SlideShare uma empresa Scribd logo
1 de 85
Department of Civil Engineering                                                          NPIC




                      VII.        PaBekag PaBdab nigkarRKb;RKgsñameRbH
                           Camber, Deflection and Crack Control

1> esckþIepþIm                    Introduction
         PaBdab nigsñameRbHrbs;Ggát;ebtugeRbkugRtaMgk¾sMxan;dUckarKNnaPaBdab nigsñameRbH
rbs;Ggát;ebtugGarem:Edr. Ggát;ebtugeRbkugRtaMgmanlkçN³Rsav (slender) CagGgát;ebtugGarem:
ehIykareFVIkarrbs;vargT§iBleday flexural cracking eFVIeGayvaeKkan;EtRby½tñkñúgkarRKb;RKg
PaBdab nigsñameRbH. karKNnadMbUgBak;B½n§nwgkarKNnasmamaRtmuxkat;rbs;Ggát;eRKOgbgÁúMsMrab;
sßanPaBkMNt;én flexural stresses eRkamGMeBI service load nigsMrab;sßanPaBkMNt;énkar)ak; Edlrg
karBt;begáag kMlaMgkat; nigkMlaMgrmYl edayrYmbBa©ÚlTaMg anchorage development strength. kar
KNnaEdlmanlkçN³eBjeljluHRtaEtmankarkMNt;TMhMén long-term deflection, camber nigTMhM
sñameRbH ehIytMélTaMgenHsßitenAkñúgkMrit allowable serviceability.
         Ggát;ebtugeRbkugRtaMgrgkMlaMgsgát;cakp©itCaGcié®nþy_EdlbNþalBIkMlaMgeRbkugRtaMgCH
T§iBly:agxøaMgdl; long-term creep deformation rbs;va. karbraC½ykñúgkarTajTukCamun nigkar
RKb;RKgkMhUcRTg;RTayEbbenHGacnaMeGayman camber FM EdlGacbgáeGaymanépÞe)a:g nignaMeGay
karbgðÚrTwkBIdMbUlGKarminmanlkçN³smRsb/ bgáeGaykarebIkbrelIs<anminmanpasuxPaB nigbgá
eGaymansñameRbHenAelItYGKar EdlrYmbBa©ÚlTaMgkarBi)akkñúgkareFVIbg¥Üc nigTVarrt;Rtg;Kña.
         PaBBi)akkñúgkarTajTukCamunnUvkMhatbg; long-term prestress EdlmanlkçN³suRkiteFVI
eGayeKkan;EtBi)akkñúgkar)a:n;RbmanTMhMén camber EdlrMBwgTukeGaysuRkitEdr. PaBsuRkitkan;Et
Bi)akTTYl)ansMrab; partially prestressed concrete system EdlsñameRbHkMNt;RtUv)anGnuBaØattam
ry³kareRbIEdkFmμtabEnßm. Creep strain enAkñúgebtugbegáIn camber dUcEdlvabgáeGaymankarekIn
eLIgnUvkMeNagCalkçN³GviC¢manEdlCaTUeTAvamantMélFMCagkarfycuHEdlbegáItedaykarfycuHénkM
hatbg;eRbkugRtaMgedaysar creep, shrinkage nig stress relaxation. kar)a:n;RbmanEdll¥bMput
énkarekIneLIgén camber KYrEp¥kelIbTBiesaFn_/ EdnkMNt;énpleFobElVgelIkMBs;Fñwm nigkareRCIs
erIsm:UDul Ec rbs;ebtugd_RtwmRtUv. karKNna moment-curvature relationship eRkamdMNak;kalén
kardak;bnÞúkCabnþbnÞab;rhUtdl;sßanPaBkMNt;énkar)ak;k¾GacCYykñúgkarkMNt;PaBdabrbs;Ggát;
eGaymanlkçN³kan;EtsuRkit.
         edaysarkugRtaMgFMenAkñúgEdkeRbkugRtaMg ERcHsIuEdlbNþalBIsñameRbHGaceFVIeGayeRKOg
PaBekag PaBdab nigkarRKb;RKgsñameRbH                                               407
T.Chhay                                                                  viTüasßanCatiBhubec©keTskm<uúCa

bgÁúM)at;bg;lT§PaBRTRTg;. dUcenH EdnkMNt;énTMhMrbs;sñameRbH nigKMlatrbs;vaRtUv)ankMNt; ehIy
dMeNIrkarénkarkMNt;TMhMsñameRbHsmRsbRtUv)aneRbI. ACI 318 Code )ancat;cMNat;fñak;eGay
Ggát;rgkarBt;begágebtugeRbkugRtaMgCabIfñak;KW³
          (a) Class U:             f t ≤ 7.5 f 'c psi (0.623 f 'c MPa )                  (7.1a)

          enAkñgkrNIenH eKeRbI gross section sMrab;lkçN³muxkat;enAeBlkMNt;eRbkugRtaMgeRkamGMeBI
service load nigkMNt;PaBdab. eKminRtUvkareRbI skin reinforcement enAépÞbBaÄreT.

          (b) Class T: 7.5 f 'c ≤ f t ≤ 12 f 'c psi ( f 'c MPa )                         (7.1b)

          cMNat;fñak;enHenAcenøaHmuxkat;eRbH nigmuxkat;Gt;eRbH. eKeRbI gross section kñúgkarKNna
stress. eKeRbI cracked bi-liner section sMrab;KNnaPaBdab. eKminRtUvkareRbI skin reinforcement

enAépÞbBaÄreT.
          (C) Class C:         f t > 12 f 'c                                            (7.1c)

       cMNat;fñak;enHsMrab;muxkat;eRbH. dUcenH eKeRbImuxkat;eRbHsMrab;kMNt;kugRtaMg nigPaBdab
eRkamGMeBI service load. eKcaM)ac;RtUvKNna Δf ps b¤ f s sMrab;RKb;RKgsñameRbH Edl Δ ps = kugRtaMg
EdlekIneLIgbnÞab;BIsßanPaBdkkMlaMgsgát; (decompression) ehIy f s = kugRtaMgenAkñúgEdkFmμta
enAeBlEdlEdkFmμtaRtUv)aneRbIEdr. RbB½n§kMralxNÐeRbkugRtaMgBIrTisRtUv)ansikSaKNnaCa Class
U.



2> karsnμt;kñúgkarKNnaPaBdab
       Basic Assumptions in Deflection Calculations
        eKGackMNt;PaBdabBIdüaRkamm:Um:g;énkMlaMgeRbkugRtaMgCamYynwgbnÞúkTTwgG½kSxageRkA
(external transverse loading) b¤BITMnak;TMngm:Um:g; nigkMeNag (moment-curvature relationships).

enAkñúgkrNINak¾eday eKRtUveFVIkarsnμt;dUcxageRkam³
        - RkLaépÞmuxkat;rbs;ebtugRtUvEtsuRkitRKb;RKan;edIm,IKNnam:Um:g;niclPaB elIkElgenA
            eBlEdleKRtUvkarcaM)ac;karKNnaEdlmanlkçN³kan;EtRbesIr.
        - m:UDulrbs;ebtug Ec = 33w1.5 f 'c psi(0.043w1.5 f 'c MPa) EdltMélrbs; f 'c RtUvKña
            nwgersIusþg;sgát;rbs;sMNakKMrUragsIuLaMgrbs;ebtugenAGayuEdleKRtUvkarkMNt; Ec .


Camber, Deflection and Crack Control                                                       408
Department of Civil Engineering                                                            NPIC




          - GnuvtþeKalkarN_ superposition kñúgkarKNnaPaBdabEdlbNþalBIbnÞúkTTwgG½kS nig
            camber EdlbNþalBIkMlaMgeRbkugRtaMg.

          - eKGaceFVIkarKNnaPaBdabTaMgGs;edayQrelIG½kSTIRbCMuTMgn;rbs;EdkeRbkugRtaMg (cgs)
            Edl strand RtUv)anKitCa single tendon.
          - PaBdabEdlbNþalBI shear deformation minRtUv)anKit
          - eKGacKitmuxkat;Ca totally elastic rhUtdl; decompression load. bnÞab;mk m:Um:g;niclPaB
            énmuxkat;EdleRbH I cr Gacpþl;nUvkarkMNt;PaBdab nig camber kan;EtsuRkit.

3> PaBdabry³eBlxøI¬xN³¦ rbs;Ggát;eRbH nigGgát;EdlKμaneRbH
       Short-Term (Instantaneous) Deflection of Uncracked and Cracked Members
      k> TMnak;TMngrvagbnÞúk nigPaBdab        Load-Deflection Relationship
         PaBdabry³eBlxøIenAkñúgGgát;ebtugeRbkugRtaMgRtUv)anKNnaedaysnμt;vamuxkat;manlkçN³
esμIsac; (homogeneous), lkçN³sac;mYy (isotropic) nigeGLasÞic. karsnμt;EbbenHCaviFIénkareFVI
karCak;Esþg Edlm:UDul Ec rbs;ebtugERbRbYleTAtamGayurbs;ebtug ehIym:Um:g;niclPaBERbRbYleTA
tamdMNak;kalénkardak;bnÞúk eTaHbImuxkat;eRbH b¤mineRbHk¾eday.




PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                 409
T.Chhay                                                                 viTüasßanCatiBhubec©keTskm<uúCa

       Cak;Esþg TMnak;TMngrvagbnÞúk nigPaBEdkCa trilinear dUcEdlbgðajenAkñúgrUbTI 7>1. tMbn;bI
munkar)ak;KW³
       tMbn;TI I dMNak;kalmuneBleRbH (precracking stage) EdlGgát;minmansñameRbHeT.
       tMbn;TI II dMNak;kaleRkayeBleRbH (postcracking stage) EdlGgát;eRKOgbgÁúMbegáIt
       acceptable controlled cracking TaMgkarBRgay nigTMhM.

       tMbn;TI III dMNak;kaleRbHeRkayrgbnÞúk (postserviceability cracking stage) EdlkugRtaMg
       enAkñúgEdkTajeFVIkardl;sßanPaBkMNt;én yielding.

          !> tMbn;TI1 Precracking stage
        kMNat;Ggát;muneBleRbHrbs;ExSekagrvagbnúÞk nigPaBdabKWCaExSRtg;EdlkMNt;kareFVIkarCa
lkçN³eGLasÞiceBjelj dUcenAkñúgrUbTI 7>1. kugRtaMgTajGtibrmaenAkñúgFñwmenAkñúgtMbn;enHtUc
CagersIusþg;TajkñúgkarBt;begáag EdlvatUcCagm:UDuldac; ft rbs;ebtug. eKGacPaBrwgRkajkñúgkarBt;
begáag EI rbs;FñwmedayeRbIm:UDulyuaMg Ec rbs;ebtug ehIym:Um:g;niclPaBrbs;muxkat;ebtugEdlGt;
eRbH. kareFVIkarrvagbnÞúk nigPaBdabGaRs½yy:agxøageTAnwgTMnak;TMngrvagkugRtaMg nigbMErbMrYlrag
                                                   M
eFobrbs;ebtug.
       düaRkamTMnak;TMngrvagkugRtaMg nigbMErbMrYlrageFobKMrUrbs;ebtugRtUv)anbgðajenAkñúgrUbTI 7>2.
eKGac)a:n;RbmaNtMé;lrbs; Ec EdleRbIsmIkarEdl)anBIkarBiesaFrbs; ACI EdleGayenAkñúgem
eronTI 2.




Camber, Deflection and Crack Control                                                      410
Department of Civil Engineering                                                             NPIC




                                                     (
                                  Ec = 33w1.5 f 'c psi 0.043w1.5 f 'c MPa   )      (7.2a)

b¤                                              (              )
                                  Ec = 57,000 f 'c psi 4780 f 'c MPa   sMrab;ebtugTMgn;Fmμta
       tMbn;muneBleRbHcb;enAeBlEdlsñameRbHedaykarBt;begáagdMbUgcab;epþImekItman enAeBl
EdlkugRtaMgebtugeFVIkareTAdl;ersIusþg;énm:UDuldac; f r . RsedogKñaeTAnwgersIusþg;TajedaykarbMEbk
edaypÞal; (direct tensile splitting strength) m:UDuldac;rbs;ebtugKWsmamaRteTAnwgb¤skaer:énersIu-
sþg; sgát;rbs;va. sMrab;eKalbMNgénkarsikSaKNna eKGacyktMélrbs;m:UDuldac;sMrab;ebtugesμInwg
                         f r = 7.5λ f 'c psi (0.623λ f 'c MPa )                        (7.2b)

Edl λ = 1.0 sMrab;ebtugTMgn;Fmμta (normal-weight concrete). RbsinebIeKeRbI all-lightweight
concrete enaHeKyk λ = 0.75 ehIyRbsinebIeKeRbI sand-lightweight concrete enaH λ = 0.85 .

       RbsinebIeKeGaym:UDuldac; f r esIμnwgkugRtaMgEdlekIteLIgeday cracking moment M cr
(decompression moment) enaH
                                      Pc ⎛ ecb ⎞ M cr
                      fb = ft = −        ⎜1 + 2 ⎟ −                                (7.3a)
                                      Ac ⎝   r ⎠ Sb
EdlGkSr b tMNageGaysrésxageRkamenARtg;kNþalElVgénFñwmTMrsamBaØ. RbsinebIcMgayén
srésrgkarTajxageRkAbMputrbs;ebtugBITMRbCMuTMgn;rbs;muxkat;ebtugCa yt enaH cracking moment
RtUv)aneGayeday
                                  I g ⎡ Pe ⎛ ecb ⎞           ⎤
                     M cr =           ⎢ ⎜1 + 2 ⎟ + 7.5λ f 'c ⎥                     (7.3b)
                                  yt ⎣ Ac ⎝  r ⎠             ⎦
                                ⎡           P ⎛ ecb ⎞⎤
b¤                   M cr = S b ⎢7.5λ f 'c + e ⎜1 + 2 ⎟⎥
                                            Ac ⎝   r ⎠⎦
                                                                                   (7.3c)
                                ⎣
Edl Sb = m:UDulmuxkat;enAsrésxageRkam. BIsmIkar 5.12, cracking moment EdlbNþalBIEpñkén
bnÞúkGefrEdleFVIeGaymansñameRbHKW
                 M cr = Sb [6.0λ f 'c + f ce − f d ] ¬xñat US¦                  (7.4a)

                 M cr = Sb [0.5λ f 'c + f ce − f d ] ¬xñat SI¦
Edl f cr = kugRtaMgsgát;enARtg;TIRbCMuTMgn;rbs;muxkat;ebtugEdlbNþalEtBIkMlaMgeRbkugRtaMg
              RbsiT§PaBeRkayeBlxatbg; enAeBlbnÞúkxageRkAeFVIeGaymankugRtaMgTaj
        f d = kugRtaMgebtugenARtg;srésTajxageRkAEdlbNþalBIbnÞúkGefrKμanemKuN enAeBl

              EdlbnÞúkxageRkAbgáeGaymankugRtaMgTaj nigsñameRbH


PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                  411
T.Chhay                                                                             viTüasßanCatiBhubec©keTskm<uúCa

        eKk¾GaceRbIemKuN 7.5 CMnYseGayemKuN 6.0 ¬xñat US¦b¤ 0.623 CMnYseGay 0.5 ¬xñat SI¦
sMrab;kMNt;PaBdabrbs;Fñwm. eKGacbMElgsmIkar 7.3a eGayeTACaTMrg; PCI EdleGaynUvlT§pl
dUcKña
                     M cr       ⎛ f − fr    ⎞
                          = 1 − ⎜ tl
                                ⎜ f         ⎟
                                            ⎟                                                      (7.4b)
                     Ma         ⎝    L      ⎠
Edl       Ma =     m:Um:g;EdlekItBIbnÞúkGefrKμanemKuNGtibrma
           f tl = kugRtaMgrbs;ebtugeRkamGMeBI service load srubcugeRkayenAkñúgGgát;

           f r = m:UDuldac;

           f L = kugRtaMgrbs;ebtugeRkamGMeBI service live load enAkñúgGgát;



     @> karKNnam:Um:g;eRbH M        Calculation of Cracking Moment M
                                          cr                                                                 cr

]TahrN_ 7>1³ KNna cracking moment M sMrab;muxkat;FñwmctuekaNEkgEdlmanTTwg b = 12in.
                                                     cr

(305mm) ehIykMBs;srub             h = 34in.(610mm )   nigman                     . kugRtaMgebtug
                                                                 f 'c = 4,000 psi(27.6MPa )

 f b EdlbNþalBIkMlaMgeRbkugRtaMgcakp©itKW 1,850 psi (12.8MPa ) kñúgkarsgát;. ykm:UDuldac;esμInwg

7.5 f 'c .

dMeNaHRsay³ m:UDuldac; f r = 7.5 f 'c = 7.5 4,000 = 474 psi(3.27MPa) . ehIy I g = bh3 / 12
= 12(24 )3 / 12 = 12 = 13,824in.4 (575,400cm 4 )/ yt = 24 / 2 = 12in.(305mm ) eTAsrésrgkarTaj

ehIy Sb = I g / yt = 13,824 / 12 = 1,125in.3 (18,878cm3 ).
                               ⎡           P ⎛ ecb ⎞⎤
                    M cr = S b ⎢7.5λ f 'c + e ⎜1 + 2 ⎟⎥ = 1.152[474 + 1850]
                               ⎣           Ac ⎝   r ⎠⎦

                           = 2.68 ⋅ 10 6 in. − lb(302.9kN .m )
          RbsinebIFñwmenHminrgeRbkugRtaMg enaH cracking moment KW
                    M cr = f r I g / yt = 474 × 13,824 / 12 = 0.546 ⋅ 106 in. − lb(61.7kN .m )



          #> tMbn;TI2 Postcracking service-load stage
         tMbn;muneRbHcb;enAeBlsñameRbHTImYycab;epþm ehIycl½tcUltMbn;TI2 rbs;düaRkamTMnak;
                                                  I
TMngrvagbnÞúk nigPaBdabénrUbTI 7>1. FñwmPaKeRcInsßitenAkñúgtMbn;enHeRkamT§iBl service load.
FñwmrgnUvdWeRkénsñameRbHEdlERbRbYltambeNþayElVgEdlRtUvKñanwgkugRtaMg nigPaBdabenARtg;mux

Camber, Deflection and Crack Control                                                                  412
Department of Civil Engineering                                                           NPIC




kat;nImYy². dUcenH sñameRbHnwgrIkFM nigeRCAenAkNþalElVg EdlsñameRbHEdlmanTMhMtUc²ekItman
enAEk,rTMrrbs;FñwmsamBaØ.
         enAeBlEdl flexural cracking ekItman karcUlrYmrbs;ebtugenAkñúgtMbn;TajnwgfycuHy:ag
xøaMg. dUcenH flexural rigidity rbs;muxkat;RtUv)ankat;bnßyEdleFVIeGayExSekagbnÞúk-PaBdab (load-
deflection curve) enAkúñgtMbn;enHecattUcCagenAkñúgdMNak;kalmuneRbH (precracking stage). eday

sarTMhMrbs;sñameRbHekIneLIg PaBrwgRkajnwgfycuH EdleFVIeGayPaBs¥itrbs;EdkmantMélTabEdl
vaRtUvKñanwg karfycuHénm:Um:g;niclPaBrbs;muxkat;eRbH. eKGacKNnam:Um:g;niclPaB I cr énmuxkat;
EdleRbH (cracked section) BIeKalkarN_rbs;emkanic.

