




GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg   729
T.Chhay                                                       viTüasßanCatiBhubec©keTskm<úCa




Prestressed Concrete Circular Storage Tanks and Shell Roofs                     730
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof

Mais conteúdo relacionado

Mais procurados

6.beam columns
6.beam columns6.beam columns
6.beam columnsChhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic conceptsChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
1.introduction
1.introduction1.introduction
1.introductionChhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slabChhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loadsChhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 

Mais procurados (20)

6.beam columns
6.beam columns6.beam columns
6.beam columns
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Xiii footings
Xiii footingsXiii footings
Xiii footings
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
1.introduction
1.introduction1.introduction
1.introduction
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slab
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
4.compression members
4.compression members4.compression members
4.compression members
 
8. deflection
8. deflection8. deflection
8. deflection
 

Semelhante a Xi. prestressed concrete circular storage tanks and shell roof

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tensionChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
Iv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beamsIv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beamsChhay Teng
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and archesChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structuresChhay Teng
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equationsChhay Teng
 

Semelhante a Xi. prestressed concrete circular storage tanks and shell roof (16)

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
5.beams
5.beams5.beams
5.beams
 
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
3.tension members
3.tension members3.tension members
3.tension members
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
Iv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beamsIv flexural design on reinforced concrete beams
Iv flexural design on reinforced concrete beams
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
6. influence lines for statically determinate structures
6. influence lines for statically determinate structures6. influence lines for statically determinate structures
6. influence lines for statically determinate structures
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equations
 

Mais de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Mais de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

Xi. prestressed concrete circular storage tanks and shell roof

  • 1. Department of Civil Engineering NPIC XI. GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg Prestressed Concrete Circular Storage Tanks and Shell Roofs 11.1. esckþIepþIm Introduction CaTUeTA GagragmUlebtugeRbkugRtaMgCabnSMd¾l¥bMputénTMrg;eRKOgbgÁúM nigsMPar³sMrab;sþúksar- Faturav nigsarFaturwg. kareFVIkarrbs;vaGs;ry³eBlCagknø³stvtSbgðajfa enAeBlEdleKsikSa KNnavaCamYynwgCMnaj nigkarykcitþTukdak;KYrsm vaGaceFVIkar)an 50qñaM b¤eRcInCagenHedayKμan karEfTaMFMdMueT. kic©xMRbwgERbgdMbUgkñúgkareRbIkMlaMgeRbkugRtaMgvNÐeTAelIeRKOgbgÁúMragmUlKWeFVIeLIgeday W.S. Hewett Edl)anGnuvtþeKalkarN_ tie rod nigeKalkarN_rwtk,al (turnbuckle principle) enAedIm TsSvtSqñaM 1920. b:uEnþEdkBRgwgEdlmanenAeBlenaHman yield strength TabNas; EdlkMNt;nUv kugRtaMgTajGnuvtþn_mineGayFMCag 30,000 psi b¤ 35,000 psi ¬ 206.9 eTA 241.3MPa ¦. CakarBit kMhatbg;eRbkugRtaMgry³eBlEvgd¾FMEdlbNþalBI concrete creep, shrinkage nig steel relaxation swgEtlubbM)at;kMlaMgeRbkugRtaMg. edaysareRkaymk eKrkeXIjEdkEdlmanersIusþg;x<s; enAkñúg TsSvtSqñaM 1940 J.M. Crom )anbegáItedayeCaKC½ynUveKalkarN_rMu high-tensile wire CMuvijCBa¢aMg ragmUlrbs;GagebtugeRbkugRtaMg. taMgBIeBlenaHmk eRKOgbgÁúMsþúkragmUlCag 3,000 RtUv)anksag eLIgedaymanTMhMGgát;p©itepSg². GagsþúkEdlmanTMhMFMCageKmanGgát;p©itrhUtdl; 300 ft (92m) . KuNsm,tþid¾cMbgkñúgkareFVIkar nigesdækic©énkareRbIkMlaMgeRbkugRtaMgvNÐkñúgGagebtugBIelI EdkBRgwgFmμtaKWkarminGnuBaØateGaymansñameRbH. kugRtaMgsgát;vNÐ (circumferential “hugging” hoop stress in compression) Edlpþl;edaykarrMuEdkeRbkugRtaMgBIxageRkACMuvijGagsþúkragmUlKWCa bec©keTsFmμCatisMrab;lubbM)at;sñameRbH enAkñúgCBa¢aMgxageRkAEdlbNþalBIsMBaFrbs;sarFaturwg sMBaF]sμ½n nigbnÞúksarFaturwgEdlGagsþúk. bec©keTsepSgeTotkñúgkareFVIeRbkugRtaMgvNÐedayeRbI tendon mYy²f<k;Cab;eTAnwgCnÞl;RtUv)aneRbIR)as;y:agTUlMTUlayenAGWur:ubCagenAGaemricxageCIg eday sarmUlehtuesdækic©kñúgtMbn; nigbec©keTs. GagsþúkEdleRbIeRbkugRtaMgvNÐ ehIyEdlGaccak;enAnwgkEnøg b¤cak;Rsab;CakMNat;² Edl rYmmanGagsþúkTwk GagTwks¥úy silo GagsþúkeRbg nigsarFatuKImI eRKOgbgÁúMsßanIybUmeRbgenAkNþal smuRT (offshore oil platform structure), cryogenic vessel nig nuclear reactor pressure vessels. eKcat;TukeRKOgbgÁúMTaMgenHCakMralekagesþIg (thin shell) edaysarpleFobd¾EsntUcénkMras;elIGgát; GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 667
  • 2. T.Chhay viTüasßanCatiBhubec©keTskm<úCa p©itrbs;va. edaysarminGnuBaØateGaymansñameRbHeRkamGMeBIbnÞúkeFVIkar eKrMBwgfa shell eFVIkarCa lkçN³eGLasÞiceRkamGMeBIbnÞúkeFVIkar nigeRkamlkçN³bnÞúkelIs (overload condition). 11.2. eKalkarN_ nigdMeNIrkarsikSaKNna Design Principles and Procedures 11.2.1. kMlaMgxagkñúg Internal Loads BicarNaBIkareFVIkarrbs;GagragmUlEdlBak;B½n§nwgkarBinitüTaMgsMBaFxagkñúgEdlbNþalBI sMPar³EdlpÞúkenAxagkñúgmanGMeBIelImuxkat;kMralCBa¢aMgekagragsIuLaMgesþIg (thin-wall cylindrical shell) nigkMlaMgeRbkugRtaMg radial xageRkA nigeBlxøHkMlaMgeRbkugRtaMgbBaÄrEdleFVIeGaykMlaMgxag kñúgmanlMnwg. sMBaFxagkñúgCasMBaF radial edk b:uEnþERbRbYltamTisbBaÄrEdlGaRs½yeTAnwgRbePT sMPar³EdlpÞúkenAkñúgGag. RbsinebIsMPar³CaTwk b¤CaGgÁFaturav sMBaFbBaÄrBRgayeTAelICBa¢aMgGag manragRtIekaN CamYynwgGaMgtg;sIuetGtibrmaenARtg;)atrbs;CBa¢aMg. sarFatu]sμ½nnwgpþl;sMBaF edkefrelIkMBs;TaMgmUlrbs;CBa¢aMg. karBRgaysMBaFbBaÄrrbs;sMPar³EdlmanlkçN³dMuRKab; dUcCa FüÚgfμ b¤RKab;FBaØCatimanragRsedogKñaniwgkarBRgaysMBaFrbs;]sμ½nmkelICBa¢aMgGagEdr. rUbTI 11>1 bgðajBIkarBRgaysMBaDsMrab;krNIénkardak;bnÞúkTaMgbIenH. Prestressed Concrete Circular Storage Tanks and Shell Roofs 668
  • 3. Department of Civil Engineering NPIC RTwsþIeGLasÞicmUldæanrbs; cylindrical shell GnuvtþeTAelIkarsikSaviPaK nigeTAelIkarsikSa KNnaCBa¢aMgrbs;GageRbkugRtaMg. kMlaMgkg (ring force) bgákMlaMgTajkg (ring tension) enAkñúg CBa¢aMgsIuLaMgesþIg (thin cylindrical wall) edaysnμt;KμankarTb; (unrestrained) enAxagcugénmuxkat; edknImYy²eT. TMhMrbs;kMlaMgKWsmamaRteTAnwgsMBaFEdlGnuvtþenAxagkñúg nigKμanm:Um:g;bBaÄrekIt mantamkMBs;rbs;CBa¢aMgeT. RbsinebIcugrbs;CBa¢aMgRtUv)anTb; (restrained) TMhMrbs; ring force ERb RbYl ehIym:Um:g;Bt;nwgekItmanenAkñúgmuxkat;bBaÄrrbs;CBa¢aMgGag. dUcenHTMhMrbs; ring force nigm:U m:g;bBaÄrCaGnuKmn_énkMriténkarTb;rbs; cylindrical shell enARtg;RBMEdnrbs;va ehIyvaRtUv)anKNna BIRTwsþkMralekageGLasÞic (elastic shell theory). bnÞúksarFaturavenAelI)atrGiledayesrI Liquid Load on Freely Sliding Base BIemkanicmUldæan (basic mechanics), ring force KW pd F= = pr (11.1a) 2 ehIykugRtaMgkg (ring stress) KW pd pr fR = = (11.1b) 2t t Edl d= Ggát;p©itrbs;sIuLaMg r = kaMrbs;sIuLaMg t = kMras;CBa¢aMg p = sMBaFÉktþaxagkñúgRtg;)atCBa¢aMg = γH γ = TMgn;maDrbs;sMPar³EdlpÞúkenAkñúgGag. Tensile ring stress enARtg;RKb;cMnucBIxageRkamépÞrbs;sMPar³EdlpÞúkenAkñúgGagkøayCa f R = γ (H − y ) = γ (H − y ) d r (11.2a) 2t t Edl H CakMBs;rbs;sarFaturav ehIy y CacMgayBIelI)at. Ring force EdlRtUvKñaKW F = γ (H − y )r (11.2b) dUckñúgsmIkar 11.1b/ Tensile ring stress GtibrmaenARtg;)atrbs;CBa¢aMgEdlrGiledayesrIsMrab; y = 0 køayCa γHd γhr f R (max ) = = (11.2c) 2t t GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 669
  • 4. T.Chhay viTüasßanCatiBhubec©keTskm<úCa bnÞúk]s½μnenAelI)atEdlrGiledayesrI Gaseous Load on Freely Sliding Base mþgeTotBIeKalkarN_emkanicmUldæan/ tensile ring stress efrKW pd pr fR = = (11.3) 2t t cMNaMfa eKRtUveRbITMhMGgát;p©ittamRTwsþIEdlKitBI centerline EdlmanlkçN³suRkit Etedaysarpl eFob t / d manTMhMtUceBk dUcenHeKGaceRbIGgát;p©itxagkñúg d )an. bnÞúkGgÁFaturav nigbnÞúk]s½μnenAelI)atCBa¢aMgEdlTb; Liquid and Gaseous Load on Restrained Wall Base RbsinebI)atrbs;CBa¢aMgRtUv)anbgáb; b¤ pinned/ enaHeKlubecal ring tension enARtg;)at. edaysarkarbgáb;enARtg;)at enaHeKminGacGnuvtþ simple membrane theory rbs; shell EdlbNþal BIkMhUcRTg;RTayedaysar restraining force enARtg;)atCBa¢aMg. eKcaM)ac;eFVIkarbMElgm:Um:g;Bt;eTACa membrane stress ehIylMgakecj (deviation) rbs; ring tension enARtg;bøg;kNþalrbs;kMBs;CBa¢aMg RtUv)anKitCatMélRbhak;RbEhl nigRtUv)anerobrab;enAkñúgEpñk 11.3. RbsinebIm:Um:g;Bt;bBaÄrenAkñúgbøg;edkrbs;CBa¢aMgenARtg;kMBs;NamYyKW M y / kugRtaMgbegáag (flexural stress) ebtugrgkarsgát; b¤rgkarTajkøayCa M y 6M y ft = f c = = 2 kñúgmYyÉktþakMBs; (11.4) S t karBRgaykugRtaMgbegáagelIkMras;rbs;CBa¢aMgGagRtUv)anbgðajenAkñúgrUbTI 11>2. Prestressed Concrete Circular Storage Tanks and Shell Roofs 670
  • 5. Department of Civil Engineering NPIC 11.2.2. m:Um:g;Tb; M nigkMlaMgkat; Radial Q enARtg;)atCBa¢aMgEdlrGiledayesrIEdl o o ekItBIsMBaFsarFaturav Restraining Moment M o and Radial Shear Force Qo at Freely Sliding Wall Base Due to Liquid Pressure 11.2.2.1. Membrane Theory karsikSaBIkMlaMg nigkugRtaMgenAkñúgCBa¢aMgGagragmUlKμansñameRbHCakarviPaKkMralragekag sIuLaMgEdleFVIkarCalkçN³eGLasÞic. RbsiinebI shell minxUcRTg;RTayeRkamT§iBlrbs;sMBaFsar- Faturavxagkñúg eKGacGnuvtþsmIkarlMnwg basic membrane )an. kMlaMgtambeNþayÉktþa N y / kMlaMg ÉktþavNÐ (circumferential unit force) Nθ nigkMlaMgkat;ÉktþaRtg;p©it N yθ nig Nθ y RtUv)anbgðaj enAkñúg differential element énrUbTI 11>3 (b). cMNaMfa GBaØtiTaMgbYnenHeFVIGMeBIenAkñúgbøg;rbs; shell. GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 671
  • 6. T.Chhay viTüasßanCatiBhubec©keTskm<úCa smIkarlMnwgmUldæanbIsMrab;kMlaMgÉktþaGBaØtiTaMgbYnenHKW ∂Nθ ∂N yθ +r + pθ r = 0 (11.5a) ∂θ ∂y ∂N y ∂Nθ y r +r + pyr = 0 (11.5b) ∂y ∂θ Nθ + pz = 0 (11.5c) r Edl ∂N yθ = ∂Nθ y KWbNþalmkBIkardak;sIuemRTI. dUcenHcMnYnGBaØtiRtUv)ankat;bnßymkenARtwmbIEdl bgðajBIeRKOgbgÁúMkMNt;edaysþaTicEdlrgEtnwgkMlaMgedaypÞal;. sMrab;kardak;bnÞúk axisymmetic dUc bgðajenAkñúgrUbTI 11>3 (d)/ pθ = p y = 0 ehIy p z = p ⋅ f ( y ) . kardak;bnÞúkEbbenHminGaRs½ynwg θ eT. dUcenH p z = −γ (H − γ ) (11.6) ehIydMeNaHRsayrbs;smirk 11.5 KW N yθ = N y = 0 ehIy Nθ = γ (H − y )r (11.7) 11.2.2.2. RTwsþIbTBt;begáag Bending Theory karENnaMBIkarTb; (restraint) enARtg;RBMEdnrbs;GagnaMeGayman radial horizontal shear nigm:Um:g;bBaÄrenAkñúg shell. dUcenH smIkarkMlaMg membrane EdlbgðajenAkñúgEpñkelIkmunRtUv)an EkERbedaykardak;bEnßmm:Um:g; nigkMlaMgkat;. smIkarEdlEkERbRtUvkMNt;Ca bending theory rbs; circular shell EdlRTwsþIenHKitTaMgtMrUvkarPaBRtUvKñaénbMErbMrYlrageFob (strain compatibility) enA kñúgkMhUcRTg;RTayEdlbgáeLIgedaykarekItmankMlaMgkat; nigm:Um:g;xagelI. m:Um:g;Bt; nig central shear enAkñúgkMralragekagsIuLaMgEdlrgbnÞúk axisymmetric RtUv)an bgðajedayviucT½rkMlaMg nigviucT½rm:Um:g;enAkúñgrUbTI 11>4. FatuGnnþtUc ABCD bgðajBIcMnucGnuvtþn_ nigTisedArbs;m:Um:g;Éktþa M y eFobnwgG½kS x nig M θ eFobG½kS y / circumferential unit moment M yθ nig M θ y / kMlaMgkat;EkgÉktþa Q y EdlmanGMeBIenAkñúgbøg;énkMragekagbBaÄr nigEkgeTAnwg shell axis ehIy unit radial shear Qθ EdlmanGMeBIkat;tamkaM shell enAkñúgbøg;EdlRsbnwg shell. eFVItMrYlplénm:Um:g; nigkMlaMgkat;enAkñúgrUbTI 11>4 eTAelIkMlaMgenAkñúgrUbTI 11>3 (b) begáIt )ansmIkarlMnwgxageRkam³ Prestressed Concrete Circular Storage Tanks and Shell Roofs 672