          $> tMbn;TI2 Postserviceability cracking stage and limit state of deflection
               behavior at failure
         düaRkaménTMnak;TMngrvagbnÞúk nigPaBdabénrUbTI 7>1 enAkñúgtMbn;TI3manlkçN³rabesμICag
enAkñúgtMbn;mun² EdlenHKWbNþalmkBIkMhatbg;énPaBrwgRkajrbs;muxkat;y:ageRcIn edaysarsñam
eRbHFM² nigkarrIkFMrbs; stabilized cracks BaseBjElVg. edaysarbnÞúkbnþekIneLIg enaHbMErbMrYl
rageFob ε s enAkñúgEdkenAkñúgtMbn;TajbnþekIneLIgtameRkay yield strain ε y edayminmankugRtaMg
bEnßm. FñwmRtUv)anBicarNafa)ak;eday yielding dMbUgrbs;Edk TajenAkñúgdMNak;kalenH. vabnþdab
edayKμankardak;bnÞúkbEnßm nigsñameRbHbnþcMhr ehIy G½kSNWtbnþeLIgelIeTArksréssgát;xageRkA
bMput. cugeRkay secondary compression failure ekIteLIg EdlnaMeTAdl;karpÞúHEbkrbs;ebtugenA
kñúgtMbn;m:Um:g;GtibrmaEdlbnþedaykar)ak;.

      x> muxkat;Gt;eRbH                Uncracked Sections
          !> karKNnaPaBdab             Deflection calculation
        eKmanbMNgcg;KNnaPaBdabsMrab;muxkat;ebtugeRbkugRtaMgGt;eRbHeGaykan;EtsuRkitCag
karKNnaPaBdabsMrab;muxkat;EdleRbHedaysarkarsnμt;énkareFVIkarCalkçN³eGLasÞicmanlkçN³
RbesIrCag. kareRbIR)as;m:Um:g;niclPaBrbs; gross section minCHT§iBldl;suRkitPaBkñúgkarKNna
dUc transformed section eT.


PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                413
T.Chhay                                                                  viTüasßanCatiBhubec©keTskm<uúCa

      ]bmafaFñwmrgeRbkugRtaMgCamYynwgcMNakp©itrbs;EdkeRbkugRtaMgefrdUcbgðajenAkñúgrUbTI 7>3.
eRbIkarkMNt;sBaØaéndüaRkam primary moment enAelIépÞrgkarTajrbs;Fñwm ehIyGnuvtþ elastic
weight method edaybMElgdüaRkamm:Um:g;FmμtaeGayeTACa elastic weight M 1 / (Ec I c )

enAelIElVgFñwm l . bnÞab;mkm:Um:g;rbs; weight intensity (Pe) /(Ec I c )énkNþalElVg AC enAkúñgrUbTI
7>3(c) BIelIcMnuckNþalElVg C eGay
                             Pel       ⎛l⎞    Pe ⎛ l l ⎞ Pel 2
                    δc =               ⎜ ⎟−         ⎜ × ⎟=                              (7.5)
                           2 Ec I c    ⎝ 2 ⎠ Ec I c ⎝ 2 4 ⎠ 8 Ec I c




Camber, Deflection and Crack Control                                                       414
Department of Civil Engineering                                                               NPIC




cMNaMfa eKKUrdüaRkamPaBdabenAkñúgrUbTI 7>3 (d) BIelIExSeKal (base line) dUcEdlFñwmekageLIgelI
edaysarkMlaMgeRbkugRtaMg.
        eKGaceFVIkarKNnaRsedogKñasMrab; tendon profile NamYy nigsMrab;RbePTbnÞúkTTwgG½kS
(transverse loading) NamYyEdlminKitfaragFrNImaRtrbs;EdkeRbkugRtaMg b¤kardak;bnÞúkman

lkçN³sIuemRTIk¾Gt;. PaBdab b¤ camber cugeRkayKWCa superposition énPaBdabEdlbNþalBI
kMlaMgeRbkugRtaMgCamYynwgPaBdabEdlbNþalBIbnÞúkxageRkA.

          @> karKNnabMErbMrYlrageFob nigkMeNag             Strain and Curvature Evaluation
        karEbgEckbMErbMrYlrageFobtamkMBs;rbs;muxkat;enAdMNak;kalrgbnÞúkmanragCabnÞat; dUc
bgðajenAkñúgrUbTI 7>4 EdlmanmMurbs;kMeNagGaRs½ynwgbMErbMrYlrageFobrbs;srésxagelI ε ct
nigbMErbMrYlrageFobrbs;srésxageRkam ε cb rbs;ebtug. BIkarEbgEckbMErbMrYlrageFob (strain
distribution) smIkarkMeNagenAdMNak;kalénkardak;bnÞúkepSg²mandUcxageRkam³




          (I)        dMNak;kalrgkMlaMgeRbkugRtaMgdMbUg (initial prestress)
                                         ε cbi − ε cti
                                  φi =                                               (7.6a)
                                              h
          (II)       dMNak;kalrgeRbkugRtaMgRbsiT§PaBeRkayeBlxatbg; (effective prestress after
                     losses)
                                         ε cbe − ε cte
                                  φe =                                               (7.6b)
                                               h



PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                    415
T.Chhay                                                                  viTüasßanCatiBhubec©keTskm<uúCa

          (III)     dMNak;kalrgbnÞúkeFVIkar (service load)
                                       ε ct − ε cb
                              φ=                                                        (7.6c)
                                             h
          (IV)      dMNak;kal)ak; (failure)
                                        εu
                              φu =                                                      (7.6d)
                                         c
       eRbIsBaØabUksMrab; tensile strain nigsBaØadksMrab; compressive strain. rUbTI 7>4 c bgðajBI
karEbgEckkugRtaMg (stress distribution) sMrab;muxkat;Gt;eRbH. vaRtUv)anEkERbedIm,Ibgðajfakug
RtaMgTajenAsrésxageRkamRbsinebImuxkat;enaHmansñameRbH.
       kMeNagRbsiT§PaB (effective curvature) φe enAkñúgsmIkar 7.4 (b) eRkaykMhatbg;CaplbUk
EdleRbIsBaØasmRsbrvagkMeNagedIm (initial curvature) φi CamYynwgbMErbMrYlrbs;kMeNag dφl Edl
bNþalBIkMhatbg;eRbkugRtaMgedaysar creep/ relaxation nig shrinkage nigbMErbMrYlrbs;kMeNag
dφ2 EdlbNþalmkBI creep énebtugeRkamGMeBIkMlaMgeRbkugRtaMg.

                              φe = φi + dφ1 + dφ2                                       (7.7)
EdlBImUldæanénemkanicrbs;sMPar³ (basic mechanics of materials)
                                        M
                              φ=                                                        (7.8a)
                                       Ec I c
sMrab; primary moment M1 = Pee dUcenHeyIg)an
                                        Pe e
                              φ=                                                        (7.8b)
                                       Ec I c
edayCMnYsvaeTAkñúgsmIkar 7.5 sMrab;FñwmTMrsamBaØEdlmancMNakp©itebs;EdkeRbkugRtaMgefr eK)an
                                        φl 2
                              δc =                                                      (7.9a)
                                         8
smIkarTUeTAsMrab;PaBdabEdleRbIkMeNagRtUv)anesñIeLIgeday Tadros manrag
                                    l2              2
                              δ = φc − (φe − φc ) a                                     (7.9b)
                                    8              6
Edl       φc = kMeNagRtg;kNþalElVg
          φe = kMeNagRtg;TMr
          a = )a:ra:Em:RtRbEvgCaGnuKmn_én tendon profile




Camber, Deflection and Crack Control                                                       416
Department of Civil Engineering                                                           NPIC




          #> PaBdabPøam²énFñwmTMrsamBaØEdlrgeRbkugRtaMgedayEdkeRbkugRtaMgrag)a:ra:bUl
          Immediate Deflection of Simply Supported Beam Prestressed with
          Parabolic Tendon
]TahrN_ 7>2³ kMNt;PaBdabkNþalElVgPøam²rbs;FñwmEdlbgðajenAkñúgrUbTI 7>5 EdlrgeRbkug
RtaMgedayEdkeRbkugRtaMgrag)a:ra:bUlEdlmancMNakp©itGtibrma e enAkNþalElVg nigkMlaMgeRbkug
RtaMgRbsiT§PaB Pe . eRbI elastic weight method nig equivalent weight method. ElVgrbs;FñwmKW l
nigPaBrwgRkajrbs;vaKW Ec I c .




dMeNaHRsay³
Elastic weight method
          BIsmIkar 7.5 (b)
                           1 ⎛ P el 2 ⎞ P el
                     R 'e = ⎜ e × ⎟ = e
                           2 ⎜ Ec I c 3 ⎟ 3Ec I c
                             ⎝          ⎠
          m:Um:g;EdlbNþalBI elastic weight We eFobcMNuc C kNþalElVgKW
                                      ⎛ l ⎞ ⎡ P el 2 ⎛ 3 l ⎞⎤
                     M c = δ c = R 'e ⎜ ⎟ − ⎢ e × ⎜ × ⎟ ⎥
                                      ⎝ 2 ⎠ ⎣ Ec I c 6 ⎝ 8 2 ⎠ ⎦

PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                417
T.Chhay                                                                         viTüasßanCatiBhubec©keTskm<uúCa

                                        1       ⎛ Pe el 2 3Pe el 2 ⎞ 5Pe el 2
                                  =             ⎜        −         ⎟=
                                       Ec I c   ⎜ 6         48 ⎟ 48Ec I c
                                                ⎝                  ⎠
                         5 Pe el 2
          enaH      δc =
                         48 Ec I c
                                                                                               (a)

Equivalent weight method
       BIemeronTI1 equivalent balancing load intensity W Edl)anBIsMBaFén parabolic tendon
eTAelIebtugKW
                           8 Pe e
                    W =
                             l2
          BImUldæanénemkanicrbs;sMPar³ PaBdabkNþalElVgrbs;TMrsmBaØEdlrgbnÞúkBRgayesμIKW
                            5 wl 4
                    δc =                                                                       (b)
                           384 Ec I c
          edayCMnYsGaMgtg;sIuetbnÞúk W eTAkñúgsmIkarxagelI eyIg)an
                           5 Pe el 2
                    δc =                                                                       (c)
                           48 Ec I c
          dUckarrMBwgTuk eyIgTTYl)ansmIkar (c) nigsmIkar (a) sMrab;PaBdabkNþalElVgrbs;Fñwm.
                  rUbTI 7>6 bgðajBIsmIkarPaBdabkNþalElVgsMrab;FñwmTMrsamBaØ Edlb®gÁb;elIsmIkar
          kMlaMgkat; nigsmIkarm:Um:g;sMrab;FñwmCab;EdleGayenAkñúgrUbTI 6>12.
     K> muxkat;eRbH           Cracked Sections
          !> viFIKNnam:Um:g;niclPaBRbsiT§PaB
             Effective-moment-of-inertia Computation Method
        enAeBlEdlGgát;eRbkugRtaMgrgbnÞúkelIs (overload) b¤enAkñúgkrNIGgát;eRbkugRtaMgedayEpñk
EdleKGnuBaØateGayman limited controlled cracking enaHkareRbI gross moment of inertia I g nwg
pþl;nUvkar)a:n;sμan camber b¤PaBdabrbs;FñwmeRbkugRtaMgmanlkçN³esÞIrminRtwmRtUvtamPaBCak; Esþg.
tamlkçN³RTwsþI eKKYreRbIm:Um:g;niclPaBrbs;muxkat;EdleRbH (cracked moment of inertia) I cr sMrab;
muxkat;EdlekItmansñameRbH enAxN³EdleKeRbI gross moment of inertia I g sMrab;muxkat;FñwmenA
cenøaHmuxkat;mansñameRbH. b:uEnþ eBlxøHeKminRtUvkarPaBeFVIeGayRbesIreLIgtamry³kareFVIplbUk
énkMeNInPaBdabtambeNþayFñwmeT edaysareKBi)akkñúgkarkMNt;PaBdabeGay)ansuRkit. dUcenH
eKGacykm:Um:g;niclPaBRbsiT§PaB I e CatMélmFümtambeNþayElVgrbs; simply supported bonded
tendon beam/ vaCaviFIEdlbegáIteLIgeday Branson. eyagtamviFIenHeyIg)an³


Camber, Deflection and Crack Control                                                              418
Department of Civil Engineering                                           NPIC




                                            3
                                    ⎛M     ⎞
                    I e = I cr    + ⎜ cr
                                    ⎜M     ⎟    (      )
                                           ⎟ I g − I cr ≤ I g   (7.10a)
                                    ⎝ a    ⎠
          eKGacsresrsmIkar 7.10a kñúgTMrg;

PaBekag PaBdab nigkarRKb;RKgsñameRbH                               419
T.Chhay                                                                    viTüasßanCatiBhubec©keTskm<uúCa

                          ⎛M       ⎞
                                     3     ⎡ ⎛M        ⎞
                                                           3⎤
                    I e = ⎜ cr
                          ⎜M       ⎟ I g + ⎢1 − ⎜ cr
                                   ⎟                   ⎟    ⎥ I cr ≤ I g                  (7.10b)
                          ⎝ a      ⎠       ⎢ ⎜ Ma      ⎟    ⎥
                                           ⎣ ⎝         ⎠    ⎦
          eKGacCMnYspleFob (M cr / M a ) BIsmIkar 7.4b eTAkñúgsmIkar 7.10 a nig b edIm,ITTYl)an
m:Um:g;niclPaBRbsiT§PaB
                     M cr       ⎛ f − fr    ⎞
                          = 1 − ⎜ tl
                                ⎜ f         ⎟
                                            ⎟                                             (7.11)
                     Ma         ⎝    L      ⎠
Edl            m:Um:g;niclPaBrbs;muxkat;EdleRbH BIsmIkar 7.13 xageRkam
          I cr =

         I g = m:Um:g;niclPaBrbs;muxkat;TaMgmUl (gross moment of inertia)

        cMNaMfa TaMg M cr nig M a Cam:Um:g;KμanemKuNEdlbNþalmkEtBIbnÞúkGefrb:ueNÑaH EdleKyk
M cr CacMENkénm:Um:g;EdlekItBIbnÞúkGefrEdlbgáeGaymansñameRbH. dUcenH m:Um:g;niclPaBRbsiT§-

PaB I e enAkñúgsmIkar 7.10a nig b GaRs½ynwgm:Um:g;Gtibrma M a tambeNþayElVgEdlCab;Tak;Tg
nwglT§PaBTb;m:Um:g;eRbH M cr rbs;muxkat;.
        enAkñúgkrNIFñwmCab;Gt;eRbHEdlmancugsgçagCab;
                          I e mFüm = 0.70 I m + 0.15(I e1 + I e 2 )                (7.12a)

        sMrab;FñwmCab;Gt;eRbHEdlmancugmçagCab;
                          I e mFüm = 0.85I m + 0.15(I cont.end )                   (7.12b)

Edl I m Cam:Um;g;niclPaBénmuxkat;kNþalElVg ehIy I e1 nig I e2 Cam:Um:g;niclPaBénmuxkat;cug.