  • 7. Department of Civil Engineering NPIC ∂Nθ ∂N yθ + − Qθ + pθ r = 0 (11.8a) ∂θ ∂y ∂N y ∂Nθ y r+ + pyr = 0 (11.8b) ∂y ∂θ ∂Qθ ∂Q y + r + Nθ + p z r = 0 (11.8c) ∂θ ∂y ∂M y ∂M yθ r+ + Qy r = 0 (11.8d) ∂y ∂y ∂M θ ∂M yθ + r − Qθ r = 0 (11.8e) ∂θ ∂y edaysarPaBsIuemRTIénkardak;bnÞúk/ N yθ = Nθ y = M θ y = M yθ = 0 ehIyeKGacminKit dQθ Edlkat;bnßysmIkarDIepr:g;EsüledayEpñk 11.8 mkCasMnMuénsmIkarDIepr:g;EsülFmμta (ordinary differential equation) dN y r + pyr = 0 (11.9a) dy dQ y r + Nθ + p z r = 0 (11.9b) dy dM y − r + Qy r = 0 (11.9c) dy CamYynwg central membrane forces N y efr ehIyeKykvaesμInwgsUnü enaHeKGacsresrsmIkar EdlenAsl; 11.9b nig 11.9c kñúgTMrg;sMrYldUcxageRkamEdlmanGBaØtibI Nθ / Qy nig M y ³ GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 673
  • 8. T.Chhay viTüasßanCatiBhubec©keTskm<úCa dQ y 1 + Nθ = − p z (11.10a) dy r dM y − Qy = 0 (11.10b) dy edIm,IedaHRsaysmIkarTaMgenH eKRtUvKitBIbMlas;TI nigsmIkarFrNImaRt. smIkarkMlaMg RbsiebI v nig w CabMlas;TIenAkñúgTis y nig z enaHbMErbMrYlragÉktþaenAkñúgTisTaMgenHKW dv εy = dy ehIy εθ = − w r ehIyeKTTYl)an Ny = Et (ε y + μεθ ) = Et⎛ dv w⎞ ⎜ −μ ⎟=0 ⎜ dy r⎟ (11.11a) 1− μ 2 1− μ ⎝ 2 ⎠ nig Nθ = Et (εθ + με y ) = Et ⎛ w dv ⎞ ⎜− + μ ⎟ ⎜ r dy ⎟ (11.11b) 1− μ2 1− μ2 ⎝ ⎠ Edl pleFobB½rsug μ= t = kMras;rbs;CBa¢aMg BIsmIkar 11.11a dv w =μ (11.12a) dy r BIsmIkar 11.11b w Nθ = − Et (11.12b) r smIkarm:Um:g; edaysarPaBsIuemRTI kMeNagenAkñúgTisvNÐminmanERbRbYleT dUcenH kMeNagenAkñúgTis y RtUv esμInwg − d 2v / dy 2 . edayeRbIsmIkarm:Um:g;dUcKñasMrab;kMraleGLasÞicesþIg (thin elastic plate) eKTTYl )an M θ = μM y (11.13a) d 2w M y = −D (11.13b) dy 2 Edl D = Et 3 / 12(1 − μ 2 ) CaPaBrwgRkajTb;karBt;begáagrbs;kMralekag (shell) b¤kMral (plate) Prestressed Concrete Circular Storage Tanks and Shell Roofs 674
  • 9. Department of Civil Engineering NPIC bBa©ÚlsmIkar 11.12 nig 11.13 eTAkñúgsmIkar 11.10 eKTTYl)an d 2 ⎛ d 2 w ⎞ Et ⎜D ⎟ + w = pz (11.14) dx 2 ⎜ dy 2 ⎟ r 2 ⎝ ⎠ RbsinebIkMras;CBa¢aMg t efr enaHsmIkar 11.14 køayCa d 4w Et D + w = pz (11.15) dy 2 r2 edayyk β =4 Et = ( 31− μ2 ) 2 4r D (rt )2 smIkar 11.15 køayCa d 4w pz 4 + 4β 4 w = (11.16) dy D smIkar 11.16 RsedognwgsmIkarEdlTTYlsMrab;Ggát;FñwmEdlmanPaBrwgRkaj D EdlRTedayRKwHeG LasÞicCab; nigRbQmnwgGMeBIénGaMgtg;sIuetbnÞúkÉktþa p z . dMeNaHRsayTUeTAénsmIkarenHsMrab; radial displacement kñúgTis z KW w = e βy (C1 cos β y + C2 sin βy ) + e − βy (C3 cos βy + C 4 sin βy ) + f ( y ) (11.17) Edl f (y) CadMeNaHRsayTUeTAénsmIkar 11.16 Ca membrane solution EdleGaynUvbM;las;TI pz r 2 w= Et 11.2.3. smIkarTUeTAénkMlaMg nigbM;las;TI General Equations of Forces and Displacements edayedaHRsaysmIkar 11.17 nigbBa©ÚlnUvnimitþsBaØaxageRkam Φ (βy ) = e − βy (cos β y + sin βy ) Ψ (β y ) = e − βy (cos βy − sin β y ) θ (βy ) = e − βy cos β y ζ (βy ) = e − βy sin βy eKGackMNt;smIkarsMrab; radial deformation tamTis z nigkargakecjbnþrbs;vaRtg;kMBs; y BI)at CBa¢aMgBIsmIkarsMrYlxageRkamCaGnuKmn_énm:Um:g;ÉktþaRtg;)atCBa¢aMg M o nig radial shear Qo ³ PaBdab w = − 2β13 D [βM o Ψ(βy ) + Qoθ (βy )] (11.18a) mMurgVil dw = 2β12 D [2βM oθ (βy ) + QoΦ(βy )] dy (11.18b) GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 675
  • 10. T.Chhay viTüasßanCatiBhubec©keTskm<úCa d 2w =− 1 [2βM o Φ(βy ) + 2Qoζ (βy )] (11.18c) dy 2 2βD d 3w = 1 [2βM oζ (βy ) − Qo Ψ (βy )] (11.18d) dy 3 D GnuKmn_ shell Φ(βy ) / Ψ(βy ) / θ (βy ) nig ζ (βy ) RtUv)aneGayenAkñúgemKuNT§iBlsþg;dar (standard influence coefficient) éntarag 11>1 sMrab;EdntMél 0 ≤ βy ≤ 3.9 . BIsmIkar 11.18a bMlas;TI radial Gtibrma b¤PaBdabenARtg;)atCBa¢aMgEdlTb;KW (w) y = 0 = − 1 (βM o + Qo ) (11.19a) 2β 3 D ehIyBIsmIkar 11.18b mMurgVil (rotation) Gtibrmarbs;CBa¢aMgRtg;)atkøayCa ⎛ dw ⎞ ⎜ ⎜ dy ⎟ ⎟ = 1 (2βM o + Qo ) (11.19b) ⎠ y = 0 2β D 2 ⎝ Edl M o nig Qo Ca restraining moment nig ring shear enARtg;)atdUcbgðajenAkñúgrUbTI 11>1. sMrab;GagEdlmankMras;CBa¢aMgefr kMlaMgÉktþatamkMBs;CBa¢aMgmandUcxageRkam³ Etw Nθ = − (11.20a) r d 3w Qy = −D 3 (11.20b) dy M θ = μM y (11.20c) d 2w M y = −D (11.20d) dy 2 BIsmIkar 11.18c, 11.18d, 11.20b nig11.20d smIkarsMrab;m:Um:g;bBaÄr nig radial shear tamTisedk enARtg;)atrbs;CBa¢aMg Edl y = 0 køayCa γHrt (M y )y = 0 = M o = ⎛1 − β1 ⎞ ⎜ ⎟ ( ) ⎜ (11.21a) H⎟⎝ ⎠ 12 1 − μ 2 γrt (Q y )y = 0 = Qo = −(2 βH − 1) ( ) (11.21b) 12 1 − μ 2 eKGacTTYl)ansmIkarsMrab;m:Um:g;bBaÄrenARtg;kMBs; y BIelI)atCBa¢aMgBI My = − 1 [βM o Φ(βy ) + Qoζ (βy )] (11.22) β bMErbMrYlkMlaMg ring shear force ΔQ y EdlRtUvniwgbMlas;TI radial wy rbs;CBa¢aMgRtg;kMBs; y BIelI )atenAeBlGagTeT CamYynwgtMélrbs; Qo nig M o EdlbNþalBIkardak;bBa©ÚlsarFaturav nig]sμ½n eBj dUcbgðajenAkñúgrUbTI 11>5. eKGacsresrsmIkarkMlaMgenHCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 676
  • 11. Department of Civil Engineering NPIC GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 677
  • 12. T.Chhay viTüasßanCatiBhubec©keTskm<úCa ΔQ y = + Et r ( ) wy b¤ ΔQ y = Et 2rβ 3 D [βM o Ψ (βy ) + Qoθ (βy )] b¤ ΔQ y = ( 61− μ2 ) [βM Ψ(βy) + Q θ (βy )] o o (11.23) β 3rt 2 Ring shear Q yenARtg;bøg; y BIelI)atesμInwgplsgrvag ring force sMrab;)atEdlrGiledayesrI CamYynwg ΔQ y ³ Q y = F − ΔQ y (11.24) Prestressed Concrete Circular Storage Tanks and Shell Roofs 678
  • 13. Department of Civil Engineering NPIC eKcaM)ac;eKarBtamkarkMNt;sBaØaEdleRbIkñúgdMeNaHRdayTaMgenH. viFIEdlgayRsYlKWKUrragEdlxUc RTg;RTayrbs;CBa¢aMg ehIyeRbIsBaØabUksMrab;lkçxNÐxageRkam³ !> m:Um:g;EdleFVIeGaymankugRtaMgTajenAelIsrésxageRkAbMputénépÞxageRkA. @> kMlaMg Ring tension radial. #> kMlaMg thrust EdlmanTisedAcUlkñúgeTArkG½kSbBaÄr. enATIenH eKeRbITisedAdUcKñasMrab; kMlaMg ring tension edIm,IKUrdüaRkamsMrab;kMlaMgeRbkugRtaMglMnwg (balancing prestressing forces) enAelIRCugdUcKñanwgkMlaMg ring tension sMrab;kareRbobeFob. $> clnaCBa¢aMgxagcUlkñúgeTArkG½kSbBaÄr. %> muMrgVilbRBa©asTisRTnicnaLika. sMBaFsarFaturavmanGMeBIelICBa¢aMgEdlman)atCaTMr Pinned (Pinned Wall Base, Liquid Pressure) enAeBl)atCBa¢aMgmanTMr pinned ehIyrgnUvm:Um:g;bnÞúksarFaturav M o = 0 enARtg;)at 2β 3γH (rt )2 Qo = + ( 12 1 − μ 2 ) 1/ 2 γH ⎛ rt ⎞ b¤ Qo = + 1/ 4 ⎜ 2 ⎟ [12(1 − μ )] (11.25) 2 ⎝ ⎠ eKGacKNnarktMélrbs; shell constant β , β 2 , nig β 4 sMrab;eRbIenAkñúgsmIkarelIkmun)any:aggay BIsmIkarsMrab; β 4 dUcxageRkam³ Et 3( − μ 2 ) 1 β4 = = (11.26a) 4r 2 D (rt )2 β 3 = [3(1 − μ )]2 3/ 4 (11.26b) (rt )3 / 2 β 2 = [3(1 − μ )]2 1/ 2 (11.26c) (rt ) β= [3(1 − μ )] 2 1/ 4 (11.26d) (rt )1/ 2 11.2.4. Ring Shear Qo and Moment β 4 Gas Containment RbsinebIEKmrbs; shell manlkçN³esrIenARtg;)atCBa¢aMg sMBaFxagkñúgbegáItEtkugRtaMg hoop f R = pr / t ehIykaMrbs;sIuLaMgnwgekIneLIgedayTMhM GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 679
  • 14. T.Chhay viTüasßanCatiBhubec©keTskm<úCa rf R pr 2 w= = (11.27) E Et dUcKña sMrab; full restraint enARtg;)atCBa¢aMg (w) y =0 = 1 (βM o + Qo ) (11.28a) 2β 3 D ⎛ dw ⎞ nig ⎜ ⎜ dy ⎟ ⎟ = 1 (2βM o + Qo ) = 0 (11.28b) ⎠ y =0 2 β D 2 ⎝ edaHRsayrk M o nig Qo eyIgTTYl)an p prt M o = − β 2 Dw = − =− ( ) (11.29a) 2β 2 12 1 − μ 2 p (2rt )1 / 2 nig Qo = +4 β 3 Dw = + p =+ [12(1 − μ )] (11.29b) β 2 1/ 4 sMBaFsarFatu]sμ½nmanGMeBIelICBa¢aMgEdlman)atCaTMr Pinned (Pinned Wall Base, Gas Pressure) RbsinebI)atCBa¢aMgCaTMr pinned ehIyrgm:Um:g;bnÞúk]sμ½n M o = 0 enARtg;)at ⎛ pr 2 ⎞ Qo = 2β 3 D⎜ ⎟ ⎜ Et ⎟ ⎝ ⎠ 1/ 2 ⎛ rt ⎞ b¤ Qo = p ⎜ ⎟ [12(1 − μ )] (11.30) 2 ⎝ ⎠ 1/ 4 2 tarag 11>2 bgðajkarsegçbénsmIkarKNnasMrab;GagsþúksarFaturav ehIytarag 11>3 bgðajBI taragsegçbRsedogKñasMrab;GagpÞúksarFatu]sμ½n. 11.3. m:Um:g; M nig kMlaMg Ring Shear Q enAkñúgGagsþúksarFaturav o o Moment M o and Ring Force Qo in Liquid Retaining Tank ]TahrN_ 11>1³ GagragmUlebtugeRbkugRtaMgRtUv)anTb;eBlelj (full restrained) enARtg;)at CBa¢aMg. vamanGgát;p©itxagkñúg d = 125 ft (38.1m) nigpÞúkTwkEdlmankMBs; H = 25 ft (7.62m) . kMras;CBa¢aMg t = 10in(25cm) . KNna (a) m:Um:g;bBaÄrÉktþa M o nigkMlaMg radial ring force Qo enARtg;)atrbs;CBa¢aMg nig (b) m:Um:g;bBaÄrÉktþa M y enARtg;kMBs; 7.5 ft (2.29m) BIelI)at. eRbIpl eFobB½rsug μ = 0.2 ehIyTMgn;maDrbs;Twk γ = 62.4lb / ft 3 (1,000kg / m3 ) . Prestressed Concrete Circular Storage Tanks and Shell Roofs 680
  • 15. Department of Civil Engineering NPIC GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 681