          @> Bilinear Computation Method
        kñúgTMrg;RkaPic/ bilinear moment-deflection relationship sMrab;tMbn;TI I niigtMbn;TI II Edl
manerobrab;enAkñúgcMnuc 3>k EdlGnuelameTAtam ACI Code. düaRkamsMrab;tMbn; I g nig I cr
RtUv)anbgðajenAkñúgrUbTI 7>7. m:Um:g;niclPaBRbsiT§PaB I e rbs; Branson eGaynUvPaBdabPøam²
srubmFüm δ tot = δ e + δ cr EdlBIxagedIm.
        ACI Code TamTarnUvkarKNnaPaBdabenAtMbn;EdleRbHenAkñúg bonded tendon beam KWEp¥k

elI transformed section enARKb;eBlEdlkugRtaMgTaj ft enAkñúgebtugFMCag 6 f 'c . dUcenH eKGac
kMNt; δ cr enAkñúgrUbTI 7>7 edayeRbI I cr transformed EdleRbIkarcUlrYmrbs;EdkBRgwgenAkñúg bilinear
method kñúgkarKNnaPaBdab. eKGacKNnam:Um:g;niclPaBrbs;muxkat;EdleRbHeday PCI approach

sMrab;Ggát;rgeRbkugRtaMgeBjtamsmIkarxageRkam

Camber, Deflection and Crack Control                                                         420
Department of Civil Engineering                                                            NPIC




                                    (                  )
                     I cr = n p A ps d 2 1 − 1.6 n p ρ p
                                       p                                         (7.13a)

Edl n p = E ps / Ec . RbsinebIeKeRbIEdkFmμtaeGayrgkugRtaMgTaj ¬enAkñúgGgát;eRbkugRtaMgeday
Epñk¦ eKGacEkERbsmIkar 7.13 eGayeTACa
                I cr = (n p A ps d 2 + ns As d 2 )(1 − 1.6 n p ρ p + ns ρ )
                                   p                                             (7.13b)

Edl ns = Es / Ec sMrab;EdkFmμta/ d = kMBs;RbsiT§PaBeTAdl;TIRbCMuTMgn;rbs;EdkFmμta b¤Edkminrg
eRbkugRtaMg (nonprestressed strand steel).

         #> viFIkMeNInm:Um:g;-kMeNag                Incremental Moment-Curvature Method
        eKGacKNnam:Um:g;niclPaBrbs;muxkat;EdleRbHkan;EtsuRkitBITMnak;TMngrvagm:Um:g;nigkMeNag
(moment-curvature relationship) tambeNþayElVgFñwm nigBIkarEbgEckkugRtaMg nigbMErbMrYlrag

eFobelIkMBs;énmuxkat;eRKaHfñak;. dUcbgðajenAkñúgrUbTI 7>4(d) sMrab; strain ε cr enAeBlmansñam
eRbHdMbUg
                             ε cr          M
                     φcr =            =                                           (7.14)
                                  c       Ec I cr
Edl ε cr Ca strain enARtg;srésrgkarsgát;rbs;ebtugxageRkAbMput nig M Cam:Um:g;srubEdlrYmbBa©Úl
TaMg prestressing primary moment M1 eFobnwgTIRbCMuTMgn;rbs;muxkat;EdlBicarNa. eKGac
sresrsmIkar 7.14 eLIgvij enaHeyIg)an
PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                421
T.Chhay                                                             viTüasßanCatiBhubec©keTskm<uúCa
                              Mc       Mc
                    I cr =           =                                             (7.15)
                             Ec ε cr    f
Edl f CakugRtaMgrbs;ebtugenARtg;srésrgkarsgát;rbs;muxkat;.
       Flowchart sMrab;KNnaPaBdabPøam² nigsMrab;sg;düaRkamTMnak;TMngrvagm:Um:g; nigkMeNag
manbgðajenAkñúgrUbTI 7>8.




Camber, Deflection and Crack Control                                                  422
Department of Civil Engineering              NPIC




PaBekag PaBdab nigkarRKb;RKgsñameRbH   423
T.Chhay                                viTüasßanCatiBhubec©keTskm<uúCa




Camber, Deflection and Crack Control                     424
Department of Civil Engineering                                                               NPIC




4> PaBdabry³eBlxøIeRkamGMeBIbnÞúkeFVIkar
       Short-Term Deflection at Service Load
      k> ]TahrN_ 7>3 Non-Composite Uncracked Double T-Beam Deflection
          kMNt;PaBdabeGLasÞicPøam² ¬ry³eBlxøI¦ srubén 12 DT 34 Beam enAkñúg]TahrN_ 4>1
EdleRbI (a) viFIm:Um:g;niclPaBEdlGacGnuvtþ)an I g b¤ I e / (b) viFIkMeNInm:Um:g;-kMeNag (incremental
moment-curvature method). FñwmrgnUv superimposed service load 1,100 plf (16.1kN / m ) nig

superimposed dead load 100 plf (1.5kN / m ) . FñwmenHrgnUv bonded pretensioned CamYynwg stress-

relieved strands 7-wire-270ksi ¬ f pu = 270ksi = 1,862MPa ¦ Ggát;p©it 1 / 2in.(12.7 mm ) cMnYn 16

¬ Aps = 2.448in 2 ¦. enAkñúg]TahrN_enHminKitBIkarcUlrYmrbs;EdkminrgeRbkugRtaMgenAkñúgkarKNna
m:Um:g;niclPaBeT. snμt;faeKTaj (jack) strand rhUtdl; 0.70 f pu Edl)anBIkMlaMgeRbkugRtaMgedIm
 Pi = 462,672lb . eRbkugRtaMgRbsiT§PaB Pe = 379,391lb ekItmanenAeBlrgkarGnuvtþbnÞúkelIkdMbUg Kw

30éf¶eRkayeBldMeLIg nigminKitbBa©ÚlkMhatbg;GaRs½ynwgeBlTaMgGs;.




PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                    425
T.Chhay                                                                   viTüasßanCatiBhubec©keTskm<uúCa




Tiinñn½y³
            (a)     lkçxN³FrNImaRt (geometrical properties) ¬rUbTI 7>9¦
                    Ac = 978in.2 (6,310cm 2 )

                    I c = 86,072in.4 (3.59 ⋅10 6 cm 4 )

                    S b = 3,340in.3 (5.47 ⋅10 6 cm 3 )

                    S t = 10,458in.3
                    WD = 1,019 plf     bnÞúkpÞal;
                    WSD = 100 plf (1.46kN / m )

                    WL = 1,100 plf (16.05kN / m )
                    ec = 22.02in.

                    ee = 12.77in.


Camber, Deflection and Crack Control                                                        426
Department of Civil Engineering                                                       NPIC




                     cb = 25.77in.

                     ct = 8.23in.
                                                       (
                     A ps = 16 × 0.153 = 2.448in.2 15.3cm 2      )
                     Pi = 462,672(2,058kN )                enAeBlepÞr
                     Pe = 379,391lb(1.688kN )
           (b)       lkçN³sMPar³ (material properties)
                     V / S = 2.39in.

                     RH = 70%
                      f 'c = 5,000 psi

                      f 'ci = 3,750 psi
                      f pu = 270,000 psi (1,862MPa )

                      f pi = 189,000 psi (1,303MPa )

                      f pe = 154,980 psi (1,067 MPa )

                      f py = 230,000 psi

                     E ps = 28.5 ⋅10 6 psi (196GPa )

           (c)       kugRtaMgGnuBaØat (allowable stresses)
                      f ci = 2,250 psi

                      f c = 2,250 psi
                      f ti = 184 psi     ¬kNþalElVg¦
                      f t = 849 psi      ¬kNþalElVg¦
dMeNaHRsay (a)
!> kugRtaMgenARtg;muxkat;kNþalElVg
        eyIgmancMNakp©itkNþalElVg
                                  ec = 22.02in.(559mm )
           m:Um:g;Bt;ekIteLIgedaysarbnÞúkpÞal;xøÜnGtibrma
                                         1,019(60 )2
                                  MD   =             × 12 = 5,502,600in. − lb
                                              8
     (a)   enAeBlepÞr (at transfer)

PaBekag PaBdab nigkarRKb;RKgsñameRbH                                            427
T.Chhay                                                                               viTüasßanCatiBhubec©keTskm<uúCa

                kugRtaMgEdlRtUv)anKNnaKW
                   BIsmIkar 4.1a
                                      Pi ⎛ ec ct ⎞ M D
                               ft =−     ⎜1 − 2 ⎟ − t
                                      Ac ⎝    r ⎠ S
                                      462,672 ⎛ 22.02 × 8.73 ⎞ 5,502,600
                                   =−         ⎜1 −           ⎟−
                                        978 ⎝       88.0     ⎠  10,458
                                   = +501 − 526 = −25 psi (C ) < f t = +184 psi(T )   /      O.K.
                                      Pi ⎛ ec cb ⎞ M D
                               fb = −    ⎜1 + 2 ⎟ +
                                      Ac ⎝    r ⎠ Sb
                                      462,672 ⎛ 22.02 × 25.77 ⎞ 5,502,600
                                   =−         ⎜1 +            ⎟+
                                        978 ⎝       88.0      ⎠   3,340
                                   = −3,524 + 1,647 = −1,877 psi (C ) < −2,250 psi       /   O.K.

          (b)   enAeBlrgbnÞúkeFVIkar (service load)
                                        100(60 )2 12
                              M SD =                 = 540,000in. − lb(61kN .m )
                                             8
                                       1,100(60 )2 12
                              ML =                     = 5,940,000in. − lb(672kN .m )
                                             8
                             edaysarbnÞúkGefr         ft =
                                                            5,940,000
                                                             10,458
                                                                      = −568 psi (C )

                             edaysarbnÞúkGefr         fb =
                                                           5,940,000
                                                              3,340
                                                                      = 1,778 psi (T )

                    m:Um:g;srub M T = M D + M SD + M L = 5,502,600 + 6,480,000
                                                              = 11,982,600in. − lb(1,354kN .m )
                    BIsmIkar 4.3a
                                         ⎛ ec ct ⎞ M T
                                        Pe
                               ft =−     ⎜1 − 2 ⎟ − t
                                         ⎝
                                        Ac     r ⎠ S
                                      379,391 ⎛ 22.02 × 8.23 ⎞ 11,982,600
                                   =−          ⎜1 −             ⎟−
                                        978 ⎝         88.0      ⎠    10,458
                                   = +411 − 1146 = −735 psi < f c = −2,250 psi               O.K.
                    BIsmIkar 4.3b
                                       Pi ⎛ ec cb ⎞ M T
                               fb = −     ⎜1 + 2 ⎟ +
                                      Ac ⎝     r ⎠ Sb
                                      379,391 ⎛ 22.02 × 25.77 ⎞ 11,982,600
                                   =−          ⎜1 −               ⎟+
                                         978 ⎝         88.0       ⎠      3,340
                                   = −2,689 + 3,587 = +698 pis (T ) < 849 psi                O.K.




Camber, Deflection and Crack Control                                                                    428
Department of Civil Engineering                                                                              NPIC




        eKGnuBaØateGayeRbI gross moment of inertia I g sMrab;karKNnaPaBdab. kñúgkrNIEbbenH
eKGacyk effective moment of inertia I e esμInwg I g . RbsinebIeRbobeFobCamYy modules of
rupture f r = 7.5 f 'c = 7.5 5,000 = 530 psi eKrMBwgfanwgmansñameRbHtUc² (minor cracking)

ehIyedIm,IlkçN³suvtßiPaB (conservative) eKGnuBaØateGayRbIemKuN 7.5 .
@> kugRtaMgenARtg;muxkat;TMr
        BIsmIkar 4.1
                      f ti = 6 f 'ci = 6 3,750 = 367 psi

                      f t = 12 f 'c = 12 5,000 = 849 psi

                     ee = 12.77in.
       eFVIdUcKñaenAkñúgCMhanénkarKNnakugRtaMgRtg;muxkat;kNþalElVg edayeRbI M = 0 CMnYskñúg
smIkarkñúgral;CMhanxagelI. karRtYtBinitükugRtaMgmuxkat;TMrenAeBlepÞreGaynUvkugRtaMgEdlman
tMéltUcCagkugRtaMgGnuBaØat O.K..
taragsegçbénkugRtaMgsrés ( psi )




#> KNnaPaBdab nigPaBekag (camber) enAeBlepÞr
      BI basic mechanics of materials b¤BIsmIkar 7>6 sMrab; a = l / 2 camber enAkNþalElVg
EdlbNþalBI single harp b¤ depression énEdkeRbkugRtaMgKW
                             Pec l 2 P(ee − ec )l 2
                     δ ↑=           +
                              8EI       24 EI
dUcenH               Eci = 57,000 f 'ci = 57,000 3,750 = 3.49 ⋅10 6 psi (24.1MPa )

                     Ec = 57,000 f 'c = 57,000 5,000 = 4.03 ⋅10 6 psi (27.8MPa )
                                  462,672 × 22.02 × (60 × 12 )2       462,672 × (12.77 − 22.02)(60 × 12)2
                     δ pi ↑=                                      +
                                     8 × 3.49 ⋅10 6 × 86,702                24 × 3.49 ⋅10 6 × 86,072



PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                                   429
T.Chhay                                                                                  viTüasßanCatiBhubec©keTskm<uúCa

                            = −2.20 + 0.31 = −1.89in.(48mm ) ↑
         PaBdabeLIgelIenH (camber) KWbNþalEtmkBIkMlaMgeRbkugRtaMgb:ueNÑaH. bnÞúkpÞal;enAkñúg
1in. KW 1,019 / 12 = 84.9lb / in. ehIyPaBdabEdlbNþalBIbnÞúkpÞal;KW δ D ↓= 5wl 4 / 384 EI
                                5 × 84.9(60 × 12)4
                    δD =                                     = 0.99in. ↓
                            384 × 3.49 ⋅10 6 × 86,072
        dUcenH net camber enAeBlepÞrKW − 1.89 ↑ +0.99 ↓= −0.90in. ↑ (25mm)
$> KNnaPaBdabPøam²srubeRkamGMeBI service load énmuxkat;Gt;eRbH
    (a) PaBdabedaysar superimposed dead load

            edayeRbI Ec = 4.03 ⋅106 psi
                                       Eci   ⎛ 100 ⎞         ⎛ 3.49 ⎞⎛ 100 ⎞
                    δ SD = 0.99              ⎜       ⎟ = 0.99⎜      ⎟⎜       ⎟ = 0.08in.(2.0mm ) ↓
                                       Ec    ⎝ 1,019 ⎠       ⎝ 4.03 ⎠⎝ 1,019 ⎠
     (b)   PaBdabedaysarbnÞúkGefr
                          5wl 4        5(1100 )(60 × 12)4    1
                    δL =           =                       × = 0.93in. ↓
                         384 Ec I c 384 × 4.03 ⋅10 × 86,072 12
                                                  6


      esckþIsegçbén camber nigPaBdabry³eBlxøIeRkamGMeBI service load mandUcxageRkam³
              camber edaysarkMlaMgeRbkugRtaMgdMbUg = 1.89in.(48mm ) ↑

              PaBdabedaysarbnÞúkpÞal; = 0.99in.(25mm) ↓
              PaBdabedaysar superimposed dead load = 0.08in.(2mm) ↓
              net deflection enAeBlepÞr = −1.89 + 0.99 = −0.90in. ↑

      RbsinebIeKBicarNaPaBdabedaysarkMhatbg;BIdMNak;epÞrrhUtdl;ry³eBl 30éf¶ enaH
camber RtUv)ankat;bnßy)an
                                    ⎛ 462,672 − 379,391 ⎞       ⎛ 0.34 ⎞
                              = 1.89⎜                   ⎟ = 1.89⎜         ⎟ = 0.34in. ↓
                                    ⎝      462,672      ⎠       ⎝ 462,672 ⎠
dMeNaHRsay (b)
       dMeNaHRsaytamviFIkMeNInm:Um:g; nigkMeNag (incremental moment curvature method)
                    ΔP = Pi − Pe = 462,672 − 379,391 = 83,281lb(370kN )
           bMErbMrYlrageFobedaysarkMlaMgeRbkugRtaMgenAeBlepÞr
               enAry³eBl 7éf¶ Eci = 3.49 ⋅106 psi
     (i) edaysarkMlaMgeRbkugRtaMg Pi

         kNþalElVg³

Camber, Deflection and Crack Control                                                                       430
Department of Civil Engineering                                                                                NPIC




                                  f t = +501 psi
                                  f b = −3,524 psi
                                           501
                                  εc =
                                    t
                                                   = +144 ⋅10 − 6 in. / in.
                                        3.49 ⋅10 6


                                  ε cb = −1,010 ⋅10 −6 in. / in.
          elITMr³
                                  f t = +92 psi
                                  f b = −2,242 psi

                                  ε e = 26 ⋅10 −6 in. / in.
                                    t


                                  ε et = −642 ⋅10 −6 in. / in.
                       ¬1 psi = 6.895kPa ¦
     (ii) edaysarkMlaMgeRbkugRtaMg nigbnÞúkpÞal; Pi + WD

          kNþalElVg³
                                  f t = −25 psi                 ε c = −7.2 ⋅10 −6 in. / in.
                                                                  t