  • 16. T.Chhay viTüasßanCatiBhubec©keTskm<úCa dMeNaHRsay³ (a) enARtg;)atCBa¢aMg r = × 125 = 62.5 ft (19m ) 1 2 t = 10in. = 0.83 ft (0.25m ) BIsmIkar 11.26d β= [3(1 − μ )] 2 1/ 4 = [3(1 − 0.2 × 0.2)]1 / 4 = 0.181 (rt )1 / 2 (62.5 × 0.83)1 / 2 BIsmIkar 11.21a ⎛ 1 ⎞ γHrt ⎜ βH ⎟ M o = −⎜1 − ⎝ ⎟ ⎠ 12 1 − μ 2 ( ) ⎛ 1 ⎞ 62.4 × 25 × 62.5 × 0.83 = −⎜1 − ⎟× ⎝ 0.181× 25 ⎠ 12(1 − 0.04) = −18,574 ft. − lb / ft (7.68kN .m / m ) BIsmIkar 11.21b γrt Qo = +(2 β H − 1) 12 1 − μ 2 ( ) 62.4 × 62.5 × 0.83 = +(2 × 0.181× 25 − 1) 12(1 − 0.04 ) = +7,677lb / ft (112kN / m ) (b) enARtg;kMBs; 7.5 ft BI)atCBa¢aMg y = 7.5 ft kMBs;Twk = (H − y ) = 25 − 7.5 = 17.5 ft (5.33m) pleFobkMBs; = ⎛1 − H ⎞ = 1 − 7.5 = 0.7 ⎜ ⎝ y ⎟ ⎠ 25 βy = 0.181 × 7.5 = 1.36 BIsmIkar 11.22 My = + 1 [βM o Φ(βy ) + Qoζ (βy )] β BItarag 11.1 sMrab; β y = 1.36 Φ = 0.311 ζ = 0.252 Prestressed Concrete Circular Storage Tanks and Shell Roofs 682
  • 17. Department of Civil Engineering NPIC My = + 1 (− 0.181 × 18,574 × 0.311 + 7,677 × 0.252) 0.181 = +4,912 ft − lb / ftt 11.4. kMlaMg Ring Shear Q enARtg;Bak;kNþalkMBs;rbs;CBa¢aMg y Ring Force Q y at Intermediate Heights of Wall ]TahrN_ 11>2³ KNna radial ring force Q enAkñúg]TahrN_ 11>1 Rtg; (a) y = 7.5 ft (2.29m) y nig (b) y = 10 ft (3.05m) BIxagelI)atrbs;CBa¢aMg sMrab;CBa¢aMgrGiledayesrI. dMeNaHRsay³ kMlaMg ring force enARtg;)atEdlrGilesrI F = γHr = 62.4 × 25 × 62.5 = 97,500lb / ft (1,423kN / m ) . BIsmIkar 11.23/ bMErbMrYlkMlaMg ring force KW 6(1 − μ ) ΔQ y = + [βM o Ψ (βy ) + Qoθ (βy )] β 3 rt 2 BIsmIkar 11.1/ β = 0.181 . dUcenH β 3 = 0.0059 (a) Q y enARtg; 7.5 ft BIelI)atCBa¢aMg βy = 0.181× 7.5 = 1.36 BItarag 11.1 sMrab; βy = 1.36 Ψ (βy ) = −0.1965 θ (βy ) = +0.0543 6(1 − 0.04 ) ΔQ y = + [0.181(− 18,574)(− 0.1965) + 7,677(+ 0.0543)] 0.0059 × 62.5(0.83)2 = 24,431lb / ft (356kN / m ) BIsmIkar 11.2b/ ring force F = γ (H − y )r = 62.4 × (25 × 7.5) × 62.5 = 68,250lb / ft . dUcenH Q7.5 = F − ΔQ y = 68,250 − 24,431 = 43,819lb / ft (705kN / m ) dUcbgðajenAkñúgrUbTI 11>6(a). (a) enARtg;kMBs; 7.5 ft BI)at (b) enARtg;kMBs; 10 ft BI)at. (b) Q y enARtg;kMBs; 10 ft BI)atrbs;CBa¢aMg βy = 0.181 × 10 = 1.81 BItarag 11>1 sMrab; βy = 1.81 / GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 683
  • 18. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Ψ (β y ) = −0.1984 θ (β y ) = −0.0387 6(1 − 0.04 ) ΔQ y = [0.181(− 18,574)(− 0.1984) + 7,677(− 0.0387 )] 0.0059 × 62.5(0.83)2 = 8,387lb / ft kMlaMg ring force F = γ (H − y )r = 62.4(25 − 10) = 62.5 = 58,500lb / ft . dUcenH Q10 = F − ΔQ y = 58,500 − 8,387 = 50,113lb / ft (731kN / m ) dUcbgðajenAkñúgrUbTI 11>6 (b). eRbobeFobCamYynwg tMél Q y = 50,115lb / ft EdlTTYl)anedayeRbI membrane coefficient enAkñúg]TahrN_ 11>3. 11.5. Cylindrical Shell Membrane Coefficients eKGackMNt;m:Um:g;Bt;enARtg;kMBs;Nak¾edayBI)atrbs;GagragsIuLaMgBIsmIkarm:Um:g;Bt;sMrab; Fñwmkugs‘ul (cantilever beam). eKTTYl)ansmIkarenHedayKuNm:Um:g; cantilever edayemKuNEdl TMhMrbs;vaCaGnuKmn_eTAnwgTMhMFrNImaRtrbs;Gag ehIyRtUv)aneGayeQμaHfa membrane coeffi- cients. eKGacerobcMsmIkarm:Um:g;mUldæanEdl)anbegáItenAkñúgEpñk 11.2 sMrab;GagsþúkragmUleLIg vijedaybBa©ÚlemKuN H 2 / dt EdltMNageGayragFrNImaRt nigemKuN γH 3 b¤ pH 2 EdltMNag eGayT§iBl cantilever sMrab;kardak;bnÞúksarFaturav nigsarFatu]sμ½n. Prestressed Concrete Circular Storage Tanks and Shell Roofs 684
  • 19. Department of Civil Engineering NPIC tMélefr β enAkñúgsmIkar 11.26d CaGnuKmn_én rt b¤ dt Edl d CaGgát;p©itGag. edayeRbI pleFobB½rs‘ug μ ≅ 0.2 sMrab;ebtug eyIg)an β= [3(1 − μ )] 2 1/ 4 = 1.30 = 1.84 (rt ) 1/ 2 (rt ) 1/ 2 (dt )1 / 2 eKGacsresremKuN 1 / βH EdleRbIenAkñúgsmIkarm:Um:g;Bt;begáagmUldæanénEpñk 11.2 edayeRbItY (dt / H 2 )1 / 2 edaysar β = 1.84 /(dt )1 / 2 . eKk¾GacsresrplKuN βy eLIgvijedayeRbItY λ (H 2 / dt ) edayeRbI y = λH Edl y CakMBs;BI)at. 1/ 2 dUcenH eKGacbgðajm:Um:g; M y énsmIkar 11.22 enAkñúgmuxkat;CBa¢aMgEdlmancMgay y BI)at edayeRbIemKuNrag (form factor) H 2 / dt CamYynwgemKuN cantilever γH 3 b¤ pH 2 dUcxageRkam³ M y = numerical variant × form factor × cantilever facotor b¤ ⎡ M y = ⎢ variant × H2⎤ ⎥ × γH or pH 3 2 ( ) (11.31) ⎢ ⎣ dt ⎥ ⎦ emKuNrag (form factor) H 2 / dt CatMélefrsMrab;eRKOgbgÁúMCak;lak;. dUcenH plKuNén variant nig form factor begáIt)an membrane coefficient C dUcenH smIkar 11.31 køayCa M y = CγH 3 (11.32a) sMrab;bnÞúksarFaturav ehIy M y = CpH 2 (11.32b) sMrab;bnÞúksarFatu]sμ½n. tarag 11>4 dl; 11>16 bgðajBI membrane coefficient C sMrab; form factor H 2 / dt Ca mYynwglkçxNÐRBMEdnEdlniymeRbICageK niglkçxNÐbnÞúkepSg². vakat;bnßykarKNnaCaeRcInEdl TamTarCaTUeTAenAkñúgkarKNna nigkarviPaK shell edayminman)at;bg;suRkitPaBénlT§pleT. eday eRbI membrane coefficient sMrab;dMeNaHRsayénkMlaMg nigm:Um:g;GagragmUl vanwgpþl;lT§plRsedog KñanwglT§plEdlTTYl)anBIdMeNaHRsaym:Um:g;Bt;EdlbgðajenAkñúgEpñk 11>2 nigsMnMuénsmIkarEdl manenAkñúgtarag 11>2 nig 11>3 . GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 685
  • 20. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 686
  • 21. Department of Civil Engineering NPIC GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 687
  • 22. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 688
  • 23. Department of Civil Engineering NPIC GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 689
  • 24. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 690
  • 25. Department of Civil Engineering NPIC GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 691
  • 26. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 692
  • 27. Department of Civil Engineering NPIC GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 693
  • 28. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 11.6. Prestressing Effects on Wall Stresses for Fully Hinged, Partially Sliding and Hinged, Fully Fixed, and Partially Fixed Bases sarFaturav b¤]sμ½nEdlsþúkenAkñúgGagragsIuLaMgGnuvtþsMBaF radial ecjeRkA γh b¤ p enAelI CBa¢aMgGag EdlbegáIt ring tension enAkñúgmuxkat;edknImYy²Rtg;srésxageRkAbMputrbs;CBa¢aMgEdl begáItCasñameRbHEdlminGacGnuBaØat)an. edIm,Ikat;bnßysñameRbHTaMgenHEdlbNþaleGayRCab nig eFVIeGayeRKOgbgÁúMeFVIkarminl¥ eKRtUvGnuvtþkMlaMgeRbkugRtaMgedkxageRkAEdlbegáIt radial thrust cUl kñúgEdlGaceFVIeGay radial tension ecjeRkAmanlMnwg. elIsBIenH edIm,IkarBarkarekItmansñameRbH enAelIépÞxagkñúgrbs;CBa¢aMgenAeBlGagTwkTeT eKRtUvbBa©ÚlkMlaMgeRbkugRtaMgbBaÄredIm,Ikat;bnßykug RtaMgTajEdlenAsl; (residual tension) eGayenAkñúgEdnénm:UDuldac;rbs;ebtug nigedIm,IbMeBjlkç- xNÐemKuNsuvtßiPaB. edIm,IFanakarRbqaMgnwgkarekItmansñameRbHenAépÞxageRkArbs;CBa¢aMgGag eKKYrGnuvtþkMlaMg eRbkugRtaMgedkFMCagkMlaMgEdlvaRtUvkarbnþicedIm,IeFVIeGaykMlaMg radial ecjeRkAEdlbgáedaysar- Faturav b¤]sμ½nxagkñúgmanlMnwg GBa©WgehIyvabegáIteGaymankugRtaMgsgát;EdlenAesssl; (residual compression) enAkñúgGagenAeBlvaeBj. karekIneLIgénkMlaMgeRbkugRtaMgvNÐ (circumferential prestressing forces) tamry³kareRbIEdkeRbkugRtaMgedkbEnßm nigeBlxøHmanEdkbBaÄrFmμtak¾RbqaMg nwgT§iBlrbs;sItuNðPaB nigbMErbMrYlsMeNIm (moisture gradient) Edlqøgkat;kMras;CBa¢aMgkñúgbrisßan minl¥pgEdr. 11.6.1. )atCBa¢aMgrGiledayesrI Freely Sliding Wall Base enAeBllkçxNÐRBMEdnén)atrbs;CBa¢aMgGacrGiledayesrI enaHeBlGagrgbnÞúkxagkñúg vanwg minmanm:Um:g;enAkñúgCBa¢aMgbBaÄrEdlbNþalBIbnÞúksarFaturav b¤k¾bNþalBIkMlaMgeRbkugRtaMg eTaHbIenA eBlGageBjdl;kMBs; H k¾eday. manEt nominal moment d¾tUcb:ueNÑaHekItmanenAeBlGagmineBj b¤rgeRbkugRtaMgedayEpñk b¤k¾TeT ehIyvaminRtUvkarkMlaMgeRbkugRtaMgbBaÄreT. rUbragxUcRTg;RTay rbs;GagEdlrGiledayesrIRtUv)anbgðajenAkñúgrUbTI 11>7. enAeBlEdlkarrGiledayesrICalkçxNÐd¾l¥Edlpþl;nUveRKOgbgÁúMkMNt;edaysþaTic ehIyman lkçN³esdækic©CaeK b:uEnþeKBi)aknwgTTYl)ankñúgkarGnuvtþCak;Esþg. kMlaMgkkit (frictional force) EdlekItmanenARtg;)atCBa¢aMgeRkayeBlEdleKdak;eGayGagdMeNIrkareRbIR)as; dUcenHCMerIsenHmin GaceRbIkar)aneT. Prestressed Concrete Circular Storage Tanks and Shell Roofs 694
  • 29. Department of Civil Engineering NPIC 11.6.2. )atCBa¢aMgCaTMrsnøak; Hinged Wall Base sMrab;CBa¢aMgEdlmantMNsnøak;enA)at kMlaMg radial force GtibrmaEdlbNþalBIsarFaturav EdlvapÞúk ehIyeRbkugRtaMgenARtg;muxkat;eRKaHfñak;Rtg;cMgay y BIelI)atswgEtesμInwgeRbkugRtaMgkñúg krNI)atrGiledayesrIRtg;kMBs; y Edr. b:uEnþeKRtUvbBa©Úlm:Um:g;bBaÄr ehIykMlaMgeRbkugRtaMgbBaÄr køayCacMa)ac;edIm,Ikat;bnßykugRtaMgTajenAkñúgebtugenARtg;épÞCBa¢aMgxageRkA. rUbragxUcRTg;RTayrbs;CBa¢aMgEdlmanTMr hinged RtUv)anbgðajenAkñúgrUbTI 11>8. cMNaMfa muxkat;eRKaHfñak;sMrab; ring force mincaM)ac;enARtg;kMBs;dUcKñanwgmuxkat;eRKaHfñak;sMrab;m:Um:g;eT. edIm,Ikat;bnßysñameRbHEdlGacekItmanrhUtdl;cMnYnGb,brma/ eKcaM)ac;RtUvkar residual ring compression EdlmantMélGtibrma 200 psi(1.38MPa ) sMrab; wire-wrapped presstressed tank Edlminman diaphragm nigmantMélGtibrma 100 psi (0.7 MPa ) sMrab;GagEdlman continuous metal diaphragm. kugRtaMgTajGtibrmaenAépÞxagkñúgrbs;CBa¢aMgminRtUvFMCag 3 f 'c eRkamGMeBIbnÞúk eFVIkar (working load) dUcEdleGayenAkñúgtarag 11>17 enAkñúgEpñkxagmux. rUbragxUcRTg;RTay rbs;GacCBa¢aMg nigbMErbMrYlkugRtaMgenAkñúgebtugEdlkat;tamkMras;rbs;muxkat;enAeBlGagTeT nigenA eBlvaeBj dUcbgðajenAkñúgrUbTI 11>8. sMrab;GagEdlrgeRbkugRtaMgCamYynwg pretensioned tendon nig post-tensioned tendons kugRtaMgsgát;EdlenAesssl;Gb,brmaKYrmantMéldUcGVIEdlerobrab;enA kñúgEpñk 11.10. GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 695