                                  f b = −1,877 psi              ε cb = −537.8 ⋅10 −6 in. / in.
          TMr³ dUcKñanwgkrNI (i)
                   bMErbMrYl strain EdlbNþalBIkMhatbg;eRbkugRtaMg
                                  − ΔP = 83,281lb
                                  Eci = 3.49 ⋅10 −6 psi
          muxkat;kNþalElVg
                                  Δf t = −
                                             (− ΔP ) ⎛1 − ect ⎞ = + 83,281 ⎛1 − 22.02 × 8.23 ⎞ = −90 psi(C )
                                                   ⎜             ⎟           ⎜                       ⎟
                                               Ac ⎝           r2 ⎠       978 ⎝            88.0       ⎠
                                              − 90
                                  Δε c =
                                     t
                                                         = −26 ⋅10 − 6 in. / in.
                                         3.49 ⋅10   6


                                  Δf b = −
                                           (− ΔP ) ⎛1 + ecb ⎞ = 83,281 ⎛1 + 22.02 × 25.77 ⎞ = +634 psi(T )
                                                   ⎜        ⎟             ⎜               ⎟
                                             Ac ⎝       r2 ⎠     978 ⎝          88.0      ⎠
                                              634
                                  Δε cb =             = +182 ⋅10 − 6 in. / in.
                                           3.49 ⋅10 6

          muxkat;Rtg;TMr
                                  Δf t = −
                                             (− ΔP ) ⎛1 − ect ⎞ = 83,281 ⎛1 − 12.77 × 8.23 ⎞ = −16.5 psi(C )
                                                     ⎜           ⎟         ⎜                     ⎟
                                               Ac    ⎝        r2 ⎠     978 ⎝            88.0     ⎠



PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                                     431
T.Chhay                                                                                  viTüasßanCatiBhubec©keTskm<uúCa
                                          − 16.5
                              Δε e =
                                 t
                                                       = −5 ⋅10 − 6 in. / in.
                                     3.49 ⋅10      6


                              Δf b = −
                                       (− ΔP ) ⎛1 + ecb ⎞ = + 83,281 ⎛1 + 12.77 × 25.77 ⎞ = 404 psi(T )
                                               ⎜        ⎟               ⎜               ⎟
                                         Ac ⎝       r2 ⎠       978 ⎝          88.0      ⎠
                                         + 404
                              ΔEbe =              = +116 ⋅10 − 6 in. / in.
                                       3.49 ⋅10 6

      edaybUk strain enAeBlepÞrbEnßmBIelI strain EdlbNþalBIkMhatbg;eRbkugRtaMgeGaykar
EbgEck strain eRkamGMeBI service load eRkayeBlrgEtkMlaMgeRbkugRtaMg dUcbgðajenAkñúgrUbTI 7>10.
      BIrUbTI 7>10
               kMeNagenAkNþalElVg
                                       − 828 − 118
                              φc =                 × 10 − 6 = −27.82 ⋅10 − 6 rad / in.
                                           34
                    kMeNagenARtg;TMr
                                       − 526 − 21
                              φe =                × 10 − 6 = −16.09 ⋅10 − 6 rad / in.
                                           34




          BIrUbTI 7>6/ sMrab; a = l / 2 / camber rbs;FñwmEdlbNþalEtBI Pe KW

Camber, Deflection and Crack Control                                                                       432
Department of Civil Engineering                                                                          NPIC




                                  ⎛ l2 ⎞                2
                     δ e ↑= φc ⎜       ⎟ + (φe − φc ) l
                               ⎜       ⎟
                                  ⎝8⎠                 24

                            = −27.82 ⋅ 10 −6
                                                (60 × 12)2 + (− 16.09 + 27.82) ⋅10 −6 (60 × 12)2
                                               8                                         24
                            = −1.80 + 0.25 = −1.55in. ↑ (39mm )           (camber)
         EdlRsedogKñaeTAnwg (− 1.89 + 0.34) = −1.55in. ↑ eRkayeBlxatbg;enAkñúgdMeNaHRsay
elIkmun. PaBdabEdlbNþalmkBIbnÞúkpÞal; WD / superimposed dead load WSD nigbnÞúkGefr
WL KWRsedogKñanwgdMeNaHRsayelIkmun.

         cMNaMfatMélPaBEdl)anBIkarKNnaxusBItMélPaBdabCak;EsþgcenøaHBI 20% eTA 40% eday
sar)a:ra:Em:RtCaeRcInEdlCHT§iBldl;m:UDulrbs;ebtug. dUcenH eKKYryktMélEdlKNnaenARKb;CM-
hanTaMgGs;rbs;dMeNaHRsaybIxÞg;eRkayek,ósedIm,IkMurGayvaCHT§iBlxøaMgdl;lT§plcugeRkay.

5> PaBdabry³eBlxøIrbs;FñwmeRbkugRtaMgEdleRbH
       Short-Term Deflection of Cracked Prestressed Beams
     k> PaBdabry³eBlxøIrbs;FñwmenAkñúg]TahrN_ 7>3 RbsinebImuxkat;maneRbH
          Short-Term Deflection of Cracked Prestressed Beam in Example 7.3 if cracked

]TahrN_ 7>4³ edaHRsay]TahrN_ 7>3 eday (a) bilinear method, (b) viFIm:Um:g;RbsiT§PaBsMrab;
lkçxNÐkugRtaMgTaj fb = 750 psi ¬EdlkugRtaMgTajmantMélFMCagm:UDuldac; f r = 7.5 f 'c
= 530 psi ¦ eRkamGMeBI service load enAkNþalElVgRtg;srésxageRkamCMnYseGay f b = −56 psi(C )

enAkñúg]TahrN_elIkmun. snμt;fa net beam camber EdlbNþalBIkMlaMgeRbkugRtaMg nigbnÞúkpÞal;KW
δ = 0.95in. .
dMeNaHRsay³
          Net tensile stressbnÞab;BI first cracking load Rtg;m:UDuldac;KW f net = fb − f r = 750 − 530
= +220 psi (T ) . BIrUbTI 7>3/ kugRtaMgTajEdlbNþaledaysarEtbnÞúkGefrenARtg;srésxageRkamKW

+ 1,778 psi . enAeBlenH edaysar WL = 1,100 plf cMENkénbnÞúkEdlmin)aneFVIeGaymankugRtaMg

TajenARtg;srésxageRkamKW
                     w1 =
                            (1,778 − 220) ×1,100 = 964 plf
                               1,778
                            964
                          =     = 80lb / in.
                            12


PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                               433
T.Chhay                                                                                   viTüasßanCatiBhubec©keTskm<uúCa

          PaBdabEdlkMNt;eday I g énmuxkat;EdlGt;eRbHKW
                              5w1l 4        5 × 80(60 × 12)4
                    δg =               =                          = 0.8in. ↓ (20mm )
                             384 Ec I g 384 × 4.03 ⋅10 6 × 86,072

      (a) bilinear method
                                          (
                    I cr = n p A ps d p 1 − 1.6 n p ρ p
                                      2
                                                             )
                             E ps       28.5 ⋅ 106
                    np =            =                 = 7.07
                             Ec         4.03 ⋅ 10 6
                    d p = ec + ct = 22.02 + 8.23 = 30.25in. > 0.8h = 27.2in.

                    dp   EdleRbI = 30.25in.                    nig Aps = 2.448in.2 enaH
                             A ps         2.448
                    ρp =            =               = 0.0006
                             bd p       144 × 30.25

                                                         (
                    I cr = 7.07 × 2.448(30.25)2 1 − 1.6 7.07 × 0.0006            )
                               (           )
                         = 14,187in.4 5.9 ⋅ 105 cm 4
          tulüPaBénbnÞúksrubEdleFVIeGaymuxkat;eRbHKW
                             1,100 − 964
                    w2 =                 = 11.3lb / in.
                              1,100 × 12
                              5w2l 4        5 × 11.3(60 × 12 )4
                    δ cr =              =
                             384 Ec I cr 384 × 4.03 ⋅ 10 6 × 14,187

                         = 0.69in. ↓ (17mm )
          dUcenH PaBdabsrubEdlbNþalBIbnÞúkGefr
                    δ L = 0.80 + 0.69 = +1.49in. ↓ (38mm )
(b)   viFIm:Um:g;niclPaBRbsiT§PaB (effective moment inertia moment) I                e

          BIsmIkar 7.10b
                          ⎛M        ⎞
                                      3     ⎡ ⎛M             ⎞
                                                                 3⎤
                    I e = ⎜ cr
                          ⎜M        ⎟ I g + ⎢1 − ⎜ cr
                                    ⎟                        ⎟    ⎥ I cr ≤ I g
                          ⎝ a       ⎠       ⎢ ⎜ Ma           ⎟    ⎥
                                            ⎣ ⎝              ⎠    ⎦
          BIsmIkar 7.11
                    ⎛ M cr   ⎞       ⎛ f − ft ⎞
                    ⎜
                    ⎜M       ⎟ = 1 − ⎜ tl
                             ⎟       ⎜ f      ⎟
                                              ⎟
                    ⎝ a      ⎠       ⎝    L   ⎠
           f tl =kugRtaMgsrubcugeRkay = +750 psi(T )
           f r = m:UDuldac; = 530 psi )anBIelIkmun

           f L = kugRtaMgbnÞúkGefr = 1,778 psi



Camber, Deflection and Crack Control                                                                        434
Department of Civil Engineering                                                              NPIC




                     ⎛ M cr   ⎞      ⎛ 750 − 530 ⎞
                     ⎜
                     ⎜M       ⎟ = 1− ⎜
                              ⎟                  ⎟ = 1 − 0.124 = 0.876
                     ⎝ a      ⎠      ⎝ 1,778 ⎠
                                  3
                     ⎛ M cr   ⎞
                     ⎜
                     ⎜M       ⎟ = 0.67
                              ⎟
                     ⎝ a      ⎠
                     I e = 0.67 × 86,072 + (1 − 0.67 )14,187

                          = 62,350in.4
                GaMgtg;sIuetbnÞúkGefrsrub = 1,100 / 12 = 92lb / in.
          PaBdabEdlbNþalBIbnÞúkGefr
                                      5 × 92(60 × 12 )4
                     δL =                                  = 1.28in. ↓ (33mm )
                              384 × 4.03 ⋅ 10 6 × 62,350
       edayeRbobeFobCamYynwg 1.49in. enAkñúgdMeNaHRsay (a) eyIgyk δ L = +1.49in. ↓ . eRbI
tMélenHsMrab; final net long-term deflection eRkayeBlxatbg;dUcGIVEdl)anerobCataragenA
kúñg]TahrN_ 7>6.

6> karsg;düaRkamTMnak;TMngrvagm:Um:g; nigkMeNag
       Construction of Moment-Curvature Diagram
]TahrN_ 7>5³ cUrsg;düaRkamTMnak;TMngm:Um:g; nigkMeNagsMrab;muxkat;kNþalElVgrbs; bonded
double-T beam        enAkñúg]TahrN_ 7>3 sMrab;CMhanénkarekIneLIgnUvbMErbMrYlrageFobdUcxageRkam³
          !> bMErbMrYlrageFobenAeBlepÞr f pi = 189,000 psi EdlbNþalEtBI Pi
          @> bMErbMrYlrageFobenAeBl f pe = 154,980 psi muneBlrgbnÞúkTMnaj
          #> enAeBldkkMlaMg (decompression) enARtg;TIRbCMuTMgn;rbs;EdkeRbkugRtaMg
          $> enAeBlkugRtaMgeFVIkardl;m:UDuldac; (modulus of rupture)
          %> muxkat;EdlmaneRbH. bMErbMrYlrageFob ε c1 enAsrésxagelI = 0.001in. / in.
          ^> muxkat;EdlmaneRbH. bMErbMrYlrageFob ε c1 enAsrésxagelI = 0.003in. / in.
dMeNaHRsay³
!> dMNak;kalepÞrkMlaMgeRbkugRtaMg
       BITinñn½ysMrab;]TahrN_ 7>3 kugRtaMgkNþalElVgEdlbNþalmkEtBIkMlaMgeRbkugRtaMgKWman
dUcxageRkam³
                      f t = +501 psi


PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                   435
T.Chhay                                                                                viTüasßanCatiBhubec©keTskm<uúCa

                     f b = −3,524 psi
                             + 501
                    εc =
                       t
                                       = +144 ⋅10 − 6 in. / in.
                           3.49 ⋅10 6

                             − 3,524
                    ε cb =              = −1,010 ⋅10 − 6 in. / in.
                            3.49 ⋅10 6


                    φi   =
                           (ε   cb   −εc
                                       t
                                         =
                                          )(− 1,010 − 144) ×10 − 6 = −33.94 ⋅10 − 6 rad / in.
                                     h           34
          BI]TahrN_ 7>3 m:Um:g;EdlbNþalmkBI Pi + M D KW M i = −462,672 × 22.02 + 5,502,600
= −4.69 ⋅10 6 in. − lb
@> dMNak;kaleRkayeBlxagbg;
       enAkñúgdMNak;kaldkbnÞúkCabnþbnÞab; tMélrbs;m:Um:g; M g EdlbNþalmkBIbnÞúkTMnajRtUv)an
rkedaykarkat;bnßykugRtaMgenAkñúgEdkeRbkugRtaMgrhUtdl;sUnü. BI]TahrN_ 4>1/ Pe = 379,391lb .
dUcenH
                     Pe 379,391
                       =        = 0.82
                     Pi 462.672
          kugRtaMg nigbMErbMrYlrageFobenAkNþalElVgeBlepÞrkMlaMgeRbkugRtaMg Pi KW
                     f ct = +501 psi

                     f cb = −3,524 psi

                    ε c = +144 ⋅10 −6 in. / in.
                      t


                    ε cb = −1,010 ⋅10 −6 in. / in.
          kat;bnßybMErbMrYlrageFobrhUtdl;dMNak;kal Pe dUcxageRkam³
                 ε c = 0.82(144 ⋅10 −6 ) = 118 ⋅10 −6 in. / in.
                   t


                 ε cb = 0.82(− 1,010 ⋅10 −6 ) = −828 ⋅10 −6 in. / in.
          karBRgaybMErbMrYlrageFobnwgkøaydUcGVIEdlbgðajenAkñúgrUbTI 7>11
                 φ2 =
                       (ε cb − ε ct ) = (− 828 − 118)10− 6 = −27.82 ⋅10− 6 rad / in.
                                     h                34
          m:Um:g;EdlbNþalBIbnÞúkTMnaj M g = 0
          cMNaMfakarEbgEckbMErbMrYlrageFobenAkñúgrUbTI 7>11 KWbNþalBIkMlaMgeRbkugRtaMg Pe . eRbI
düaRkamTMnak;TMngkugRtaMg nigbMErbMrYlrageFobkñúgrUbTI 7>12 sMrab;EdkeRbkugRtaMg nigeRbIdüaRkam
kñúgrUbTI 7>13 sMrab;ebtugedIm,IkMNt;kugRtaMgCak;Esþgtamry³ strain compatibility.


Camber, Deflection and Crack Control                                                                     436
Department of Civil Engineering              NPIC




PaBekag PaBdab nigkarRKb;RKgsñameRbH   437
T.Chhay                                                                                        viTüasßanCatiBhubec©keTskm<uúCa

#> dMNak;kaleRkaydkbnÞúkCamYynwgkugRtaMgebtugsUnüenARtg;TIRbCMuTMgn;rbs;EdkeRbkugRtaMg
       BIrUbTI 7>12 bMErbMrYlrageFobénkardkbnÞúkenARtg;nIv:UTIRbCMuTMgn;EdkeRbkugRtaMgKW
                                                           26.01
                    ε decomp = −828 ⋅10 − 6 ×                        = 723 ⋅10 − 6 in. / in.
                                                        26.01 + 3.75
                     f
          nig ε pe = Epe = 27.5,⋅9806 = 5,636 ⋅10 − 6 in. / in.
                           154
                                 10
                           ps

       PaBRtUvKña (compatibility) rbs;bMErbMrYlrageFobTamTareGayEdkeRbkugRtaMgenAkñúg bonded
beam manbMErbMrYlrageFobdUcKña dUcEdlkugRtaMgTajrbs;ebtugEdlB½T§CMuvijvaekIneLIgedIm,Ikat;

bnßykugRtaMgsgát;enARtg;nIv:UTIRbCMuTMgn;rbs;EdkeRbkugRtaMgrhUtdl;esμIsUnü. dUcenH
               bMErbMrYlrageFobsrub ε pe = 5,636 ⋅10−6 + 723 ⋅10−6 = 6,359 ⋅10−6 in. / in.
       BIdüaRkamTMnak;TMngkugRtaMg nigbMErbMrYlrageFobenAkñúgrUbTI 7>12 kugRtaMg f pe = 177,00 psi
       dUcenH eyIg)an
               Pe EdlEksMrYl = 177,000 × 0.153 × 16 = 433,296
                                      433,296 ⎛ 22.02 × 8.23 ⎞
                f t EdlEksMrYl = −             ⎜1 −           ⎟ ≅ +469 psi (T )
                                        978 ⎝         88.0    ⎠
                                 + 469
                    εc = −
                     t
                                               = 116 ⋅10 − 6 in. / in.
                                4.03 ⋅10   6


                     fb   EdlEksMrYl = − 433,296 ⎛1 + 22.02 ×.0 .77 ⎞ ≅ −3,300 psi(C )
                                           978 ⎝
                                                 ⎜
                                                          88
                                                              25
                                                                    ⎟
                                                                    ⎠
                                − 3,300
                    ε cb =                     = −819 ⋅10 − 6 in. / in.
                           4.03 ⋅10    6

                               M decomp × y M decomp × 22.02
                    f decomp =               =                     = 2,884 psi
                                     Ic             86,072

                    M decomp =
                                 2,884 × 86,072
                                     22.02
                                                                                 (
                                                = 11.27 ⋅10 6 in. − lb 1.27 ⋅10 6 N .m             )
                          M decomp 11.27 ⋅10 6
                    ft =            =             = −1,078 psi (C )
                              St         10,458
          net stress f t = −1,078 + 469 = −609 psi (C )(4.16 MPa )
                           − 609
                  εc =
                    t
                                     = −151.1 ⋅10 − 6 in. / in.
                         4.03 ⋅10 6

                        11.27 ⋅10 6 11.27 ⋅10 6
                   fb =               =              = +3,374 psi (T )
                             Sb           3,340
          net stress f b = +3,374 − 3,300 = +74 psi (T )
                             74
                  ε cb =              = +18.4 ⋅10 − 6 in. / in.
                          4.03 ⋅10 6




Camber, Deflection and Crack Control                                                                             438
Department of Civil Engineering                                                                                   NPIC




                     φ decomp =
                                        (ε   cb   −εc
                                                    t
                                                      =
                                                         )
                                                        (18.4 + 151.1) × 10 − 6 = +4.99 ⋅10 − 6 rad / in.
                                                  h           34

                     M = 11.27 ⋅10 6 in. − lb
       rUbTI 7>14 eGaynUvkarBRgaykugRtaMg nigbMErbMrYlrageFobenAkúñgFñwmenHenAkñúgsßanPaBénkar
dkbnÞúk.