  • 30. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 696
  • 31. Department of Civil Engineering NPIC 11.6.3. )atCBa¢aMgrGiledayEpñk nigmanTMrsnøak; Partially Sliding and Hinged Wall Base edIm,ITTYl)an partially slinging and hinged wall-base system eKRtUveFVIrn§enAkñúgkMralRT )atCBa¢aMgy:agNaedIm,IeGayCBa¢aMgGacrGilkñúgGMLúgeBlrgeRbkugRtaMg. eRkayeBlrgeRbkugRtaMg nigkMhatbg;eRbkugRtaMgedaysar creep, shrinkage nig relaxation, eKRtUvbiTrn§ ehIyCBa¢aMgGageFVI karCa hinged eRkamGMeBIlkçxNÐ service load. eKRtUvRKb;RKgTMhMénkarrGil eTaHbIvaCa full sliding b¤ partial sliding k¾eday edIm,IeGayvasßitkñúgkMritGnuBaØatmunnwgeKTTYl)anTMr hinged. karrGil edayEpñkRbEhl 50% énkarrGileBjelj nigedaymansnøak;enAxagcugrbs;CBa¢aMg vapþl;RbeyaCn_ dl;clnarbs;eRKOgbgÁúMTaMgsMrab;)atrGileBjelj nigTaMgsMrab;)atmansnøak; ehIykarbiTrn§enARtg; tMN pinned Rtg;)atCBa¢aMgRbqaMgnwgkarelcRCabénsarFaturav b¤]sμ½nKWvakan;EtGaRs½yeTAnwgkMrit rGil EdleKGnuBaØatcMeBaH full sliding CagcMeBaH anchorage. rUbragxUcRTg;RTayrbs;CBa¢aMgkñúg GMLúgdMeNIrkarGnuvtþeRbkugRtaMg rYmCamYynwg ring force/ m:Um:g;bBaÄr nigbMErbMrYlkugRtaMgebtugkñúg kMras;CBa¢aMg RtUv)anbgðajenAkñúgrUbTI 11>9. eRbkugRtaMgbBaÄrEdlRtUvkarsMrab;krNI partial slide- pinned mantMéltUcCagkrNI fully pinned EdlminmankarrGileRcInNas;. 11.6.4. )atCBa¢aMgbgáb;eBlelj Fully Fixed Wall Base PaBbgáb;eBjeljrbs;CBa¢aMgenARtg;)atmann½yfaTb; (restraint) mineGayvilTaMgRsugenA Rtg;)atCBa¢aMg. eKGacTTYl)anlkçxNÐenH RbsinebIkMNat;TabCageKrbs;CBa¢aMgRtUv)ancak;kñúgeBl CamYyKñanwgkMral ehIymankarf<k;)any:agl¥eTAkñúgkMral)atEdlmanPaBrwgRkajdUcKña. b:uEnþeKBi)ak nwgTTYl)anRbB½n§minkMNt;EbbenHNas; ehIyvak¾minmanlkçN³esdækic©pg edaysarépÞ)atGagman TMhMFM ehIyPaBbgáb;edayEpñkkøayCacaM)ac;. kMlaMg radial tamTisedkEdl)anBIkMlaMgeRbkugRtaMg nig)anBIsMBaFxagkñúgminmankarERbRbYlBIragRtIekaNsMrab;sarFaturag ragctuekaNsMrab;]sμ½n nigrag ctuekaNBñaysMrab;GgÁFatuRKab;eT. b:uEnþ restraint EdlbegáItedaykMral)atEkERb ring force nig bBa©Úlm:Um:g;bEnßmeTAkñúgmuxkat;bBaÄrrbs;CBa¢aMg. edaysarPaBbgáb;enARtg;)at vanwgminmanbMlas; TIekItmanenARtg;)at b¤kMBUlrbs;CBa¢aMgeT ehIykarERbRbYlénkMeNagrbs;kMBs;CBa¢aMgekItmanenA eBlGagTeT dUcbgðajenAkñúgrUbTI 11>10. cMNaMfa eKKYrsikSaKNnaCBa¢aMgeGayQrRtg; CamYynwg kugRtaMgsgát;Edlesssl;Gb,brmaEdlbNþalBIkMlaMgeRbkugRtaMg 200 psi dUckñúgkrNIelIkmun. GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 697
  • 32. T.Chhay viTüasßanCatiBhubec©keTskm<úCa eRbkugRtaMgbBaÄrEdlRtUvkarsMrab;GagEdlman)atCBa¢aMgbgáb;eBjeljmantMélFMCagsMrab;krNI lkçxNÐRBMEdkdéTeTotxøaMgNas;. eKcaM)ac;eFVIeGaymanbMErbMrYlkugRtaMgTajenAkñúg)atCBa¢aMgRtg;épÞ xageRkAEdlbNþalBIm:Um:g;GviC¢mand¾FMenARtg;)ateGaymantMélFM ¬emIlrUbTI 11>10 a nig b¦ ehIy bRBa©askMeNagEdlenAEk,rva. eBlxøH vamanlkçN³esdækic©CagedayeRbIEdkBRgwgFmμtaenAEpñkxag eRkamrbs;CBa¢aMgbEnßmBIelIEdk eRbkugRtaMg edIm,IGaceRbIeRbkugRtaMgbBaÄrtUcCag nigeGayEdkBRgwg FmμtaTTYlnUvm:Um:g;GviC¢mand¾FMenaH. eKk¾Gackat;bnßykugRtaMgTajenAkñúgebtugedayeRbIkMlaMgeRbkug RtaMgbBaÄrcakp©itCamYynwgcMNakp©itsmrmü rYmCamYynwgEdkBRgwgFmμtabEnßm. b:uEnþ EdkeRbkugRtaMg Prestressed Concrete Circular Storage Tanks and Shell Roofs 698
  • 33. Department of Civil Engineering NPIC bBaÄrEdleRbIenAkñúgGagsþúkmantMéléfø edaysartMrUvkar anchorage enAxagcug nig)atrbs;CBa¢aMg Gag. dUcenH eKRtUvkarkat;bnßyeRbkugRtaMgbBaÄrkñúgkarsikSaKNnaedIm,IbEnßmlkçN³esdækic©dl; karsikSaKNna RbB½n§eRKOgbgÁúMGagTaMgmUl. GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 699
  • 34. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 11.6.5. )atCBa¢aMgbgáb;mineBjelj Partially Fixed Wall Base 11.6.5.1. karTb;nwgkarvil Rotational Restraint dUckarbgðajBIxagedIm eKBI)akkñúgkareFVIeGay)ankarTb;eBleljRbqaMgnwgkarvilenARtg;)at CBa¢aMgNas;. mUlehtusMxan;manbI³ ¬!¦ eKRtUvpþl;nUvPaBrwgRkajcaM)ac;enAkñúgkMral)atGagRtg;kEnøg RbsBVCamYyCBa¢aMgedIm,ITTYl)ankarbgáb;eBjelj. ¬@¦ clnarbs;dIxageRkamCBa¢aMgGacbgákarvil rbs;)atCBa¢aMg. nig ¬#¦ eKTamTarkarRb mUlpþúM anchorage sMrab;TaMgeRbkugRtaMgbBaÄr nigTaMgeRb kugRtaMgvNÐedkrbs;kMNat;CBa¢aMg-)at edaysarCBa¢aMg nig)atrgeRbkugRtaMgdac;edayELkBIKña. edaysarkMral)atmanépÞFM T§iBlénkarTb; b¤kareFVIeGayrwgrbs;vaRtUv)ankMNt;RtwmbrievN toe d¾tUcceg¥ótEdleFVIkarCalkçN³ cantilever BI)atCBa¢aMg. CMerIsd¾RtwmRtUvénTTwgrbs; toe b¤ base ring kMNt;nUvPaBRtwmRtUvéntMélPaBrwgRkajkñúgkarKNnaEdl)anBIdWeRkénkarbgáb;snμt;rbs;)at CBa¢aMg. rUbTI 11>11 bgðajBIT§iBlénTTwg base ring eTAelImMurgVilrbs;CBa¢aMg nigbMlas;TIrbs; ring. Epñk (c) rbs;rUbbgðajBIsßanPaBlMnwgEdlcugrbs; ring sßitenAelInIv:UdUcKñanwg)atrbs;CBa¢aMg b:uEnþlkçxNÐEdlbgðajenAkñúgEpñk (a) nig (b) Bak;B½n§nwgbMlas;TIBIxageRkam)atrbs;CBa¢aMg ehIyva min)anbMeBjlkçxNÐeT. Prestressed Concrete Circular Storage Tanks and Shell Roofs 700
  • 35. Department of Civil Engineering NPIC eKGacTTYl)anrUbmnþkñúgkaredaHRsayrkTTwg ring base eRKaHfñak;tamry³kareRbIeKalkarN_ tMrYtpl (superposition) edaybUkbBa©ÚlkrNIénCBa¢aMgviledayesrI (freely rotating wall) CamYYynwg krNICBa¢aMgbgáb;eBjelj dUcbgðajenAkñúgrUbTI 11>12. eKyk M o = m:Um:g;bgáb;eBjeljtamRTwsþIenARtg;)atCBa¢aMg M p = m:Um:g;edayEpñkenARtg;)atCBa¢aMgEdlbNþalBI loaded cantilever toe θ1 = mMurvilesrIrbs;)atCBa¢aMgsMrab;EtTMr pinned EdlRtUvnwgPaBdab Δ1 rbs; stiff unloaded toe θ2 = mMurgVil)atCBa¢aMgEdlbNþalBI restraining moment M p EdlRtUvnwgPaBdab Δ 2 én straight unloaded toe θ3 = mMurgVileFobxagcugén stiffening toe EdlmanlkçN³Ca cantilever eRkamGMeBIbnÞúkbBaÄr EdlRtUvnwgPaBdab Δ3 rbs;cug toe EdlbNþalBIbnÞúkbBaÄr. L = TTwgrbs; stiffening toe. q = bnÞúkÉktþaEdlGnuvteTAelI stiffening toe = γH Edl H CakMBs;rbs;Gag EdlGgát;p©it rbs;vaesμInwg d / kMras;CBa¢aMgrbs;vaesμInwg t ehIykMras;kMralrbs;vaesμInwg h . GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 701
  • 36. T.Chhay viTüasßanCatiBhubec©keTskm<úCa eKTTYl)anmMurgVilÉktþaθ rbs;CBa¢aMgRtg;)atrbs;vaEdlbNþalBIm:Um:g; M o b:uEnþminmanbMlas; TI radial BIsmIkar 11.18a edayeGay w = 0 edIm,ITTYl)an Q = −βM . smIkar 11.18b sMrab;mMurgVil ÉktþakøayCa Mo Mp θ1 = θ2 = (11.33) 2βD 2βD dUcenH eyIg)an LM o LM p Δ1 = Δ2 = (11.34) 2βD 2βD RbsinebIeKcat;Tuk stiffening wall toe Ca cantilever Edlrg transverse load γH / Cantilever moment Gtibrma M p ehIyPaBdabEdlRtUvKña Δ 3 KW γHL2 3γHL4 Mp = Δ3 = (11.35) 2 2 Eh 3 eKGacTTYl)anm:Um:g;enARtg;)atCBa¢aMgEdlbgáb;edayeRbI membrane coefficient C BItarag 11>4 sMrab; form factor H 2 / dt nigRbePTbnÞúk. sMrab;bnÞúksarFaturag M o = CγH 3 (11.36) BIsmIkar 11.12(c) rUbragEdlxUcRTg;RTayedaysarbnÞúkeBjKW Δ1 = Δ 2 + Δ 3 snμt; μ = 0.2 nig β = 2 / dt edayCMnYs Δ 2 nig Δ 3 BIsmIkar 11.34 eTAkñúgsmIkar 11.35 nig 11.36 enaHeyIg)an 2CH 2 L2 = (11.37) 1+ (t / h )3 (L = 1) (dt )1 / 2 γHL2 nig Mo = 2 (11.38) yktY S= (t / h )3 (11.39) (dt )1 / 2 tY S énsmIkar 11.39 enHRtUv)aneKeGayeQμaHfa modifying factor sMrab;karbgáb;edayEpñk. em KuNenHCaTUeTAmantMéltUc ehIybgðajnUvplsgrvagm:Um:g;bgáb;srub M o nigm:Um:g;Tb;edayEpñk (partial restraint moment) M p . dUcenH M p = M o (1 − S ) (11.40) tMélrbs; L enAkñúgPaKEbgénsmIkar 11.37 RtUv)ansnμt;esμInwg 1 sMrab;karsMrYlenAkñúgkarEkERb emKuN S . Prestressed Concrete Circular Storage Tanks and Shell Roofs 702
  • 37. Department of Civil Engineering NPIC RbsinebItMélrbs; S tUcEmnETn dUckñúgkrNIGagEdlmanGgát;p©itFM ¬Ggát;p©itFMCag 125 ft eTA 150 ft ¦ smIkarkarsMrab; L nig M p køayCasmIkrsMrab;karbgáb;eBjelj L2 = 2CH 2 nig M p = CγH 3 11.6.5.2. Base Radial Deformation kMhUcRTg;RTay radial Δ s én base ring EdlrgkMlaMg radial enAkñúgbøg;rbs;vaGacTTYlBIRTwsþI rbs;kMralmUlEdlmanRbehagcMp©it. smIkarsMrab;PaBdabrbs;kMralEdlbgðajenAkñúgrUbTI 11>13 (a) KW d oQ ⎛ d o + d 2 ⎜ 2 ⎞ Δs = − μ⎟ (11.41) 2hE ⎜ d o − d 2 ⎝ 2 ⎟ ⎠ Edl μ = pleFobB½rs‘ug ~ 0.2 sMrab;ebtug ehIy E Cam:UDuleGLasÞic. kMlaMg radial edkÉktþaEdl RtUvkarsMrab;begáItbMlas;TIÉktþaenAkñúgkMlagmYltan;KW GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 703