$> dMNak;kalm:UDuldac;
                      f r = 7.5λ f 'c = 7.5 5,000 = 530 psi
                                ⎡           P ⎛ ec ⎞⎤
                     M cr = S b ⎢7.5λ f 'c + e ⎜1 + 2b ⎟⎥
                                ⎣           Ac ⎝   r ⎠⎦
          BIelIkmun GgÁTIBIrénsmIkarxagelIsMrab;m:Um:g;eGaykugRtaMg 3,300 psi .
dUcenH               M cr = 3,340(530 + 3,300) = 12.8 ⋅10 6 in. − lb

          net bottom concrete stress =                       m:UDuldac; f r sMrab;krNIenH = +530 psi(T )
                                   + 530
                     ε cb =                           = +132 ⋅10 − 6 in. / in.
                            4.03 ⋅10              6

                           12.8 ⋅10 6
                      ft =            = −1,224 psi (C )
                            10,458
          net stress f t = −1,224 + 469 = −755 psi (C )
                          − 755
                  εc =
                    t
                                   = −187 ⋅10 − 6 in. / in.
                        4.03 ⋅10 6


                     φs   =
                            (ε    cb   −εc
                                         t
                                           =
                                                  )
                                             (132 + 187 ) ×10 − 6
                                       h         34

                          = +9.38 ⋅10 −6 rad / in.



PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                                        439
T.Chhay                                                                   viTüasßanCatiBhubec©keTskm<uúCa

%> dMNak;kalmuxkat;mansñameRbH/ ε c = 0.001in. / in.
        BIelIkmun/ ε pe = 6,359 ⋅10 −6 = 0.0064in. / in. . tamkarsakl,g nigEktMrUv snμt;kMBs;G½kS
NWt c = 1.5in. BIxageRkamsrésxagelIbMputrbs;søab. ehIy Δε ps CabMErbMrYlrageFobbEnßmenAkñúg
bonded prestressing strand EdlbNþalBI ε c = 0.001in. / in. enAsrésxagelIbMput ehIyBIRtIekaN

dUc (similar triangle) enAkñúgrUbTI 7>15
                    Δε ps =
                               (30.25 − 1.5) × 0.001 = 0.0192in. / in.
                                       1.5
dUcenH             srub = 0.0192 + 0.0064 = 0.0256in. / in.
                    ε ps
        BIdüaRkamTMnak;TMngrvagkugRtaMg nigbMErbMrYlrageFobrbs;EdkeRbkugRtaMgenAkñúgrUbTI 7>12
kugRtaMgEdlRtUvnwgtMélbMErbMrYlrageFob ε ps srubKW
                     f ps ≅ 260,000 psi

nig              A ps = 16 × 0.153 = 2.448in.2

dUcenH kMlaMgTaj T p = 260,000 × 2.448 = 636,480lb
        BIrUbTI 7>13/ f c = 3,000 psi RtUvKñanwg ε c = 0.001in. / in. .
enaH kMlaMgsgát;         Cc = (12 × 12 × 1.5)3,000 = 648,000 > T = 636,480lb

dUcenH eKKYrkat;bnßykMBs;G½kSNWt.




sakl,gelIkTIBIr
          snμt; c = 1.45in. . enaH
                    Δε ps =
                               (30.25 − 1.45) × 0.001 = 0.0199in. / in.
                                       1.45
nig                 ε ps   srub = 0.0199 + 0.0064 = 0.0263in. / in.
Camber, Deflection and Crack Control                                                        440
Department of Civil Engineering                                                                    NPIC




BIrUbTI 7>13/ f ps ≅ 255,000 psi / T p = 255,000 × 2.448 = 624,240lb nig
Cc = (12 × 12 × 1.45)3000 = 624,400lb ≅ T p . dUcenH c Edlsnμt; = 1.45in. KW O.K.
                                  ⎛         1.45 ⎞
                     M n = 624,240⎜ 30.25 −      ⎟ = 18.4 ⋅10 in. − lb
                                                             6
                                  ⎝           2 ⎠
nigBIsmIkar 7.5d
                             εu       0.001
                     φu =         =         = 690 ⋅ 10 − 6 rad / in.
                              c       1.45
^> dMNak;kalmuxkat;mansñameRbHeBj/ ε c = 0.003in. / in. (ultimate load)
        ε c = 0.003in. / in. CabMErbMrYlrageFobGtibrmaEdlGnuBaØateday ACI Code eRkamGMeBI
ultimate load. snμt; f ps = 263,000 psi . enaH
                             A ps f ps        2.448 × 263,000
                     a=                  =                      = 1.1in.
                        0.85 f 'c b          0.85 × 5,000 × 144
                        a 1.1
                     c=    =       = 1.38in.
                        β1 0.8
BIrUbTI 7>15
                              30.25 − 1.38
                     ε ps =                × 0.003 = 0.0628in. / in.
                                 1.38
                     ε ps   srub = 0.0628 + 0.0064 = 0.0692in. / in.




BIdüaRkamTMnak;TMngrvagkugRtaMg nigbMErbMrYlrageFobenAkúñgrUbTI 7>13/       f ps ≅ f pu = 270,000 psi   .
dUcenH eRbI a ≅ 1.1in. EdleGay
                                     ⎛      a⎞                  ⎛        1.1 ⎞
                     M n = A ps f ps ⎜ d p − ⎟ = 2.448 × 270,000⎜ 30.25 − ⎟
                                     ⎝      2⎠                  ⎝         2 ⎠

PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                         441
T.Chhay                                                                   viTüasßanCatiBhubec©keTskm<uúCa

                          = 19.6 ⋅10 6 in. − lb
yk c ≅ 1.4in.
                           εu           0.003
                    φu =            =         = 2,143 ⋅10 − 6 rad / in.
                            c            1 .4
        düaRkaménTMnak;TMngrvagm:Um:g; nigkMeNagRtUv)anbgðajenAkñúgrUbTI 7>16. düaRkamTMnak;TMng
rvagbnÞúk nigPaBdabmanTMrg;RsedogKña ehIyeyIgGacsnñidæanvaecjBIdüaRkamTMnak;TMngrvagm:Um:g; nig
kMeNag.

7> T§iBlénry³eBlEvgeTAelIPaBdab nigPaBekag
       Long-Term Effects on Deflection and Camber
     k> viFIemKuN PCI                       PCI Multipliers Method
          ACI Codepþl;nUvsmIkarxageRkamsMrab;)a:n;RbmaNemKuNGaRs½ynwgeBlsMrab;PaBdabén
Ggát;ebtugeRbkugRtaMg³
                                ξ
                    λ=                                                                   (7.16)
                          1 + 50 ρ '
Edl       ξ=   emKuNGaRs½yeBlsMrab;bnÞúkGcié®nþy_ (sustained load)
          ρ ' = pleFobEdkrgkarsgát;
          λ = emKuNsMrab;PaBdabry³eBlEvgbEnßm
kñúgTMrg;RsedogKña/ PCI multipliers method pþl;nUvemKuN C1 EdlKitT§iBlénry³eBlEvgenAkñúg
Ggát;ebtugeRbkugRtaMg. Et C1 xusBI λ enAkñúgsmIkar 7.16 edaysarkarkMNt;PaBdab nig camber
ry³eBlEvgenAkñúgGgát;eRbkugRtaMgmanlkçN³sμúKsμajCagedaysarktþadUcxageRkam³
          !> T§iBlry³eBlEvgénkMlaMgeRbkugRtaMg nigkMhateRbkugRtaMg.
          @> karekIneLIgénersIusþg;rbs;ebtugeRkayeBlkMlaMgeRbkugRtaMgfycuHedaysarkMhatbg;.
          #> T§iBlénPaBdab nig camber kñúgGMLúgeBldMeLIg.
edaysarktþaTaMgenH eKminGaceRbIsmIkar 7.16 eT.
          tarag 7>1 pþl;nUvemKuNénPaBdab nig camber Pøam²d¾smrmü RbsinebI camber nigPaB
dabEdl)anKNnaBIdMbUgRtUv)anKitdac;edayELkBIKñaedIm,IKitBIT§iBlénkMhatbg;kMlaMgeRbkugRtaMg
eTAelI camber.


Camber, Deflection and Crack Control                                                        442
Department of Civil Engineering                                                                   NPIC




             nig Brason ENnaMfaeKGacTTYl)annUvkarkat;bnßyCaGcié®nþy_nUv camber ry³eBl
          Shaikh

EvgedaykarbEnßmEdkminrgeRbkugRtaMg. enAkñúgkrNIenH eKGaceRbIemKuNEdlkat;bnßy C2 Edl
eGayeday
                             C1 + As / A ps
                     C2 =                                                                (7.17)
                              1 + As / A ps

Edl       C1 =  emKuNEdl)anBItarag 7>1
           As = RkLaépÞrbs;EdkminrgeRbkugRtaMg

           A ps = RkLaépÞrbs;EdkrgeRbkugRtaMg




     x> viFIkMeNIntameBl               Incremental Time-Steps Method
        viFIkMeNIntameBl (incremental time-steps method) KWQrelIbnSMénkarKNnaPaBdabCa-
mYynwgkarKNnakMhatbg;edaysar creep, shrinkage nig relaxation EdlGaRs½ynwgeBl. kar
KNnaBICIvitrbs;eRKOgbgÁúMEbgEckCaeRcIncenøaHeBlEdleRCIserIsedayQrelIeKalkarN_énEdn
kMNt;rbs;bMErbMrYlrageFobebtugCak;lak; (specific concrete strain limits) dUcCabMErbMrYlrageFob
Éktþa ε c1 = 0.001 nig ε c1 = 0.002in. / in. nig ultimate allowable strain ε c1 = 0.003in. / in. . eK

PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                        443
T.Chhay                                                                           viTüasßanCatiBhubec©keTskm<uúCa

KNnakarBRgaybMErbMrYlrageFob/ kMeNag nigkMlaMgeRbkugRtaMgsMrab;cenøaHeBlnImYy²CamYynwgkM-
eNInénkMhatbg;edaysarbMErbMrYlrbs;karrYmmaD/ creep nig relaxation EdlekItmankñúgcenøaHeBl
enaH. eKRtUveFVIkarKNnaenHCadEdl²sMrab;cenøaHkMeNInbnþbnÞab; nigkareFVIplbUkénkarKNnaenH
pþl;eGayeyIgnUvPaBdabGaRs½ynwgeBlcugeRkaysMrab;muxkat;Cak;lak;NamYyenAtambeNþayElVg
rbs;Fñwm.
        eKRtUveFIVkarKNnaenHsMrab;cMnYncMnucenAelIbeNþayElVgFñwmRKb;RKan; dUcCakNþalElVg nigcM-
nucmYyPaKbYnedIm,IGackMNt;düaRkamTMnak;TMngrvagPaBdab nigkMeNageGaymanlkçN³suRkit.
        eKGacsmIkarTUeTAsMrab;mMuvilsrub (total rotation) enAcugbBa©b;éncenøaHeBldUcxageRkam³
                                    t                        t
                           Pi e x                    ex                            e
                    φt = −        + ∑ (Pn −1 − Pn )        − ∑ (C n − C n−1 )Pn −1 x             (7.18a)
                           Ec I c   0               Ec I c   0                    Ec I c

Edl       Pi =  kMlaMgeRbkugRtaMgedImmuneBlxatbg;
          e x = cMNakp©itrbs; tendon enARtg;muxkat;NamYytambeNþayElVg

          n −1 = cMnuccab;epþIméncenøaHeBl (time-step)

          n = cugbBa©b;én time-step Edl)anniyayBIxagelI

         C n−1 / C n = emKuN creep enAcMnuccab;epþIm nigcMnucbBa©b; erogKña én time-step NamYy

          Pn − Pn−1 = kMhatbg;eRbkugRtaMgenARtg;cenøaHeBlNamYyEdlekItBIktþaTaMgGs;

         Cak;Esþg eKeFVIkarKNnay:agl¥itl¥n;EbbenHEtenAkñúgkarkMNt;rkPaBdab nigPaBekagrbs;
RbB½n§s<anEdlmanElVgEvg² dUcCas<anEdlsg;CakMNat;² (segmental bridge) EdlkardMeLIg nigkar
pÁúMkMNat;s<anenaHTamTarnUvkar)a:n;RbmaNPaBdabeGaymanlkçN³suRkit. BIsmIkar 7.18a PaBdab
srubenARtg;muxkat;NamYyKW
                    δ x = φt kl 2                                                                (7.18b)
       ]bmafaeKeRbIbMErbMrYlrageFobxageRkamBI]TahrN_ 7>7 xageRkamedIm,IbgðajBIkarKNna
kMeNInénmMuvil (incremental rotation) nigmMuvilsrub (total rotation)³
       ε ' n−1 = gross strain EdlbNþalEtmkBIkMlaMgeRbkugRtaMgenAsrésxagelIbMput Edl
                 ε c = 144 ⋅ 10 −6 in. / in. ¬rUbTI 7>19¦
                   t


       ε b,n−1 = gross strain EdlbNþalEtBIkMlaMgeRbkugRtaMgenAsrésxageRkambMput Edl
                  ε cb = −1,010 ⋅ 10 −6 in. / in. ¬rUbTI 7>19¦




Camber, Deflection and Crack Control                                                                444
Department of Civil Engineering                                                              NPIC




           Δε CR ,n =
              t
                      kMeNInénbMErbMrYlrageFobedaysar gross creep enAsrésxagelIbMput Edl
                      Δε CRc = 127 ⋅10 −6 in. / in. ¬rUbTI 7>20¦
                          t


          Δε CRb, n = kMeNInénbMErbMrYlrageFobedaysar gross creep enAsrésxageRkambMput Edl

                        Δε CRcb = −895 ⋅10 −6 in. / in. ¬rUbTI 7>20¦

          Δε ps , n = karkat;bnßybMErbMrYlrageFobedaysarkMhatbg;eRbkugRtaMgEdlbgáedaykMlaMg

                       creep ΔP, n ¬dUcCa 169 ⋅10 −6 in. / in. dUceXIjkñúgrUbTI 7>20¦

          Net incremental creep strain Edlnwgpþl;nUv incremental rotation φn KW

          sMrab;srésxagelI
                    Δε CR , net = (Δε CR , n − Δε tps , n )
                       t              t
                                                                                      (7.19a)

          sMrab;srésxageRkam
                                        (
                     Δε CRb, net = Δε CRb, n − Δε psb, n      )                    (7.19b)

          kMeNInénmMuvil (incremental rotation) KW
                                  Δε CR , net − Δε CRb, net
                                     t
                     Δφ n =                                                        (7.19c)
                                             h




PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                  445
T.Chhay                                                                      viTüasßanCatiBhubec©keTskm<uúCa

          ehIymMuvilsrub (total rotation) køayCa
                      φT = φ n −1 + Δφn                                                     (7.20)
        bMErbMrYlénbMErbMrYlrageFob nigmMuvil (rotation) BI time-step n − 1eTA time-step n
RtUv)anbgðajenA kñúgrUbTI 7>17.
        kareRCIserIscenøaHeBl (time interval) GaRs½ynwgPaBsuRkitEdleKcg;)anBIkarKNna
camber. sMrab; time step nImYy² kMeNInbMErbMrYlrageFobEdlbNþalmkBI creep nigkarrYjmaD nig

karxatbg;kMlaMgeRbkugRtaMgedaysar relaxation RtUv)anKNnadUcbgðajenAkñúg]TahrN_ 7>7 edIm,I
TTYl)ankMeNInkMeNag (curvature increment) Δφ . bnÞab;mk eKnwgTTYl)antMélkugRtaMg bMErbMrYl
rageFob nigkMeNagfμIenAcugbBa©b;éncenøaHeBl EdlbEnßm curvature increment Δφn eTAelIkMeNag
srub φn −1 enARtg;cMnuccab;epþIméncenøaHeBlEdleKcg;)an dUceGayenAkñúgsmIkar 7.18. Cak;Esþg
incremental time-step procedure manlkçN³Evg.