  • 38. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 2.5hE Q2 = (11.42) do ehIytMélRtUvKñaén radiant thrust EdlGnuvtþeTAelI ring xageRkAKW 2hE Q3 = (11.43) do K ⎛d2 + d2 ⎞ Edl K =⎜ o ⎜ d2 − d2 − μ⎟ ⎟ ⎝ o ⎠ ehIy d = Ggát;p©itxagkñúgrbs; base ring = (do − 2L) . eKkMNt;PaBrwgRkaj relative rbs;CBa¢aMgedayeRbItYénkMlaMgEdlRtUvkarsMrab;begáItbMlas;TI ÉktþaenAkñúgCBa¢aMg nigkMral)atBIeKalkar virtual work dUcEdlbgðajenAkñúgrUbTI 11>13 (b) nig (c). kar BRgayfamBleRbkugRtaMgcenøaHCBa¢aMg nig base slab ring CaGnuKmn_én relative radial stiffness rbs;va dUcenHeKcaM)ac;RtUvkMNt;PaBrwgRkaj relative. b:uEnþ eKRtUvdwgfa PaBrwgRkajrbs; base ring enAkñúgGageRbkugRtaMgEdlmankugRtaMgsgát; radial enAkñúgbøg;rbs;vamantMélFMCagPaBrwg RkajénCBa¢aMgsIuLaMgrbs;GageRkamsMBaF radial xagkñúg. dUcenH kMhatbg;eRbkugRtaMgBIPaBxusKña énPaBrwgRkajminsMxan;eTsMrab;GagGgát;p©itFM EteKRtUvBicarNavasMrab;GagGgát;p©ittUc. eKGacTTYlbMlas;TIÉktþa Δ EdlbNþalBIkMlaMg radial Q' EdlminmanmMurgVilenARtg;)at CBa¢aMgBIsmIkar 11.8 b edayeRbI 2βM = −Q sMrab;mMurgVil dw / dy = 0 . PaBdabÉktþa Δ enAkñúg smIkar 11.18a køayCa Q3 Δ= 4β 3 D b¤ Δ= Q' 4β 3 D (11.44) Et 3 Edl D= ( ) 12 1 − μ 2 edayeRbI μ ~ 0.2 / smIkar 11.44 sMrab;bMlas;TI radial Éktþarbs;CBa¢aMgenARtg;)atCBa¢aMgEdlmin manmMurgVilkøayCa 3/ 2 ⎛t⎞ Q ' = 2 .2 E ⎜ ⎟ (11.45) ⎝d ⎠ Edl E Cam:UDuleGLasÞicrbs;ebtug. BIsmIkar 11.42/ kMlaMg radial EdlRtUvkarsMrab;begáItbMlas;TI radial ÉktþaenAkñúgkMlagragmUltan;KW ⎛ h ⎞ Q2 = 2.5 E ⎜ ⎟ ⎜d ⎟ (11.46) ⎝ o⎠ Prestressed Concrete Circular Storage Tanks and Shell Roofs 704
  • 39. Department of Civil Engineering NPIC edaybUk Q' nig Q2 enaHkMlaMgsrubEdlmanGMeBIenARtg;kEnøgRbsBVrvagCBa¢aMg nig)atRtUv)anEbg EckeTACBa¢aMg nigeTA)atedayQrelIsmamaRténfamBl relative EdlRtUvkarsMrab;begáItbMlas;TI ÉktþanImYy². smamaRténkMlaMgsrub Q'+Q2 EdlRtUv)anRTedayCBa¢aMgKW Q' R= Q'+Q2 edayyk R= 1 1 + S1 kMNt; S1 edayCMnYssmIkar 11.45 nig11.46 eTAkñúgsmIkarxagelI eyIg)an 2.5(h / d ) S1 = 2.2(t / d )3 / 2 edaysnμt; d ~ do / b¤ 1/ 2 ⎛h⎞ ⎛d ⎞ S1 = 1.1⎜ ⎟ × ⎜ ⎟ (11.47) ⎝t⎠ ⎝t ⎠ RbsinebI S1 tUc enaHeKGacyksmamaRténkMlaMgedkEdlepÞrBI)atkMraleTACBa¢aMg ¬suRkitRKb;RKan;¦ 100 R= % (11.48) S1 enAeBlEdl ring xageRkArbs;kMralrgkugRtaMgsgát;eday radial thrust enARtg;EKm eKRtUvEksMrYl tMélrbs; Q2 EdlTTYlBIsmIkar 11.42 ehIy S1 enAkñúgssmIkar 11.48køayCa 1/ 2 1 ⎛h⎞ ⎛d ⎞ S1 = ⎜ ⎟ × ⎜ ⎟ (11.49) K⎝t⎠ ⎝t ⎠ Edl BIelIkmun ⎛ do + d 2 2 ⎞ ⎜ K= 2 −μ⎟ ⎜d −d2 ⎟ ⎝ o ⎠ EdlkñúgenaH d CaGgát;p©itxagkñúgrbs; slab ring = d o = 2L ehIy d o CaGgát;p©itxageRkA. 11.7. Recommended Practice for Situ-Cast and Precast Prestressed Concrete Circular Storage Tanks 11.7.1. kugRtaMg Stresses eKalkarN_ENnaMTUeTAsMrab;GagsþúkragmUlebtugeRbkugRtaMgEdlcak;enAnwgkEnøgRtUv)anpþl; eGayeday Prestressed Concrete Institute/ American Concrete Institute nig Post-Tensioning Institute sMrab;eRCIserIskugRtaMgGnuBaØat/ karkMNt;TMhM kMras;CBa¢aMgGb,brma nigdMeNIrkardMeLIg nig GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 705
  • 40. T.Chhay viTüasßanCatiBhubec©keTskm<úCa sagsg;. kugRtaMgGnuBaØatenAkñúgebtug nig shotcrete RtUv)aneGayenAkñúgtarag 11>17. kugRtaMg GnuBaØatenAkñúgEdkBRgwgRtUv)aneGayenAkñúgtarag 11>18. 11.7.2. emKuNbnÞúk nigersIusþg;tMrUvkar Required Strength Load Factors eRKOgbgÁúM rYmCamYynwgrcnasm<½n§rbs;va nigeCIgtag KYrRtUv)ansikkSaKNnay:agNaeGay ersIusþg;KNna (design strength) FMCagT§iBlrbs;bnSMbnÞúkemKuNEdlkMNt;eday ACI 318, ANSI/ ASCE 7-95 b¤GaRs½yelIkarEksMrYledayvisVkrEdlQrelIkarviPaKd¾smehtupl CamYynwglkçxNÐ xageRkam³ Prestressed Concrete Circular Storage Tanks and Shell Roofs 706
  • 41. Department of Civil Engineering NPIC smIkarersIusþg;m:Um:g; nominal M n RsedogKñanwgsmIkarEdleRbIsMrab; linear prestressing ⎛ a⎞ M n = A ps f ps ⎜ d p − ⎟ (11.50a) ⎝ 2⎠ ⎛ a⎞ ⎛ a⎞ b¤ M n = A ps f ps ⎜ d p − ⎟ + As f y ⎜ d − ⎟ ⎝ 2⎠ ⎝ 2⎠ (11.50b) enAeBlEdleKeRbI As ehIy Edl Aps = EdkeRbkugRtaMgbBaÄrkñúgTTwgmYyÉktþa f ps = kugRtaMgenAkñúgEdkeRbkugRtaMgRtg;ersIusþg; nominal f y = yield strength rbs;EdkFmμta 11.7.3. tMrUvkarGb,brmakñúgkarKNnaCBa¢aMg Minimum Wall-Design Requirements 11.7.3.1. kMlaMgvNÐ Circumferential Forces sarFaturav kMlaMgedIm Fi = γr (H − γ ) ff pi (11.51a) ps karcak;bMeBj (backfill) kMlaMgedIm Fbi = p(r + t ) (11.51b) Edl t CakMras;CBa¢aMgsrub. 11.7.3.2. kMras; nigkugRtaMg Thickness and Stresses kMras;CBa¢aMg (Core Wall Thickness) Fi t co = (11.52) f ci GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 707
  • 42. T.Chhay viTüasßanCatiBhubec©keTskm<úCa b:uEnþminRtUvtUcCagkMras;CBa¢aMgGb,brmaEdlmanerobrab;enAkñúgEpñk 11.7.3.6. kugRtaMgcugeRkayEdlbNþalBIkarcak;bMeBj nigeRbkugRtaMgedIm Fbi Fi f pe f = + (11.53) t t co f pi 11.7.3.3. PaBdab Deflections PaBdab radial eGLasÞicedImrbs;CBa¢aMgEdlbNþalBIkMlaMgeRbkugRtaMgedImKW Fi r Δi = (11.54) t co Ec Edl kaMxagkñúgrbs;Gag r= t co = kMras;rbs;CBa¢aMgenAxagcug xag)atrbs;CBa¢aMg Ec = 57,000 f 'c psi (4,700 f 'c MPa ) sMrab;ebtugTMgn;Fmμta nig shotcrete. PaBdab radial cugeRkay Δf GacmantMélesμInwg1.5 eTA3dgénPaBdabdMbUg. sMrab;lkçxNÐ eKGacykPaBdab radial EdlGnuBaØatcugeRkaydUcxageRkam Δf = 1.7 Δ i (11.55) 11.7.3.4. T§iBlTb; Restraint Effects m:Um:g;Bt;bBaÄrGtibrmarbs;CBa¢aMgEdlbNþalBIkMlaMgkat; radial M f = 0.24Qo rt co (11.56a) m:Um:g;enHekItmanenAcMgay y = 0.68 rt co (11.56b) BI)at b¤cugEKm kMlaMgkat; radial sMrab;)atEdlcak;rYmKñaEdlsnμt;favaCatMNsnøak; t co Qo = 0.38 Fi (11.57) r RbePTénkarlMGitenaHRtUv)aneRbIsMrab;EtGagsþúkEdlcak;enAnwgkEnøgEdlsagsg;edayman diaphragm enAkñúgCBa¢aMgrbs;vab:ueNÑaH. 11.7.3.5. EdkFmμtasMrab;karf<k;enA)at Mild Steel for Base Anchorage RbsinebIeKeRbI diaphragm/ eKRtUvbgðÚtEdkxagkñúgEdlmanragGkSr UTaMgGs;cMgay Prestressed Concrete Circular Storage Tanks and Shell Roofs 708
  • 43. Department of Civil Engineering NPIC y1 = 1.4 rt co (11.58a) BIelI)at. RbsinebIeKmineRbI diaphragm eKRtUvbgðÚtvacMgay y2 = 1.8 rtco (11.58b) BIelI)at. cMNaMfa eKRtUvbUkbEnßmRbEvgf<k; (anchorage length) BIelI y1 b¤ y2 . RkLaépÞGb,brma rbs;EdkbBaÄr nominal enARtg;tMbn;)atKW As = 0.005t co (11.59) ehIyeKRtUvbgðÚtvaBI)atnUvcMgay 3 ft b¤ y3 = 0.75 rt co (11.60) edayykmYyNaEdlFMCag. 11.7.3.6. kMras;CBa¢aMgGb,brma Minimum Wall Thickness CBa¢aMgcak;enAnwgkEnøg CBa¢aMgcak;Rsab; eKRtUvcMNaMfa sMrab;GagEdlrgeRbkugRtaMgCamYynwg tendon, eKENnaMkMras;CBa¢aMgminRtUvtUc Cag 9in. sMrab;kargarGnuvtþn_. GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 709
  • 44. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 11.8. RKb;RKgsñameRbHenAkñúgCBa¢aMgrbs;GagebtugeRbkugRtaMgragmUl Crack Control in Walls of Circular Prestressed Concrete Tanks nig Preston ENnaMsmIkarxageRkamedayQrelIkargarrbs; Nawy sMrab;TMhMsñameRbH Vessy GtibrmaenAépÞxageRkArbs;CBa¢aMgGageRbkugRtaMg³ wmax = 4.1 ⋅10 −6 ε ct E ps I x (11.61) Edl ε ct = bMErbMrYlrageFobrbs;épÞrgkarTaj (tensile surface strain) enAkñúgebtug 8 ⎛ s 2 s1tb ⎞ I x = grid index = ⎜ ⎟ π ⎜ φ1 ⎝ ⎟ ⎠ s2 = KMlatEdkkñúgTiselx “2” s1 = KMlatEdkkñúgTisEkgelx “1” ¬Tisedk¦ tb = kMras;karBarEdkKitdl;G½kSEdk φ1 = Ggát;p©itEdkkñúgTisem “1” eKGacKNnabMErbMrYlrageFobrgkarTajBI α t f pi ε ct = (11.62) E ps Edl αt = )a:ra:Em:RtkugRtaMg (stress parameter) ≅ f p / f pi f p = kugRtaMgCak;EsþgenAkñúgEdkeRbkugRtaMg f pi = eRbkugRtaMgedImmuneBlkMhatbg; sMrab;GagEdlsþúksarFaturav TMhMsñameRbHGnuBaØaGtibrmaKW 0.004in. 11.9. karsikSaKNnadMbUg Roof Design dMbUlsMrab;GagEdlsagsg;kñúgTMrg;ekag (shell dome) b¤ CadMbUlrabesμIEdlRTenAelIssr xagkñúg. CaTUeTA tMélrbs;dMbUlRbEhlCamYyPaKbIéntMéleRKOgbgÁúMTaMgmUl. kñúgkrNIdMbUlrabesμI ¬eTaHcak;Rsab; b¤cak;enAnwgkEnøg¦ karKNnaeFVItameKalkarN_KNnaRbB½n§kMralebtugGarem: b¤ebtug eRbkug RtaMgmYyTis b¤BIrTisFmμta dUcEdlerobrab;enAkñúg ACI 318 Code. RbsinebI dMbUlCaRbePT ebtugeRbkugRtaMgcak;Rsab; ehIyGgát;p©itGagminFM enaHeKmincaM)ac;eRbIssrxagkñúgeT. ebIminGBa©wg eT tMélrbs;ssrxagkñúgbEnßm nigeCIgtagrbs;vaGacbegáIntMélrbs;eRKOgbgÁúMTaMgmUl. dMbUlekagmanRbeyaCn_sMrab;GagEdlmanGgát;p©itminFMCag 150 ft edaysarvaminRtUvkar ssrTMrxagkñúg nigehIyvamanlkçN³esdækic©sMrab;GagEdlbgáb;eRkamdIkñúgkarTb;Tl;nwgbnÞúkcak;bM Prestressed Concrete Circular Storage Tanks and Shell Roofs 710