        eKGacTTYlPaBekagsrub (↑) b¤PaBdab (↓) EdlbNþalBIkMlaMgeRbkugRtaMgBIsmIkar 7.20
                      δ T = φT kl 2                                                         (7.21)
Edl k CaGnuKmn_énElVg nigragFrNImaRtrbs;muxkat; nigragFrNImaRtrbs;EdkeRbkugRtaMg.
         GñkGegÁtCaeRcIn)anesñInUvTMrg;epSg²sMrab;kar)a:n;RbmaNPaBdabbEnßmGaRs½yniwgeBl Δδ
BITMnak;TMngrvagm:Um:g; nigkMeNag φ Edl)anEkERbsMrab; creep. TaMg Tadros nig Dilger ENnaMeGay
eFVIplbUk modified curvature tambeNþayElVgrbs;Fñwm xN³Edl Naaman KitPaBdabry³eBl
EvgedayeRbIkMeNagkNþalElVg nigkMeNagRtg;TMrRtg;cenøaHeBl t . Ca]TahrN_ smIkarrbs;
Naaman sMrab; parabolic tendon KW
                                          l2                        l2
                      Δδ (t ) = φ1 (t )      + [φ 2 (t ) − φ1 (t )]
                                           8                        48
Edl               kMeNagkNþalElVgenAxN³ t
          φ1 (t ) =
        φ 2 (t ) = kMeNagelITMrenAxN³ t

EdlkñúgenaH φ (t ) = E Mt )I
                          ce ( c

Edl Ece (t ) = m:UDulEdlEksMrYltameBl (time adjusted modulus)
                                       Ec (t1 )
                      E ce (t ) =
                                    1 + KC c (t )
EdlkñúgenH            Ec (t1 ) = m:UDulrbs;ebtugenAeBlcab;epþIméncenøaHeBl
                      Cc (t ) = emKuN creep enAcugbBa©b;éncenøaHeBl



Camber, Deflection and Crack Control                                                           446
Department of Civil Engineering                                                                 NPIC




     K> viFIRbhak;RbEhledaycenøaHeBl
          Approximate Time-Steps Method
                                      CaviFIEdlEp¥kelITMrg;y:agsmBaØEdlbUkbBa©ÚlKñanUvPaB-
          Approximate time-steps method

dabTaMgGs;EdlbNþalBIemKuNGaRs½ynwgeBlepSg². RbsinebI Cu CaemKuN creep ry³eBlEvg
eKGackMNt;kMeNageRkamGMeBIkMlaMgeRbkugRtaMgRbsiT§PaB Pe tamsmIkarxageRkam
                                                      ⎛ P + Pe ⎞ e x
                                   + (Pi − Pe ) x − ⎜ i
                            Pi e x              e
                     φe =                                      ⎟     Cu               (7.22)
                            Ec I c             Ec I c ⎝ 2 ⎠ Ec I c
PaBdabcugeRkayeRkamGMeBI Pe KW
                                                   ⎛ δi + δe ⎞
                     δ et = −δ i + (δ i − δ e ) − ⎜          ⎟Cu                      (7.23a)
                                                   ⎝ 2 ⎠
                              ⎛δ +δ ⎞
b¤              δ et = −δ e − ⎜ i e ⎟Cu                                     (7.23b)
                              ⎝ 2 ⎠
edaybEnßmPaBdabedaysarbnÞúkpÞal; δ D nig superimposed dead load δ SD EdlrgT§iBleday-
sar creep pþl;nUvkMeNInPaBdabcugeRkayGaRs½ynwgeBlEdlbNþalBIkMlaMgeRbkugRtaMg nigbnÞúk
Gcié®nþy_ (sustained load) dUcxageRkam
                                 ⎛ δ + δe ⎞
                     Δδ = −δ e − ⎜ i      ⎟Cu + (δ D + δ SD )(1 + Cc )                (7.24a)
                                 ⎝ 2 ⎠
ehIy net deflection srubcugeRkayEdlrYmbBa©ÚlTaMgPaBdabedaysarbnÞúkGefrKW
                                       ⎛ δi + δe ⎞
                     δ T = −δ e − ⎜                                          (7.24b)
                                                 ⎟Cu + (δ D + δ SD )(1 + Cu ) + δ L
                                       ⎝ 2 ⎠
eKGackMNt;PaBdabkMritmFüm (intermediate deflection) edayCMnYs Ct eGay Cu enAkñúgsmIkar
7.24a nig b. Edl
                                  t 0.60
                     Ct =                  Cu                                         (7.25)
                            10 + t 0.60
EdlkñúgenaH t 0.60 / (10 + t 0.60 ) CapleFob creep α
       Brason et al. )anesñInUvsmIkarxageRkamsMrab;TaykarekIneLIgénPaBdabGaRs½ynwgeBl

Δδ énsmIkar 7.24 a dUcxageRkam³
                            ⎡
                     Δδ = − ⎢η +
                                 (1 + η ) k C ⎤δ + k C δ + K k C δ
                                           r t ⎥ i ( Pi ) r t i (D ) a r t i (SD )    (7.26)
                            ⎣       2          ⎦
Edl       η = Pe / Pi
          Ct =  emKuN creep enAxN³ t
           K a = emKuNEdlRtUvnwgGayurbs;ebtugeRkamGMeBIrbs; superimposed load


PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                    447
T.Chhay                                                                                      viTüasßanCatiBhubec©keTskm<uúCa

               = 1.25t −0.118sMrab; moist-cured concrete
              = 1.13t −0.095 sMrab; steam-cured concrete

       t = GayuenAeBlrgbnÞúk KitCaéf¶

       k r = 1 / (1 + As / A ps ) Edl As / A ps << 1.0

             = 1 sMrab;RKb;karGnuvtþTaMgGs;

       sMrab;kMeNInPaBdab (deflection increment) cugeRkay eKeRbI Cu CMnYseGay Ct enAkñúg
smIkar 7.26.
       sMrab;FñwmminEmnsmas (noncomposite beams) PaBdabsrub δ T ,t køayCa
                       ⎡ ΔP                   ⎤
       δ T , t = −δ pi ⎢1 −      + λ (k t Ct )⎥ + δ D [1 + k t Ct ] + δ SD [1 + K a k r Ct ] + δ L (7.27)
                          ⎣ P      o                ⎦
Edl       δp =PaBdabEdlbNþalBIkMlaMgeRbkugRtaMg
          ΔP = kMhateRbkugRtaMgsrubEdlminrYmbBa©ÚlkMhateRbkugRtaMgeGLasÞicedIm (initial elastic
                 loss)
          λ = 1 − ΔP / 2 P0
EdlkñúgenaH            kMlaMgeRbkugRtaMgenAeBlepÞreRkay elastic loss
                    P0 =

                     = Pi tUcCag elastic loss.

          sMrab;Fñwmsmas PaBdabsrubKW
                                   ⎡      ΔP                ⎤
                    δ T = −δ pi ⎢1 −         + K a k r Cu λ ⎥ + δ D [1 + K a k t Cu ]
                                   ⎣      P0                ⎦
                                                 ⎡ ΔP − ΔPc                    ⎤
                                                            + k r Cu (λ − αλ ')⎥
                                         Ie
                              + δ pi             ⎢1 −
                                       I comp.   ⎣    P0                       ⎦
                                                         Ic            ⎡              I ⎤
                              + (1 + α )k r Cu δ D               + δ D ⎢1 + αk r Cu c ⎥ + δ df + δ L        (7.28)
                                                        I comp         ⎢
                                                                       ⎣           I comp ⎥
                                                                                          ⎦
Edl       λ ' = 1 − (ΔPc / 2 P0 )
          P0 =   kMhatbg;eRbkugRtaMgenAxN³EdleKcak; composite topping slab edayminKitbBa©Úl
                 initial elastic loss
          δ df =PaBdabedaysar differential shrinkage nig differential creep rvagmuxkat;cak;Rsab;
                nig composite topping slab
              = Fycs l 2 / 8 Ecc I comp sMrab;FñwmTMrsamBaØ ¬sMrab;FñwmCab; eRbIemKuNsmrmüenAPaKEbg¦

          ycs = cMgayBITIRbCMuTMgn;rbs;muxkat;smaseTATMRbCMuTMgn;rbs; topping slab



Camber, Deflection and Crack Control                                                                           448
Department of Civil Engineering                                                             NPIC




           kMlaMgEdl)anBI differential shrinkage nig differential creep
           F=

       Ecc = m:UDulénmuxkat;smas

      α = creep strain enAxN³ t EdlEckeday ultimate creep strain
         = t 0.60 / ( + t 0.60 ) .
                    10

      Cakarsegçb visVkrRtUvvinicä½ykñúgkarkMNt;tMélm:UDulrbs;ebtug Ec eRkamGMeBIénkardak;bnÞúk
epSg²eGay)ansuRkit edIm,ITTYl)antMélemKuN creep smrmü.

     X> karKNnaPaBdabedaykMuBüÚT½r
          Computer Methods for Deflection Evaluation
        eKGacKNnaPaBdabedayeRbIkmμviFIepSg²CaeRcIn. kMuBüÚT½rCYyvisVkry:ageRcInsMrab; time-
step method. b:uEnþ eKRtUvcaMfaPaBdabeRkamGMeBIkardak;bnÞúkry³eBlxøI nigry³eBlEvgRtUv)anRKb;

RKgedaylkçxNÐEdlGacekItmanCaeRcInEdlsßitenAkñúgvIFIénkarkMNt;PaBdabEtmYy. lkçxNÐTaMg
enHTak;TgnwglkçN³énsarFatupSMrbs;ebtugEdlCHT§iBldl;PaBdab CaBiessPaBdabry³eBlEvg.
dUcenH elIkElgkrNIs<anElVgEdlEvg dUcCa cable-stayed bridges dMeNIrkar nigviFIénkarKNnaPaB
dabKYrmankMritERbRbYl ± 40% . karbBa©ÚllkçN³sMPar³eTAkñúgkmμviFIkMuBüÚT½rRtUveFVIeLIgedayRby½tñ
RbEygbMputedayEp¥kelIlT§plBiesaFn_RbsinebIElVgrbs;eRKOgbgÁMúEvg.

     g> PaBdabrbs;Fñwmsmas
          Deflection of Composite Beams
        karKNnaPaBdabrbs;FñwmeRbkugRtaMgsmasmanlkçN³RsedogKñanwgkarKNnaPaBdabsMrab;
noncomposite section Edr. viFIsaRsþKNnanwgkøayCasμúKsμajCagRbsinebIeKeRbI incremental

time-steps method. CMhanbEnßméndMNak;kalsagsg;CaeRcInrbs;Ggát;cak;Rsab; nigsMrab; situ-cast

top slab TamTarkarBicarNaénkarERbRbYlm:Um:g;niclPaBBImuxkat;cak;Rsab;eTAmuxkat;smasenA

Rtg;dMNak;kalsmrmü. elIsBIenH PaBxusKñaénlkçN³rbs; shrinkage nigkMeNIncenøaHeBl (time-
step increments) EdlbNþalBIPaBxusKñaéntMélrbs; shrinkage énmuxkat;cak;Rsab; nigkarbEnßm

concrete topping )anbegáInPaBBi)akdl;dMeNIrkarKNna. CasMNagl¥ kareRbIkmμviFIkMuBüÚT½rsMrYlkar

KNnaPaBdab nig camber rbs;Ggát;smas)any:ageRcIn.


PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                  449
T.Chhay                                                            viTüasßanCatiBhubec©keTskm<uúCa

8> PaBdabGnuBaØat                      Permissible Limits of Calculated Deflection
          ACI CodeTamTareGayPaBdabEdl)anKNnaRtUvbMeBjtMrUvkar serviceability
énPaBdabGnuBaØatGtibrmasMrab;lkçxNÐrcnasm<½n§epSg²Edlmanerobrab;enAkñúgtarag 7>2. cMNaMfa
T§iBlry³eBlEvgbgáeGayPaBdab nig camber ekIneLIgeTAtameBl ehIyeFVIeGayebtug nigEdk
rgkugRtaMgelIs (overstress).
       PaBdabGnuBaØatrbs; AASHTO EdlbgðajenAkñúgtarag 7>3 manlkçN³suRkitCageday-
sar karb:HTgÁícCalkçN³DINamic (dynamic impact) énbnÞúkcl½tenAelIElVgs<an.




Camber, Deflection and Crack Control                                                 450
Department of Civil Engineering                                                             NPIC




          xageRkamCa dMeNIrkarCaCMhan² (step-by-step procedure) sMrab;KNnaPaBdab³
          !> kMNt;lkçN³rbs;ebtug edayrYmbBa©ÚlTaMgm:UDuleGLasÞicrbs;ebtug Ec / creep rbs;ebtug
          @> eRCIserIskMeNInry³eBl (time increment) EdlRtUveRbIenAkñúgkarKNnaPaBdab
          #> KNnakugRtaMgsrésebtugedaysarbnÞúkTaMgGs;TaMgenAEpñkxagelIbMput nigTaMgenAEpñk
              xageRkambMput
          $> KNnabMErbMrYlrageFobdMbUg (initial strains) ε ci enAsrésxagelI nigsrésxageRkam nig
              mMuvil (rotation) EdlRtUvKña k¾dUcCabMErbMrYl nigmMuvilbnþbnÞab;. eRbIsmIkar
                                         ε cbi − ε ci
                                                   t
                                  φi =
                                           h
                                       ε −ε
                                  φe = cbe cte
                                            h
                                      ε −ε
                                        t
                                  φ = c cb
                                          h
                                         εu
                                  φu =
                                          c
          %> kMNt;karERbRbYlbMErbMrYlrageFobsrubenAkñúgEdkeRbkugRtaMgedaysar creep, shrinkage
              nig relaxation EdlGnuvtþCakMlaMg F enARtg;TIRbCMuTMgn;rbs;EdkeRbkugRtaMg. bnÞab;mk
              KNnakugRtaMgsrésebtugenAnIv:U cgs EdlbNþalBIkMlaMg F .
          ^> bEnßmlT§plénCMhan % eTAkñúglT§plénCMhan 3.
          &> GnuvtþdMeNIrkarKNnasMrab;RKb;cenøaHeBl nigbEnßmT§iBlén superimposed dead load.
          *> bEnßmPaBdabedaysarbnÞúkGefredIm,ITTYl)anPaBdabsrub δT .
          (> epÞógpÞat;faetI δT Edl)anKNnasßitenAkñúgEdnkMNt;GnuBaØatb¤Gt;. RbsinebImindUecñaHeT
              eFVIkarpøas;bþÚrmuxkat;.
        rUbTI 7>18 bgðajBI flowchart sMrab;karKNnaPaBdabeday approximate time-step method.




PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                  451
T.Chhay                                viTüasßanCatiBhubec©keTskm<uúCa




Camber, Deflection and Crack Control                     452
Department of Civil Engineering                                                              NPIC




9> karKNnaPaBdab nigPaBekagry³eBlEvgedayviFIemKuN                                       PCI
       Long-Term Camber and Deflection Calculation by the PCI Multipliers Method
]TahrN_ 7>6³ edayeKeGay                         cUrKNnaPaBdab nigPaBekagrbs; boded double
                                       f pi = 189,000 psi

T-beam enAkñúg]TahrN_ 7>3 eday PCI multiplers method nigepÞógpÞat;fatMélPaBdabbMeBjEdn

kMNt;GnuBaØatrbs; ACI. RbsinebIFñwmRtUv)anrg post-tensioned snμt;fa f pi = 189,000 psi eRkay
eBl anchorage losses nigeRkayeBllubbM)at; frictional losses edaykarTajBIcugsgçagrbs;cug
Fñwm nigbnÞab;mkeKRtUvTajeLIgvijedIm,IFana net prestressing f pi = 189,000 psi munnwgdMeLIg. dUc
Kña snμt;faGgát;EdlminEmnCaeRKOgbgÁúMrgbnÞúkEdlP¢ab;eTAnwgeRKOgbgÁúMrgbnÞúkminrgkarxUcxateday
sarPaBdab ehIybnÞúkGefrmanlkçN³ transient. yk Ec = 4.03 ⋅106 psi sMrab;bnÞúkTaMgGs;enA
kñúgkaredaHRsayenH.
dMeNaHRsay³
                     I g = 86,072in.4

                     WD = 1,019 plf = 84.9lb / in.



PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                   453
T.Chhay                                                                         viTüasßanCatiBhubec©keTskm<uúCa

                              5Wl 4        5 × 84.9(60 × 12)4
                    δD =               =                          = 0.99in. ↓ (14mm )
                            384 Eci I g 384 × 3.49 ⋅10 6 × 86,072

                    WSD = 100 plf = 8.3lb / in.
                                  5 × 8.3(60 × 12 )4
                    δ SD =                               = 0.08in. ↓ (2.0mm )
                             384 × 4.03 ⋅10 6 × 86,072

                    WL = 1,100 plf = 91.7lb / in.
          muxkat;Gt;mansñameRbH ¬emIl]TahrN_ 7>3¦
                    I e = I g = 86,072in.4 ( f t max < f r = 530 psi )
                                5 × 91.7(60 × 12 )4
                    δL =                                 = 0.93in. ↓ (24mm )
                            384 × 4.03 ⋅ 10 6 × 86,072
        RbsinebImuxkat;maneRbH eKeRbItMélRbsiT§PaBrbs; I e CMnYseGay I g . kareRbI PCI multi-
plier method sMrab;KNnaPaBdabenAeBldMNak;kaldMeLIg (30éf¶) nigenAeBlmanPaBdabcugeRkay

edaysar service-load ¬5qñaM¦ taragxageRkamnwgbgðajBItMélrbs;PaBdab nig camber ry³eBlEvg
EdlTTYledayeRbIemKuN PCI enAkñúgtarag 7>1. RbsinebImuxkat;lkøayCamuxkat;smaseRkay
eBldMeLIg eKeRbI I comp kñúgkarKNna δ L nig δ SD RbsinebIFñwmRtUv)anTl;kñúgGMLúgeBlcak; con-
crete topping. ehIyRbsinebIeKeRbIEdkFmμta As enAkñúgFñwmeRbkugRtaMg eKRtUveRbIemKuNEdlkat;

bnßy (reduced multiplier). emKuN C1 RtUv)ankat;bnßyedayemKuN C2 Edl
                            C1 + As / A ps
                    C2 =
                             1 + As / A ps




Camber, Deflection and Crack Control                                                              454
Department of Civil Engineering                                                            NPIC




edaysarEdkFmμtaRKb;RKgkarrIkralFMénsñameRbHedaysarkarBt;begáageRkamGMeBIbnÞúkry³eBl Evg
dUcenHPaBrwgRkajrbs;vaRtUv)anbegáIn. Ca]TahrN_ snμt;faeKeRbIEdk 3#5 enAkñúgFñwmeRbkug RtaMg
                      As    3 × 0.31
                          =          = 0.43
                      Aps    2.142

eyIgTTYl)an C2 = 2.01
Ca]TahrN_énkarEksMrYltMélEdlmanenAkñúgtarag 7>1 tMélrbs; camber edImnwgkøayCa 3.80in. ↑
CMnYseGay 4.63in. ↑ EdlbgðajenAkñúgtarag edayeKeRbIemKuN 2.01 CMnYseGayemKuN 2.45 . eK
GaceFVIkarEksMrYlEdlmanlkçN³RsedogKñaeTAelIPaBdabTaMgGs;edayeRbIemKuNEksMrYlEdlRtUvKña.
        BItarag 7>4/ camber eRkayeBltMeLIg nigeRkayeBlrg superimposed dead load enAGayu
30éf¶ = 1.49in. ↑ (38mm ) . ehIy net camber cugeRkayeRkayGayu 5qñaM = 0.79in. ↑ (20mm ) /

PaBdabedaysarbnÞúkGefr = 0.93in. ↓ (24mm) ehIyPaBdabGnuBaØat = l / 240 = (60 × 12) / 240
= 30in.(76mm ) > 0.79in. . enAkñúgkrNIenH RbsinebIeKsnμt;fabnÞúkGefrmanlkçN³ transient enaH

vanwgRKb;RKan;.

10> karKNnaPaBdab nigPaBekagry³eBlEvgedayviFIkMeNIncenøaHeBl
          Long-Term Camber and Deflection Calculation by the Incremental
          Time-Steps Method
]TahrN_ 7>7³ edaHRsay]TahrN_ 7>6 tam incremental time-steps method edaysnμt;fa             f pi

= 189,000 psi    ehIyeKsegÁteXIjfakMlaMgeRbkugRtaMgmankarekIneLIgenAeBlrgeRbkugRtaMg ¬7éf¶
bnÞab;BIcak;ebtug¦/ 30éf¶bnÞab;BIepÞr ¬kartMeLIg nigkardak; superimposed dead load rYceRsc¦/ 90
éf¶ nig 5qñaM. snμt;fa ultimate creep coefficient Cu = 2.35 sMrab;ebtug nig f py = 230,000 psi
sMrab;EdkrgeRbkugRtaMgEdleRbIenAkñúgFñwm. sg;düaRkamTMnak;TMngrvagcamber CamYynwgeBl nigPaB
dab CamYynwgeBledayeRbI Ec = 4.03 ⋅ 106 sMrab;RKb; incremental steps TaMgGs;kñúgkaredaHRsay
enH edayelIkElgenAeBlepÞr Edl f 'ci = 3,750 psi . snμt;faFñwmenHCaFñwm post-tensioned. yk
 E ps = 27.5 ⋅ 10 6 psi .

dMeNaHRsay³
          kugRtaMg/ bMErbMrYlrageFob nigPaBdabxN³
                     Eci = 57,000 3,750 = 3.49 ⋅ 10 6 psi




PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                 455
T.Chhay                                                                               viTüasßanCatiBhubec©keTskm<uúCa

BI]TahrN_ 7>3 nigrUbTI 7>9/ kugRtaMg nigbMErbMrYlragdMbUgsMrab;FñwmenAeBlepÞrEdlbNþalBIkMlaMg
eRbkugRtaMg Pi nig Pi + WD mandUcxageRkam
          kMlaMgeRbkugRtaMg P      i

          kNþalElVg³           f t = +501 psi (3.1MPa )

                               f b = −3,524 psi (24.3MPa )
                                        501
                               εc =
                                 t
                                                 = 144 ⋅ 10 − 6 in. / in.
                                     3.49 ⋅ 10 6

                               ε cb = −1,010 ⋅ 106 psi
          TMr³                 f t = +92 psi (0.7 MPa )

                               f b = −2,242 psi(15.5MPa )

                               ε c = +26 ⋅ 10 −6 in. / in.
                                 t


                               ε cb = −642 ⋅ 10 −6 in. / in.
cMNaMfa eKRtUveFVIkarKNnam:UDuleGLasÞic Ec sMrab;karpøas;bþÚreBlenAeBlEdlkMeNIncenøaHeBl
nImYy²cb;.
        Cabnþ eyIgman
                                    − 1,010 − 144
                 φci kNþalElVg =                    × 10 − 6 = −33.94 ⋅ 10 − 6 rad / in.
                                          34
                           − 642 − 26
                 φei TMr =             × 10 − 6 = −19.65 ⋅ 10 − 6 rad / in.
                               34
        BIrUbTI 7>6
                              ⎛ l2 ⎞             2
                              ⎜ ⎟ + (φe − φc ) l
                    δ i ↑= φc ⎜ ⎟
                              ⎝8⎠              24

                    δ i ↑= −33.94 ⋅10       −6   (60 ×12)2 + (− 19.65 + 33.94)×10 − 6 × (60 ×12)2
                                                        8                                  24

                          =
                              (60 × 12) 2
                                            × 10 − 6 (− 33.94 × 2 − 19.65)
                                  24
                          = −1.89in. ↑ (48mm )
          cMNaMfa tMélenHdUcKñanwgGVIEdlTTYl)anedaysmIkarm:Um:g;enAkñúg]TahrN_ 7>3
                                                          ⎛ 1019 ⎞
                                                      5× ⎜       ⎟(60 × 12 )
                                                                            4
                                                    4
                    δD   TMgn;pÞal;    =+
                                            5wl
                                                    =     ⎝ 12 ⎠
                                          384 Ec I g 384 × 3.49 ⋅10 6 × 86,072
                                                                               = +0.99in. ↓ (25mm )

                    net camber enAeBlepÞr = −1.89 ↑ +0.99 ↓= −0.90in. ↑ (23mm)

Camber, Deflection and Crack Control                                                                    456
Department of Civil Engineering                                                                        NPIC




          emKuNGaRs½ynwgeBl
          (a)     creep
                     BIsmIkar 3.10
                                  ε CR =
                                               Ct
                                                  ( f cs ) = C1ε cs
                                               Ec
          Edl           kugRtaMgebtugenARtg;nIv:U cgs
                      f cs =

                 ε cs = bMErbMrYlrageFobenARtg;nIv:U cgs
                 ε CR = unit creep stain kñúgmYyÉktþakugRtaMgeRkam ultimate creep = Cu / Ec
                      = 2.35 / 4.03 ⋅106 = 0.583 ⋅10 −6 in. / in. kñúgmYyÉktþakugRtaMg

         cMNaMfa eKRtUvKNna creep strain enARtg;TMRbCMuTMgn;rbs;edIm,IKNnakMhatbg;edaysar creep
enAkñúgeRbkugRtaMg.
         BIsmIkar 3.9b, emKuN creep enAeBlNak¾eday EdlKitCaéf¶KW
                                  t 0.60
                     Ct =                      Cu
                            10 + t 0.60
          Ca]TahrN_ enAGayu 30éf¶eRkayeBlepÞr
                                           ⎛     t 0.60  ⎞                 ⎛      0.60    ⎞
                     ε 'CR , s = ε 'CR ⎜                 ⎟ = 0.583 ⋅10 − 6 ⎜ 30           ⎟
                                       ⎜            0.60 ⎟                 ⎜ 10 + 30 0.60 ⎟
                                           ⎝ 10 + t      ⎠                 ⎝              ⎠
                                             kñúgmYyÉktþakugRtaMg
                               = 0.254 ⋅10 −6 in. / in.

          Creep strain enAcenøaHeBlepSgeTotRtUv)anKNnakñúgTMrg;dUcKña.

          (b) karrYmmaDrbs;ebtug

                 BIsmIkar 3.15a sMrab; moist-cured concrete
                                                   t
                                  ε SH , s =           ε SH
                                                t + 35
                     Edl ε SH = 800 ⋅10−6 in. / in. sMrab; moist-cured concrete.
                     30éf¶eRkayeBlepÞr/ ry³eBlrYmmaD t = 30 éf¶ RbsinebIGgát;CaFñwm post-tensioned

                     ehIy t = 30 + 7 = 37 éf¶ RbsinebIvaCa pretensioned. dUcenH
                                                   30
                                  ε SH ,30 =             × 800 ⋅10 − 6 = 369 ⋅10 − 6 in. / in.
                                                 30 + 35
          tamrebobdUcKña eKGacKNna ε SH sMrab;RKb;CMhanepSgdéTeTotEdlerobrab;enAkñúgtarag
7>5.


PaBekag PaBdab nigkarRKb;RKgsñameRbH                                                             457
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack control

Mais conteúdo relacionado

Mais procurados

Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stressChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columnsChhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic conceptsChhay Teng
 
1.introduction
1.introduction1.introduction
1.introductionChhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loadsChhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 
15. beam analysis using the stiffness method
15. beam analysis using the stiffness method15. beam analysis using the stiffness method
15. beam analysis using the stiffness methodChhay Teng
 

Mais procurados (20)

Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Xiii footings
Xiii footingsXiii footings
Xiii footings
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stress
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
1.introduction
1.introduction1.introduction
1.introduction
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
1.types of structures and loads
1.types of structures and loads1.types of structures and loads
1.types of structures and loads
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
8. deflection
8. deflection8. deflection
8. deflection
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
15. beam analysis using the stiffness method
15. beam analysis using the stiffness method15. beam analysis using the stiffness method
15. beam analysis using the stiffness method
 

Destaque

Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practiceChhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
Construction work
Construction work Construction work
Construction work Chhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 
Carpentering work
Carpentering work Carpentering work
Carpentering work Chhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connectionsChhay Teng
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force methodChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 

Destaque (20)

Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
Appendix
AppendixAppendix
Appendix
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
3.tension members
3.tension members3.tension members
3.tension members
 
Construction work
Construction work Construction work
Construction work
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
Euro upe
Euro upeEuro upe
Euro upe
 
Euro sq
Euro sqEuro sq
Euro sq
 
Tiling
Tiling Tiling
Tiling
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
4.compression members
4.compression members4.compression members
4.compression members
 
Euron fl
Euron flEuron fl
Euron fl
 
Carpentering work
Carpentering work Carpentering work
Carpentering work
 
5.beams
5.beams5.beams
5.beams
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
Euro l
Euro lEuro l
Euro l
 

Semelhante a Vii. camber, deflection, and crack control

Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slabChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110Chhay Teng
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trussesChhay Teng
 

Semelhante a Vii. camber, deflection, and crack control (9)

Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
Xvii design of two way slab
Xvii design of two way slabXvii design of two way slab
Xvii design of two way slab
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
Cement knowledge revised 160110
Cement knowledge revised 160110Cement knowledge revised 160110
Cement knowledge revised 160110
 
Desing slab by robot
Desing slab by robotDesing slab by robot
Desing slab by robot
 
3. analysis of statically determinate trusses
3. analysis of statically determinate trusses3. analysis of statically determinate trusses
3. analysis of statically determinate trusses
 

Mais de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Mais de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