  • 45. Department of Civil Engineering NPIC eBj (backfill). dUcenH TMrg; shell nigtMNrbs;vaeTAnwgCBa¢aMgGagmanT§iBly:agxøaMgeTAelItMél. CakareBjniym dMbUl shell RtUv)anRTedayCBa¢aMgGagCamYynwgtMNEdlman flexible completely ebImindUecñaHeT eKRtUvEksMrYlkarKNnaTaMgCBa¢aMgGag nigTaMg roof dome EdlTak;TgnwgdWeRkénkar Tb; nigPaBrwgRkaj relative CamYynwgtMélsagsg;bEnßmkñúgeBlCamYyKña. dMbUlekagragEsV‘rEdlman rise-to-diameter ratio h' / d tUc eKeRcInyktMélRbEhl 1/ 8 . dMbUlekagEbbenH b¤ axisymmetrical shell begáItkMlaMgedkEdlmanTisecjeRkAenARtg; springing EdlvaRtUv)anTb;Tl;eday ring beam eRbkugRtaMgEdlKNnay:agRtwmRtUvenARtg;TMr. RbePT ring beam kMNt;RbtikmμelIs nigm:Um:g;elIsEdlbNþalBIkugRtaMgbEnßmedaypÞal; nigkugRtaMgBt;enARtg; cugbgáb;enAkñúg shell Ek,r springing. eKGacniyaymüa:geTotfa membrane solution RtUvbMeBjkar EkERbedaydak;vabEnßmBIelIT§iBlm:Um:g;Bt;EdlkMNt;edaytMrUvkar strain compatibility én bending theory. 11.9.1. Membrane Theory of Spherical Domes 11.9.1.1. Shell of Revolution smIkarlMnwg membrane sMrab;kMlaMgedaypÞal;enAkñúg shell of revolution dUcEdlbgðajenA kñúgrUbTI 11>14 RtUveRbIsMrab;kMNt; kMlaMg meridional Éktþa Nφ / kMlaMg tangential Éktþa Nθ nig kMlaMg central Éktþa Nφθ nig Nθφ edayeRbItYbnÞúkTMnaj pφ / pθ nig p z . smIkarTaMgenHman³ Meridional: ( ∂ Nφ ro )− N ∂r ∂Nθφ + r1 + pφ ro r1 = 0 (11.63a) θ ∂φ ∂φ ∂θ ∂Nθ ∂ro ∂Nθφ Tangential: r1 + Nθφ + + po ro r1 = 0 (11.63b) ∂θ ∂φ ∂φ N φ Nθ Tis z ³ r1 + r2 + pz = 0 (11.63c) edaysarbnÞúkmanlkçN³sIuemRTI/ RKb;tYTaMgGs;EdlTak;Tgnwg ∂θ RtUv)anbM)at; ehIyeKGacsresr tYEdlTak;Tgnwg ∂φ eLIgvijCaDIepr:gEsülsrub dφ edaysarKμantYNamYyERbRbYlGaRs½ynwgtY θ . ehIybgÁúM circumferential load pθ = 0 edaysarkMlaMgpÁÜbkMlaMgkat;RtUv)anbM)at;tambeNþay meridional nigrgVg;EdlRsb. dUcenH eKGacsresrsmIkar 11.63 eLIgvijCa d dφ ( ) Nφ ro − Nθ r1 cos φ + p y r1ro = 0 (11.64a) N φ Nθ + + pz = 0 (11.64b) r1 r2 GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 711
  • 46. T.Chhay viTüasßanCatiBhubec©keTskm<úCa 11.9.1.2. dMbUlekagragEsV‘r Spherical Dome smIkarlMnwgrbs; Membrane Analysis dMbUlekagragEsV‘rmankMeNagefr. dUcenH r1 = r2 = ro . edaysnμt;fa kaMrbs;EsV‘resμInwg a enaH ro = a sin φ enAkñúgrUbTI 11>14(c) ehIyedayyk p z = wD sMrab;bnÞúkpÞal; enaHsmIkarlMnwg Prestressed Concrete Circular Storage Tanks and Shell Roofs 712
  • 47. Department of Civil Engineering NPIC TUeTA 11.64 køayCa ⎛ 1 ⎞ ⎜ 1 + cos φ − cos φ ⎟ Nθ = awD ⎜ ⎟ (11.65a) ⎝ ⎠ nig Nφ = − awD 1+ cos φ (11.65b) Edl wD CaGaMgtg;sIuetrbs;bnÞúkpÞal;kñúgmYyÉktþaépÞ. eyIgeXIjy:agc,as;BIsmIkar 11.65 b fa kMlaMg meridional Nφ nwgGviC¢manCanic©. dUcenH kMlaMgsgát;nwgekItmantambeNþay meridian ehIyvanwgekIneLIgenAeBlEdlmMu φ ekIneLIg³ enAeBl φ = 0 / Nφ = −awD / 2 ehIyenAeBlEdl φ = π / 2 / Nφ = −awD . kMlaMg tangential Nθ mantMélGviC¢man ¬kMlaMgsgát;¦ sMrab;EttMélkMNt;énmMu φ b:ueNÑaH. edayyk Nθ = 0 enAkñúgsmIkar 11.65a/ 1/(1 + cosφ ) − cosφ = 0 eKTTYl)an φ = 51o 49' . kar kMNt;bgðajfa sMrab; φ > 51o 49' kugRtaMgTajekItmanenAkñúgTisEkgnwg meridian. karEbgEckkug RtaMg meridional Nφ ehIykarEbgEckkugRtaMg tangential Nθ sMrab;TaMgbnÞúkpÞal; wD nigbnÞúk GefrxageRkA wL RtUv)anbgðajenAkñúgrUbTI 11>15. RbsinebIbnÞúkxageRkAefr ¬bnÞúkRBil¦ EdleGayGaMgtg;sIuet wL / kMlaMg meridional Nφ RtUv)anTTYlBIlMnwgénGgÁesrIedayeGaybnÞúkxageRkAesμInwgkMlaMg meridional xagkñúg mann½yfa − π (d / 2)2 wL = 2π (a sin φ )Nφ . edaysar d / 2 = a sin φ eyIgTTYl)an wL a Nφ = − (11.66a) 2 dUcenH Nφ CatMélefrelIkMBs; shell TaMgmUl dUcEdleXIjenAkñúgrUbTI 11.15. Nθ EdlbNþalBIbnÞúkGefr wL KW awL ⎛1 ⎞ awL Nθ = −awL cos 2 φ + = awL ⎜ − cos 2 φ ⎟ = cos 2φ (11.66b) 2 ⎝2 ⎠ 2 sMrab;krNI Nθ = 0 / mMu φ = 45o . dUcenH kugRtaMg shell EdlbNþalBIkMlaMg tangential Nθ sMrab; φ < 45o CakugRtaMgsgát; Edlkat;bnßysñameRbH. BIkarEbgEckkugRtaMg tangential Nθ eKGacsnñi- dæan)anfadMbUlrbs;GagsþúkmanlkçN³ flat ¬pleFob h' / d enAkñúgrUbTI 11>15(b) minRtUvFMCag 1 / 8 ¦ EdlebtugTaMgGs;nwgrgkugRtaMgsgát;EdlbNþalBI Nφ nig Nθ enAeBlEdlmMu φ < 51o 49' sMrab;kMlaMg meridianal nig 45o sMrab;kMlaMg tangential. GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 713
  • 48. T.Chhay viTüasßanCatiBhubec©keTskm<úCa dUcEdl)anerobrab;BIxagedIm RbePTTMrenARtg; springing ¬RbsinebIva restrained¦vanwgbegáIt RbtikmμminkMNt;EdlbgáeGayekItmankugRtaMgedaypÞal; nigkugRtaMgBt;enAkñúg shell Ek,r springing. dUcenH eKGacGnuvtþ bending theory sMrab; plate nig shell edIm,IkMNt;kugRtaMgBt;. xageRkamenH Cakarerobrab;BIkarsikSaKNna ring beam eRbkugRtaMgenARtg; springing edIm,IRbqaMgnwgbgÁúMkMlaMg sgát; meridional edk Nφ EdkeFVIeGayEKmrbs; dome cl½tcUlkñúg. Prestressed Concrete Circular Storage Tanks and Shell Roofs 714
  • 49. Department of Civil Engineering NPIC BIsmIkar 11.65b nig11.66a eKGacsresrkMlaMg meridional Nφ sMrab;bnÞúkpÞal; wD kñúgmYy ÉktþaépÞ nigbnÞúkGefrBRgayesμI wL kñúgmYyÉktþaépÞRbeyal (unit projected area) ⎛ wD wL ⎞ N φ = − a⎜ ⎜ 1 + cos φ + 2 ⎟ ⎟ (11.67) ⎝ ⎠ Edl a = d / 2 sin φ CakaMrbs; sheall. cMNaMfakMlaMg (thrust) Nφ køayCakMlaMgbBaÄrRtg; springing ¬ φ = π / 2 ¦ én hemisphe- rical dome nigesμInwg W = a / 2(2 wD + wL ) kñúgmYyÉktþaTTwg. cMeBaHtMélepSgeTotrbs; φ / Nφ manlkçN³eRTt ehIyeKRtUvtMélénbgÁúMedkrbs;vasMrab;karsikSaKNna ring beam eRbkugRtaMgenA Rtg; springing EdleKGacehAfa shell rim. bgÁúMkMlaMgedkenHKW p = Nφ cosφ . RbsinebI P Ca kMlaMgeRbkugRtaMgkñúgmYykMBs;FñwmenAkñúg ring beam enaHBIsmIkar 11.1a P = pd / 2 ehIy P= d 2 ( Nφ cos φ ) (11.68) Cak;Esþg RbsinebIeKGacGnuvtþ P edaypÞal;eTAelI dome rim enaHeKGackMNt;kugRtaMgenA kñúg dome edaysmIkar 11.67. CaTUeTA vamingayRsYleT edaysareKRtUvkarEdkeRbkugRtaMgkñúg brimaNd¾eRcIn Edl P minGacsßitenAkñúgkMras;d¾esþIgrbs;CBa¢aMg)an ehIykugRtaMgenAkñúgebtugRtg; tMbn; rim GacmantMélx<s;Nas;. dUcenH eKRtUvkardak; edge beam EdlbMElg shell eGayeTAeRKOg bgÁúMkMNt;edaysþaTic kMraldMbYlekagminkMNt;edaysþaTiceRbkugRtaMg lkçxNÐRBMEdnd¾samBaØbMputEdlTTYl)anenAeBlEdlRbtikmμ edge beam manTisbBaÄr nig TMrminman restraint dUcbgðajenAkñúgrUbTI 11>16 Edl dome thrust Nφ qøgkat;TIRbCMuTMgn;rbs;Fñwm. RbsinebIeKkat;vatamExS A − A kMlaMgedk Nφ cosφ eFVIeGayEKm dome cl½tcUlkñúg)ancMgay Δs = d 2 Et ( Nθ − μNφ ) (11.69) Edl μ= pleFobB½rs‘ug ~ 0.2 sMrab;ebtug d = ElVg shell (shell aspan) GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 715
  • 50. T.Chhay viTüasßanCatiBhubec©keTskm<úCa ehIyeKTTYl)ankMlaMgÉktþa tangential BIsmIkar 11.65 dUcxageRkam wD d ⎛ ⎞ wL d ⎜ 1 + cos φ − cos φ ⎟ − 4 sin φ (cos 2φ ) 1 Nθ = ⎜ ⎟ (11.70) 2 sin φ ⎝ ⎠ Rcasmkvij kMlaMg meridional Nφ eFVIeGay ring beam cl½tecjeRkA)ancMgay Nφ (cos φ )d 2 Δb = (11.71) 4 Ebh dUcenHeKRtUvmankMlaMgeRbkugRtaMgRKb;RKan;edIm,Icl½t ring beam cUlkñúgCamYynwgcMgaysrub ΔT = Δ s + Δ b dUcenHkMlaMgsrubEdlmanGMeBIelImuxkat; ring beam KW P= bh t ( Nθ − μNφ + 2 ) ( d Nφ cos φ ) (11.72) Edl h CakMBs; ring beam srub. kareRbobeFobrvagsmIkar 11.72 nig 11.68 bgðajfakMlaMgeRbkug RtaMgRbsiT§PaBEdlRtUvkarelIkmunmantMélFMCagkMlaMgeRbkugRtaMgRbsiT§PaBEdlRtUvkarelIkeRkay. TMhMénkarekIneLIgenHmanRbEhlBI 5% eTA10%. lkçxNÐdUcKñamanlkçN³Bit sMrab; dome EdlExS Prestressed Concrete Circular Storage Tanks and Shell Roofs 716
  • 51. Department of Civil Engineering NPIC rbs;kMlaMgBI dome minkat;tamTIRbCMuTMgn;rbs; ring beam ehIyFñwmRtUv)anP¢ab;y:agrwgeTAnwgCBa¢aMg dUcenAkñúgrUbTI 11>17 (a). eKGacTTYltMélRbhal;RbEhlrbs;kMlaMgeRbkugRtaMgtMrUvkar P eday begáIntMélrbs; P enAkñúgsmIkar 11.68 cMnYn 10%. kñúgkrNIEbbenH kugRtaMgenAkñúg shell Rtg;tMbn; springing GacxusBIkugRtaMgEdlTTYl)anBI membrane solution y:agxøaMg ehIyeKRtUveFVIkarEktMrUv bending solution. RbsinebIkMlaMgeRbkugRtaMg radial edkenAkñúg ring beam mantMélFMCagtMrUvkar enaHkMhUcRTg; RTayedaysarkarBt;d¾FMnwgekItmanenAkñúg shell beam dUcbgðajenAkñúgrUbTI 11>17 (b) CamYynwg karekIneLIgéntMélrbs;kMlaMg tangential Nθ y:agxøaMg ebIeRbobeFobCamYynwgkarekIneLIgénkMlaMg meridional Nφ . CalT§pl kugRtaMgBt;enAkñúgebtugenARtg;tMbn;EdlT§iBlGacelIskugRtaMgGnuBaØat GtibrmaeRkamGMeBI service load. RbsinebI kMlaMgeRbkugRtaMgedImmuneBlrgkMhatbg;KW Pi enaHRk- LaépÞrbs;muxkat;FñwmKW Pi Ac = (11.73) fc Edl Pi = kMlaMgeRbkugRtaMgedIm P / γ GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 717
  • 52. T.Chhay viTüasßanCatiBhubec©keTskm<úCa kugRtaMgsgát;GnuBaØatenAkñúgebtug fc = γ = PaKrykugRtaMgEdlenAesssl;. eKcg;rkSaeGaytMélrbs; f c mantMélTab Rbhak;RbEhlnwg 0.2 f 'c nigminelIs 800 psi eTA 900 psi eT edIm,IeFVIeGaybMErbMrYlrageFobd¾FMEdlekItmanenAkñúg edge ring beam mantMélGb,- brma EdlRtLb;mkvijeKGacbegáItkugRtaMgFMenAkñúg shell Rtg;tMbn; springing. RkLaépÞrbs;EdkeRbkugRtaMgenAkñúg dome ring KW Pi A ps = (11.74b) f pi Edl CakugRtaMgGnuBaØatenAkñúgEdkrgeRbkugRtaMgmuneBlxatbg;. RbsinebIeKminRtUvkarkMNt; f pi A ps CatMélsuRkit enaHeKGacykRkLaépÞEdkeRbkugRtaMg W cot φ A ps = (11.74b) 2πf pe Edl W= bnÞúkefr nigbnÞúkGefrsrubenAelI dome EdlbNþalBI wD + wL f pe = eRbkugRtaMgRbsiT§PaBeRkayeBlkMhatbg; eKGacykkMras;Gb,bramrbs; dome EdlRtUvkaredIm,ITb;Tl; buckling dUcxageRkam 1.5 pu hd = a (11.75) φβ i β c Ec Edl a= kaMrbs; dome shell pu = sMBaFKNnaÉktþaBRgayesμI ultimate EdlbNþalBIbnÞúkefr nigbnÞúkGefr = (1.2 D + 1.6 L ) / 144 φ= emKuNkat;bnßyersIusþg;sMrab;sMPar³EdlrgkugRtaMgsgát; = 0.65 β i = emKuNkat;bnßy buckling sMrab;bMErbMrYlrbs;épÞragEsV‘rEdlbNþalBIPaBminl¥ β i = (a / ri )2 / Edl ri ≤ 1.4a β c = emKuNkat;bnßy buckling sMrab; creep/ sMPar³Edl nonlinearity nigsñameRbH = 0.44 + 0.003WL / b:uEnþminFMCag 0.53 . Ec = m:UDuleGLasÞicedImrbs;ebtug = 57,000 f 'c psi (4,700 f 'c MPa ) Prestressed Concrete Circular Storage Tanks and Shell Roofs 718
  • 53. Department of Civil Engineering NPIC 11.10. GagebtugeRbkugRtaMgEdlmanEdkeRbkugRtaMgvNÐ Prestressed Concrete Tanks with Circumferential Tendons CMnYseGaykarrMuEdkeRbkugRtaMg (wire or strand) dUcEdl)aneFVIenAkñúg preload system eKeRbI EdkeRbkugRtaMg (tendons) edkxagkñúg b¤xageRkA. kabeRbkugRtaMgTaMgenHrgkugRtaMgeRkayeBleK dak;BYkvaenAkñúgCBa¢aMg. Edk post-tensioning bBaÄrRtUv)aneKeRbIkñúgCBa¢aMgCaEpñkmYyénEdkBRgwg bBaÄr. CBa¢aMgebtugGaccak;enAnwgkEnøg b¤cak;Rsab; ehIyeKcat;TuksñÚlCBa¢aMgCaEpñkmYyénCBa¢aMg ebtugEdlrgeRbkugRtaMgvNÐ. RbePTsMNg;enHminmaneRbIEdk diaphragm dUcRbePTGagEdlrMuEdk eRbkugRtaMg ( wrapped-wire prestressing) EdlCBa¢aMgGagGacman b¤k¾KμanEdk diaphragm. EdkEdlrgeRbkugRtaMgxagkñúgRtUv)ankarBaredaykMras;ebtugkarBardUctMrUvkarrbs; ACI 318 ehIyeKRtUvbMeBjkñúgbMBg; (duct or sheathing) CamYynwgsMPar³EdlkarBarERcH b¤ grouted. eKRtUv karBarEdk bonded post-tensioned eday portland cement grout dUckarTamTarenAkñúg ACI 318 ehIyeKRtUvkarBarkabeRbkugRtaMgxageRkACamYynwg shotcrete cover EdlmankMras;Gb,brma 1in. (25mm ) . dMeNIrkarsikSaKNnaCBa¢aMgmanlkçN³RsedogKñanwgkarsikSaKNnaGagragmUlEdlrgeRbkug RtaMgedaykarrMuEdkeRbkugRtaMg ehIyvaTamTarnUvkarRtYtBinitüsñameRbHdUcKña. eKRtUvykkugRtaMg sgát;esssl;Gb,brmaenAkñúgebtugCBa¢aMgeRkayeBlrgkMhatbg;eRbkugRtaMgTaMgGs;esμInwg 200 psi (1.4MPa ) kñúgkarsikSaKNna enAeBlEdlGagRtUv)anbMeBjdl;nIv:UKNna. RbsinebIGagKμanKMrb eK RtUvykkugRtaMgesssl;enAcugCBa¢aMgesμInwg 400 psi(2.8MPa ) Edlkat;bnßyCaragbnÞat;rhUtdl; tMélmYyEdlmintUcCag 200 psi enAcMgay 0.6 Rh BIcugénnIv:UsarFaturav. RbePT)atCBa¢aMg nigtMNdMbUgragekag BIkarerobrab;xagelI eyIgeXIjy:agc,as;falkçxNÐRBMEdnenARtg;)atrbs;GageRbkugRtaMgrag mUl nigenARtg; ring beam support sMrab;dMbUgragekagkMNt;nUvlkçN³énkarGnuvtþ lkçN³esdækic© nigeCaKC½yénkarsikSaKNnaTaMgmUl. Cavi)ak bTBiesFn_CaeRcInEdlTTYl)anBIkarbegáIttMNeRkam lkçxNÐTaMgenHKWmantMélxøaMgNas;. karlMGitBItMNRtUv)anbgðajenAkñúgrUbTI 11>18 dl;TI 11>22. GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 719
  • 54. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 720
  • 55. Department of Civil Engineering NPIC GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 721
  • 56. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 722
  • 57. Department of Civil Engineering NPIC 11.11. Step-by-Step Procedure for the Design of Circular Prestressed Concrete Tanks and Dome Roofs viFIsakl,g nigEktMrUv (trial-and adjustment procedure) RtUv)anENnaMsMrab;karsikSaKNna GagragmUlebtugeRbkugRtaMg nigdMbUg shell³ !> eRCIserIsRbB½n§eRbkugRtaMg RbePTEdkeRbkugRtaMg ersIusþg;ebtug nigRbePTTMr EdleyIgGac rk)anenAkñúgtMbn;. @> kMNt;sMBaFsMPar³EdlsþúkkñúgGagmanGMeBIelICBa¢aMg γH sMrab;sarFaturav nig p sMrab;sarFatu GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 723
  • 58. T.Chhay viTüasßanCatiBhubec©keTskm<úCa ]sμ½n. eRbIkarBRgayragctuekaNBñaysMrab;GgÁFaturwgEdlpÞúkenAxagkñúgGag. kMNt;kMlaMg ring Éktþa F = γ (H − y )r sMrab;)atrGileBjelj Edl r CakaMGag nig y Ca cMgayBI)at. #> BItarag 11>4 dl; 11>16 eRCIserIsemKuNm:Um:g;bBaÄreTAtamRbePTbnÞúk niglkçxNÐ restraint rbs;)atEdlbNþaledaysMBaFsarFaturav My =+ 1 [βM oφ (βy ) + Qoζ (βy )] β nigkMNt;kMlaMgTaj ring radial edk γrt Qo = +(2 βH − 1) ( ) 12 1 − μ 2 ehIy Q = (F − ΔQ ) EdlbMErbMrYlén y y 6( − μ ) 2 ΔQ = + 1 y (βM Ψ (βy ) + Q θ (βy )) o o β 3 rt 2 nig β = [3(1 − μ )] 2 1/ 4 (rt )1 / 2 Edl μ = 0.2 sMrab;ebtug. $> kMNt;emKuN membrane C BItarag 11>4 rhUtdl; 11>16. KNnakMlaMg ring F = CγHr . %> KNnam:Um:g;bBaÄreRKaHfñak;enAkñúgCBa¢aMgEdleRbIemKuN membrane C . smIkarsMrab;m:Um:g; EdlbNþalBIbnÞúksarFaturavKW M y = C (γH 3 + pH 2 ) b¤ M y = CpH 2 EdlbNþalBIbnÞúk]sμn½. KNnam:Um:g;enARtg;)at nigRtg;cMnuceRKaHfñak;EdlmancMgay y BI)at. ^> eRCIserIskMlaMgeRbkugRtaMgbBaÄr. &> KNnakugRtaMgebtugkat;tamkMras;rbs;CBa¢aMgsMrab;lkçxNÐGagTeT nigsMrab;GageBj. eKGnuBaØatkugRtaMgsgát;tamG½kSesssl;Gtibrma f cv = 200 psi eRkamGMeBIr service load ehIykugRtaMgTajGtibrma f t = 3 f 'c dUcbgðajenAkñúgtarag 11>17. *> sikSaKNnaEdkeRbkugRtaMgedk nigEdkeRbkugRtaMgbBaÄrEdlkugRtaMgkMNt;manenAkñúgtarag 11>18. (> KNnam:Um:g;emKuN M u EdleRbIemKuNbnÞúkEdleGayenAkñúgEpñk 11.7.2. m:Um:g;tMrUvkar M n = M u / φ Edl φ = 0.9 . KNnaersIusþg;m:Um:g; nominal EdlGacman M n = A ps f ps (d p − a / 2 ) Prestressed Concrete Circular Storage Tanks and Shell Roofs 724
  • 59. Department of Civil Engineering NPIC b¤ M n = Aps f ps (d p − a / 2)+ As f y (d − a / 2) . m:Um:g;EdlGacman M n RtUvEtFMCag b¤esμInwg m:Um:g;tMrUvkar M n . !0> sikSaKNnaRbEvg L rbs; ring enARtg;)atrbs;CBa¢aMgBIsmIkar 2CH 2 L = 2 1+ (t / h )3 (dt )2 Edl t CakMras;rbs;CBa¢aMg nig h CakMras;rbs;kMral)at. !!> KNnaPaKryrbs;eRbkugRtaMgenAkñúg)atEdlRtUvepÞreTACBa¢aMgBIrUbmnþ 1 R= 1+ S Edl S = 1.1(h / t )× (d / t )1 / 2 . enAeBlEdl rim xageRkArbs; slab ring rgkMlaMgsgát;edaykMlaMg radial Rtg; rim enaHtMél rbs; S RtUv)anEksMrYleTACa 1/ 2 1 ⎛ h ⎞⎛ d ⎞ S1 = ⎜ ⎟⎜ ⎟ K ⎝ t ⎠⎝ t ⎠ ⎛d2 +d2 ⎞ Edl K =⎜ o ⎜d −d 2 2 −μ⎟ ⎟ ⎝ o ⎠ EdlkñúgenH Ggát;p©itxagkñúg do = d = Ggát;p©itkMral ring xagkñúg = d o − 2 L . !@> RtYtBinitütMrUvkarkMras;CBa¢aMgGb,brma nigKNnaPaBdab radial eGLasÞicedImEdlKμanTb; (unrestrained initial elastic radial deflection) Fi r Δi = t co Ec E;dl ( Ec = 57,000 f 'c psi 4,700 f 'c MPa ) t co = kMras;rbs;sñÚlCBa¢aMgenARtg;cug b¤)atrbs;CBa¢aMg d r= 2 PaBdab radial cugeRkay Δ f = 1.7Δ i . !#> f<k;EdkBI)ateTACBa¢aMgEbbNaedayeGayEdkbgðÜscUleTAkñúgCBa¢aMgcMgay y2 = 1.8 rtco b¤ 3 ft.(0.9m) edayykmYyNaEdlFMCag. dUcKña eKRtUvFanafaEdkbBaÄr nominal Gb,brma enARtg;tMbn;)atKW GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 725
  • 60. T.Chhay viTüasßanCatiBhubec©keTskm<úCa As = 0.005t co !$> epÞógpÞat;TMhMsñameRbHGtibrma wmax = 4.1×10−6 ε ct E ps I x Edl ε ct = bMErbMrYlrageFobépÞrgkarTajenAkñúgebtug = (λt f p )/ E ps f p = kugRtaMgCak;EsþgenAkñúgEdk f pi = eRbkugRtaMgedImmuneBlxatbg; λt ~ f p / f pi 8 ⎛ s 2 s1tb ⎞ I x = grid index = ⎜ ⎟ π ⎜ φ1 ⎝ ⎟ ⎠ KMlatEdkkñúgTis “1” s1 = φ1 = Ggát;p©itrbs;EdkenAkñúgTis “1” s 2 = KMlatEdkkñúgTis “2” tb = kMras;karBarEdkEdlKitdl;p©itrbs;Edk cMNaMfa TTwgsñameRbHGnuBaØatGtibrma wmax = 0.004in. sMrab;GagsþúksarFaturav. !%> sikSaKNnadMbUgragekageRkaykareRCIserIsRbePTtMNenARtg;cugrbs;CBa¢aMgGag. kMNt;pl eFobénkMBs;rbs;dMbUgragekag h' elI)at d rbs;vay:agNamineGay h' / d > 1/ 8 . KNnakMlaMgeRbkugRtaMg radial tamTisedktMrUvkar P sMrab; edge beam BIsmIkar bh P= (Nθ − μNθ ) + φ d N cos φ ( )] t 2 w d ⎡ 1 ⎤ w d Edl Nθ = D ⎢ 2 sin φ ⎣1 + cos φ − cos φ ⎥ − L (cos 2φ ) ⎦ 4 sin φ ⎛ wD wL ⎞ N φ = − a⎜ ⎜ 1 + cos φ + 2 ⎟ ⎟ ⎝ ⎠ nig kMBs;srubrbs;Fñwm rim h= b = TTwgFñwm rim wD = GaMgtg;sIueténbnÞúkpÞal;rbs; shell kñúgmYyÉktþaépÞ ¬bnÞúkefr¦ wL = GaMgtg;sIuetrbs;bnÞúkGefrRbeyal !^> KNnamuxkat; ring-edge beam Pi Ac = fc Prestressed Concrete Circular Storage Tanks and Shell Roofs 726
  • 61. Department of Civil Engineering NPIC Edl kMlaMgeRbkugRtaMgedIm = P / γ Pi = γ = PaKrykugRtaMgesssl; f c = kugRtaMgsgát;GnuBaØatenAkñúgebtug ¬minRtUvFMCag 0.2 f 'c ¦ b:uEnþminRtUvFMCag 800 ~ 900 psi enAkñúg edge beam. !&> KNnaRkLaépÞrbs;EdkeRbkugRtaMgrbs; edge beam Pi A ps = f si Edl f si CakugRtaMgGnuBaØatenAkñúgEdkeRbkugRtaMgmuneBlxatbg; b¤ W cot φ A ps = 2πf pe RbsinebIeKminviPaKedaysuRkit. kñúgtYcugeRkay W CabnÞúksrubefr nigGefrenAelIdMbUgrag ekag EdlbNþalBI wD + wL nig f pe CaeRbkugRtaMgRbsiT§PaBeRkayeBlxatbg;. !*> RtYtBinitükMras;kMraldMbUgekagGb,brmaEdlRtUvkaredIm,ITb;Tl;nwg buckling 1 .5 p u hd = a φβ i β c Ec Edl a= kaMrbs; dome shell pu = sMBaFKNnaÉktþaBRgayesμI ultimate EdlbNþalBIbnÞúkefr nigbnÞúkGefr = (1.2 D + 1.6 L ) / 144 φ= emKuNkat;bnßyersIusþg;sMrab;sMPar³EdlrgkugRtaMgsgát; = 0.65 β i = emKuNkat;bnßy buckling sMrab;bMErbMrYlrbs;épÞragEsV‘rEdlbNþalBIPaBminl¥ β i = (a / ri )2 / Edl ri ≤ 1.4a β c = emKuNkat;bnßy buckling sMrab; creep/ sMPar³Edl nonlinearity nigsñameRbH = 0.44 + 0.003WL / b:uEnþminFMCag 0.53 . Ec = m:UDuleGLasÞicedImrbs;ebtug = 57,000 f 'c psi (4,700 f 'c MPa ) rUbTI 11>23 bgðajBI step-by-step flowchart sMrab;CMhanEdlENnaMkñúgkarsikSaKNnaGag ebtugeRbkugRtaMgragmUl nigdMbUgragekagrbs;va. GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 727
  • 62. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 728
  • 63. Department of Civil Engineering NPIC GagsþúkragmUl nigdMbUlekagebtugeRbkugRtaMg 729
  • 64. T.Chhay viTüasßanCatiBhubec©keTskm<úCa Prestressed Concrete Circular Storage Tanks and Shell Roofs 730