Vii. camber, deflection, and crack control

  • 1. Department of Civil Engineering NPIC VII. PaBekag PaBdab nigkarRKb;RKgsñameRbH Camber, Deflection and Crack Control 1> esckþIepþIm Introduction PaBdab nigsñameRbHrbs;Ggát;ebtugeRbkugRtaMgk¾sMxan;dUckarKNnaPaBdab nigsñameRbH rbs;Ggát;ebtugGarem:Edr. Ggát;ebtugeRbkugRtaMgmanlkçN³Rsav (slender) CagGgát;ebtugGarem: ehIykareFVIkarrbs;vargT§iBleday flexural cracking eFVIeGayvaeKkan;EtRby½tñkñúgkarRKb;RKg PaBdab nigsñameRbH. karKNnadMbUgBak;B½n§nwgkarKNnasmamaRtmuxkat;rbs;Ggát;eRKOgbgÁúMsMrab; sßanPaBkMNt;én flexural stresses eRkamGMeBI service load nigsMrab;sßanPaBkMNt;énkar)ak; Edlrg karBt;begáag kMlaMgkat; nigkMlaMgrmYl edayrYmbBa©ÚlTaMg anchorage development strength. kar KNnaEdlmanlkçN³eBjeljluHRtaEtmankarkMNt;TMhMén long-term deflection, camber nigTMhM sñameRbH ehIytMélTaMgenHsßitenAkñúgkMrit allowable serviceability. Ggát;ebtugeRbkugRtaMgrgkMlaMgsgát;cakp©itCaGcié®nþy_EdlbNþalBIkMlaMgeRbkugRtaMgCH T§iBly:agxøaMgdl; long-term creep deformation rbs;va. karbraC½ykñúgkarTajTukCamun nigkar RKb;RKgkMhUcRTg;RTayEbbenHGacnaMeGayman camber FM EdlGacbgáeGaymanépÞe)a:g nignaMeGay karbgðÚrTwkBIdMbUlGKarminmanlkçN³smRsb/ bgáeGaykarebIkbrelIs<anminmanpasuxPaB nigbgá eGaymansñameRbHenAelItYGKar EdlrYmbBa©ÚlTaMgkarBi)akkñúgkareFVIbg¥Üc nigTVarrt;Rtg;Kña. PaBBi)akkñúgkarTajTukCamunnUvkMhatbg; long-term prestress EdlmanlkçN³suRkiteFVI eGayeKkan;EtBi)akkñúgkar)a:n;RbmanTMhMén camber EdlrMBwgTukeGaysuRkitEdr. PaBsuRkitkan;Et Bi)akTTYl)ansMrab; partially prestressed concrete system EdlsñameRbHkMNt;RtUv)anGnuBaØattam ry³kareRbIEdkFmμtabEnßm. Creep strain enAkñúgebtugbegáIn camber dUcEdlvabgáeGaymankarekIn eLIgnUvkMeNagCalkçN³GviC¢manEdlCaTUeTAvamantMélFMCagkarfycuHEdlbegáItedaykarfycuHénkM hatbg;eRbkugRtaMgedaysar creep, shrinkage nig stress relaxation. kar)a:n;RbmanEdll¥bMput énkarekIneLIgén camber KYrEp¥kelIbTBiesaFn_/ EdnkMNt;énpleFobElVgelIkMBs;Fñwm nigkareRCIs erIsm:UDul Ec rbs;ebtugd_RtwmRtUv. karKNna moment-curvature relationship eRkamdMNak;kalén kardak;bnÞúkCabnþbnÞab;rhUtdl;sßanPaBkMNt;énkar)ak;k¾GacCYykñúgkarkMNt;PaBdabrbs;Ggát; eGaymanlkçN³kan;EtsuRkit. edaysarkugRtaMgFMenAkñúgEdkeRbkugRtaMg ERcHsIuEdlbNþalBIsñameRbHGaceFVIeGayeRKOg PaBekag PaBdab nigkarRKb;RKgsñameRbH 407
  • 2. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa bgÁúM)at;bg;lT§PaBRTRTg;. dUcenH EdnkMNt;énTMhMrbs;sñameRbH nigKMlatrbs;vaRtUv)ankMNt; ehIy dMeNIrkarénkarkMNt;TMhMsñameRbHsmRsbRtUv)aneRbI. ACI 318 Code )ancat;cMNat;fñak;eGay Ggát;rgkarBt;begágebtugeRbkugRtaMgCabIfñak;KW³ (a) Class U: f t ≤ 7.5 f 'c psi (0.623 f 'c MPa ) (7.1a) enAkñgkrNIenH eKeRbI gross section sMrab;lkçN³muxkat;enAeBlkMNt;eRbkugRtaMgeRkamGMeBI service load nigkMNt;PaBdab. eKminRtUvkareRbI skin reinforcement enAépÞbBaÄreT. (b) Class T: 7.5 f 'c ≤ f t ≤ 12 f 'c psi ( f 'c MPa ) (7.1b) cMNat;fñak;enHenAcenøaHmuxkat;eRbH nigmuxkat;Gt;eRbH. eKeRbI gross section kñúgkarKNna stress. eKeRbI cracked bi-liner section sMrab;KNnaPaBdab. eKminRtUvkareRbI skin reinforcement enAépÞbBaÄreT. (C) Class C: f t > 12 f 'c (7.1c) cMNat;fñak;enHsMrab;muxkat;eRbH. dUcenH eKeRbImuxkat;eRbHsMrab;kMNt;kugRtaMg nigPaBdab eRkamGMeBI service load. eKcaM)ac;RtUvKNna Δf ps b¤ f s sMrab;RKb;RKgsñameRbH Edl Δ ps = kugRtaMg EdlekIneLIgbnÞab;BIsßanPaBdkkMlaMgsgát; (decompression) ehIy f s = kugRtaMgenAkñúgEdkFmμta enAeBlEdlEdkFmμtaRtUv)aneRbIEdr. RbB½n§kMralxNÐeRbkugRtaMgBIrTisRtUv)ansikSaKNnaCa Class U. 2> karsnμt;kñúgkarKNnaPaBdab Basic Assumptions in Deflection Calculations eKGackMNt;PaBdabBIdüaRkamm:Um:g;énkMlaMgeRbkugRtaMgCamYynwgbnÞúkTTwgG½kSxageRkA (external transverse loading) b¤BITMnak;TMngm:Um:g; nigkMeNag (moment-curvature relationships). enAkñúgkrNINak¾eday eKRtUveFVIkarsnμt;dUcxageRkam³ - RkLaépÞmuxkat;rbs;ebtugRtUvEtsuRkitRKb;RKan;edIm,IKNnam:Um:g;niclPaB elIkElgenA eBlEdleKRtUvkarcaM)ac;karKNnaEdlmanlkçN³kan;EtRbesIr. - m:UDulrbs;ebtug Ec = 33w1.5 f 'c psi(0.043w1.5 f 'c MPa) EdltMélrbs; f 'c RtUvKña nwgersIusþg;sgát;rbs;sMNakKMrUragsIuLaMgrbs;ebtugenAGayuEdleKRtUvkarkMNt; Ec . Camber, Deflection and Crack Control 408
  • 3. Department of Civil Engineering NPIC - GnuvtþeKalkarN_ superposition kñúgkarKNnaPaBdabEdlbNþalBIbnÞúkTTwgG½kS nig camber EdlbNþalBIkMlaMgeRbkugRtaMg. - eKGaceFVIkarKNnaPaBdabTaMgGs;edayQrelIG½kSTIRbCMuTMgn;rbs;EdkeRbkugRtaMg (cgs) Edl strand RtUv)anKitCa single tendon. - PaBdabEdlbNþalBI shear deformation minRtUv)anKit - eKGacKitmuxkat;Ca totally elastic rhUtdl; decompression load. bnÞab;mk m:Um:g;niclPaB énmuxkat;EdleRbH I cr Gacpþl;nUvkarkMNt;PaBdab nig camber kan;EtsuRkit. 3> PaBdabry³eBlxøI¬xN³¦ rbs;Ggát;eRbH nigGgát;EdlKμaneRbH Short-Term (Instantaneous) Deflection of Uncracked and Cracked Members k> TMnak;TMngrvagbnÞúk nigPaBdab Load-Deflection Relationship PaBdabry³eBlxøIenAkñúgGgát;ebtugeRbkugRtaMgRtUv)anKNnaedaysnμt;vamuxkat;manlkçN³ esμIsac; (homogeneous), lkçN³sac;mYy (isotropic) nigeGLasÞic. karsnμt;EbbenHCaviFIénkareFVI karCak;Esþg Edlm:UDul Ec rbs;ebtugERbRbYleTAtamGayurbs;ebtug ehIym:Um:g;niclPaBERbRbYleTA tamdMNak;kalénkardak;bnÞúk eTaHbImuxkat;eRbH b¤mineRbHk¾eday. PaBekag PaBdab nigkarRKb;RKgsñameRbH 409
  • 4. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa Cak;Esþg TMnak;TMngrvagbnÞúk nigPaBEdkCa trilinear dUcEdlbgðajenAkñúgrUbTI 7>1. tMbn;bI munkar)ak;KW³ tMbn;TI I dMNak;kalmuneBleRbH (precracking stage) EdlGgát;minmansñameRbHeT. tMbn;TI II dMNak;kaleRkayeBleRbH (postcracking stage) EdlGgát;eRKOgbgÁúMbegáIt acceptable controlled cracking TaMgkarBRgay nigTMhM. tMbn;TI III dMNak;kaleRbHeRkayrgbnÞúk (postserviceability cracking stage) EdlkugRtaMg enAkñúgEdkTajeFVIkardl;sßanPaBkMNt;én yielding. !> tMbn;TI1 Precracking stage kMNat;Ggát;muneBleRbHrbs;ExSekagrvagbnúÞk nigPaBdabKWCaExSRtg;EdlkMNt;kareFVIkarCa lkçN³eGLasÞiceBjelj dUcenAkñúgrUbTI 7>1. kugRtaMgTajGtibrmaenAkñúgFñwmenAkñúgtMbn;enHtUc CagersIusþg;TajkñúgkarBt;begáag EdlvatUcCagm:UDuldac; ft rbs;ebtug. eKGacPaBrwgRkajkñúgkarBt; begáag EI rbs;FñwmedayeRbIm:UDulyuaMg Ec rbs;ebtug ehIym:Um:g;niclPaBrbs;muxkat;ebtugEdlGt; eRbH. kareFVIkarrvagbnÞúk nigPaBdabGaRs½yy:agxøageTAnwgTMnak;TMngrvagkugRtaMg nigbMErbMrYlrag M eFobrbs;ebtug. düaRkamTMnak;TMngrvagkugRtaMg nigbMErbMrYlrageFobKMrUrbs;ebtugRtUv)anbgðajenAkñúgrUbTI 7>2. eKGac)a:n;RbmaNtMé;lrbs; Ec EdleRbIsmIkarEdl)anBIkarBiesaFrbs; ACI EdleGayenAkñúgem eronTI 2. Camber, Deflection and Crack Control 410
  • 5. Department of Civil Engineering NPIC ( Ec = 33w1.5 f 'c psi 0.043w1.5 f 'c MPa ) (7.2a) b¤ ( ) Ec = 57,000 f 'c psi 4780 f 'c MPa sMrab;ebtugTMgn;Fmμta tMbn;muneBleRbHcb;enAeBlEdlsñameRbHedaykarBt;begáagdMbUgcab;epþImekItman enAeBl EdlkugRtaMgebtugeFVIkareTAdl;ersIusþg;énm:UDuldac; f r . RsedogKñaeTAnwgersIusþg;TajedaykarbMEbk edaypÞal; (direct tensile splitting strength) m:UDuldac;rbs;ebtugKWsmamaRteTAnwgb¤skaer:énersIu- sþg; sgát;rbs;va. sMrab;eKalbMNgénkarsikSaKNna eKGacyktMélrbs;m:UDuldac;sMrab;ebtugesμInwg f r = 7.5λ f 'c psi (0.623λ f 'c MPa ) (7.2b) Edl λ = 1.0 sMrab;ebtugTMgn;Fmμta (normal-weight concrete). RbsinebIeKeRbI all-lightweight concrete enaHeKyk λ = 0.75 ehIyRbsinebIeKeRbI sand-lightweight concrete enaH λ = 0.85 . RbsinebIeKeGaym:UDuldac; f r esIμnwgkugRtaMgEdlekIteLIgeday cracking moment M cr (decompression moment) enaH Pc ⎛ ecb ⎞ M cr fb = ft = − ⎜1 + 2 ⎟ − (7.3a) Ac ⎝ r ⎠ Sb EdlGkSr b tMNageGaysrésxageRkamenARtg;kNþalElVgénFñwmTMrsamBaØ. RbsinebIcMgayén srésrgkarTajxageRkAbMputrbs;ebtugBITMRbCMuTMgn;rbs;muxkat;ebtugCa yt enaH cracking moment RtUv)aneGayeday I g ⎡ Pe ⎛ ecb ⎞ ⎤ M cr = ⎢ ⎜1 + 2 ⎟ + 7.5λ f 'c ⎥ (7.3b) yt ⎣ Ac ⎝ r ⎠ ⎦ ⎡ P ⎛ ecb ⎞⎤ b¤ M cr = S b ⎢7.5λ f 'c + e ⎜1 + 2 ⎟⎥ Ac ⎝ r ⎠⎦ (7.3c) ⎣ Edl Sb = m:UDulmuxkat;enAsrésxageRkam. BIsmIkar 5.12, cracking moment EdlbNþalBIEpñkén bnÞúkGefrEdleFVIeGaymansñameRbHKW M cr = Sb [6.0λ f 'c + f ce − f d ] ¬xñat US¦ (7.4a) M cr = Sb [0.5λ f 'c + f ce − f d ] ¬xñat SI¦ Edl f cr = kugRtaMgsgát;enARtg;TIRbCMuTMgn;rbs;muxkat;ebtugEdlbNþalEtBIkMlaMgeRbkugRtaMg RbsiT§PaBeRkayeBlxatbg; enAeBlbnÞúkxageRkAeFVIeGaymankugRtaMgTaj f d = kugRtaMgebtugenARtg;srésTajxageRkAEdlbNþalBIbnÞúkGefrKμanemKuN enAeBl EdlbnÞúkxageRkAbgáeGaymankugRtaMgTaj nigsñameRbH PaBekag PaBdab nigkarRKb;RKgsñameRbH 411
  • 6. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa eKk¾GaceRbIemKuN 7.5 CMnYseGayemKuN 6.0 ¬xñat US¦b¤ 0.623 CMnYseGay 0.5 ¬xñat SI¦ sMrab;kMNt;PaBdabrbs;Fñwm. eKGacbMElgsmIkar 7.3a eGayeTACaTMrg; PCI EdleGaynUvlT§pl dUcKña M cr ⎛ f − fr ⎞ = 1 − ⎜ tl ⎜ f ⎟ ⎟ (7.4b) Ma ⎝ L ⎠ Edl Ma = m:Um:g;EdlekItBIbnÞúkGefrKμanemKuNGtibrma f tl = kugRtaMgrbs;ebtugeRkamGMeBI service load srubcugeRkayenAkñúgGgát; f r = m:UDuldac; f L = kugRtaMgrbs;ebtugeRkamGMeBI service live load enAkñúgGgát; @> karKNnam:Um:g;eRbH M Calculation of Cracking Moment M cr cr ]TahrN_ 7>1³ KNna cracking moment M sMrab;muxkat;FñwmctuekaNEkgEdlmanTTwg b = 12in. cr (305mm) ehIykMBs;srub h = 34in.(610mm ) nigman . kugRtaMgebtug f 'c = 4,000 psi(27.6MPa ) f b EdlbNþalBIkMlaMgeRbkugRtaMgcakp©itKW 1,850 psi (12.8MPa ) kñúgkarsgát;. ykm:UDuldac;esμInwg 7.5 f 'c . dMeNaHRsay³ m:UDuldac; f r = 7.5 f 'c = 7.5 4,000 = 474 psi(3.27MPa) . ehIy I g = bh3 / 12 = 12(24 )3 / 12 = 12 = 13,824in.4 (575,400cm 4 )/ yt = 24 / 2 = 12in.(305mm ) eTAsrésrgkarTaj ehIy Sb = I g / yt = 13,824 / 12 = 1,125in.3 (18,878cm3 ). ⎡ P ⎛ ecb ⎞⎤ M cr = S b ⎢7.5λ f 'c + e ⎜1 + 2 ⎟⎥ = 1.152[474 + 1850] ⎣ Ac ⎝ r ⎠⎦ = 2.68 ⋅ 10 6 in. − lb(302.9kN .m ) RbsinebIFñwmenHminrgeRbkugRtaMg enaH cracking moment KW M cr = f r I g / yt = 474 × 13,824 / 12 = 0.546 ⋅ 106 in. − lb(61.7kN .m ) #> tMbn;TI2 Postcracking service-load stage tMbn;muneRbHcb;enAeBlsñameRbHTImYycab;epþm ehIycl½tcUltMbn;TI2 rbs;düaRkamTMnak; I TMngrvagbnÞúk nigPaBdabénrUbTI 7>1. FñwmPaKeRcInsßitenAkñúgtMbn;enHeRkamT§iBl service load. FñwmrgnUvdWeRkénsñameRbHEdlERbRbYltambeNþayElVgEdlRtUvKñanwgkugRtaMg nigPaBdabenARtg;mux Camber, Deflection and Crack Control 412
  • 7. Department of Civil Engineering NPIC kat;nImYy². dUcenH sñameRbHnwgrIkFM nigeRCAenAkNþalElVg EdlsñameRbHEdlmanTMhMtUc²ekItman enAEk,rTMrrbs;FñwmsamBaØ. enAeBlEdl flexural cracking ekItman karcUlrYmrbs;ebtugenAkñúgtMbn;TajnwgfycuHy:ag xøaMg. dUcenH flexural rigidity rbs;muxkat;RtUv)ankat;bnßyEdleFVIeGayExSekagbnÞúk-PaBdab (load- deflection curve) enAkúñgtMbn;enHecattUcCagenAkñúgdMNak;kalmuneRbH (precracking stage). eday sarTMhMrbs;sñameRbHekIneLIg PaBrwgRkajnwgfycuH EdleFVIeGayPaBs¥itrbs;EdkmantMélTabEdl vaRtUvKñanwg karfycuHénm:Um:g;niclPaBrbs;muxkat;eRbH. eKGacKNnam:Um:g;niclPaB I cr énmuxkat; EdleRbH (cracked section) BIeKalkarN_rbs;emkanic. $> tMbn;TI2 Postserviceability cracking stage and limit state of deflection behavior at failure düaRkaménTMnak;TMngrvagbnÞúk nigPaBdabénrUbTI 7>1 enAkñúgtMbn;TI3manlkçN³rabesμICag enAkñúgtMbn;mun² EdlenHKWbNþalmkBIkMhatbg;énPaBrwgRkajrbs;muxkat;y:ageRcIn edaysarsñam eRbHFM² nigkarrIkFMrbs; stabilized cracks BaseBjElVg. edaysarbnÞúkbnþekIneLIg enaHbMErbMrYl rageFob ε s enAkñúgEdkenAkñúgtMbn;TajbnþekIneLIgtameRkay yield strain ε y edayminmankugRtaMg bEnßm. FñwmRtUv)anBicarNafa)ak;eday yielding dMbUgrbs;Edk TajenAkñúgdMNak;kalenH. vabnþdab edayKμankardak;bnÞúkbEnßm nigsñameRbHbnþcMhr ehIy G½kSNWtbnþeLIgelIeTArksréssgát;xageRkA bMput. cugeRkay secondary compression failure ekIteLIg EdlnaMeTAdl;karpÞúHEbkrbs;ebtugenA kñúgtMbn;m:Um:g;GtibrmaEdlbnþedaykar)ak;. x> muxkat;Gt;eRbH Uncracked Sections !> karKNnaPaBdab Deflection calculation eKmanbMNgcg;KNnaPaBdabsMrab;muxkat;ebtugeRbkugRtaMgGt;eRbHeGaykan;EtsuRkitCag karKNnaPaBdabsMrab;muxkat;EdleRbHedaysarkarsnμt;énkareFVIkarCalkçN³eGLasÞicmanlkçN³ RbesIrCag. kareRbIR)as;m:Um:g;niclPaBrbs; gross section minCHT§iBldl;suRkitPaBkñúgkarKNna dUc transformed section eT. PaBekag PaBdab nigkarRKb;RKgsñameRbH 413
  • 8. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa ]bmafaFñwmrgeRbkugRtaMgCamYynwgcMNakp©itrbs;EdkeRbkugRtaMgefrdUcbgðajenAkñúgrUbTI 7>3. eRbIkarkMNt;sBaØaéndüaRkam primary moment enAelIépÞrgkarTajrbs;Fñwm ehIyGnuvtþ elastic weight method edaybMElgdüaRkamm:Um:g;FmμtaeGayeTACa elastic weight M 1 / (Ec I c ) enAelIElVgFñwm l . bnÞab;mkm:Um:g;rbs; weight intensity (Pe) /(Ec I c )énkNþalElVg AC enAkúñgrUbTI 7>3(c) BIelIcMnuckNþalElVg C eGay Pel ⎛l⎞ Pe ⎛ l l ⎞ Pel 2 δc = ⎜ ⎟− ⎜ × ⎟= (7.5) 2 Ec I c ⎝ 2 ⎠ Ec I c ⎝ 2 4 ⎠ 8 Ec I c Camber, Deflection and Crack Control 414
  • 9. Department of Civil Engineering NPIC cMNaMfa eKKUrdüaRkamPaBdabenAkñúgrUbTI 7>3 (d) BIelIExSeKal (base line) dUcEdlFñwmekageLIgelI edaysarkMlaMgeRbkugRtaMg. eKGaceFVIkarKNnaRsedogKñasMrab; tendon profile NamYy nigsMrab;RbePTbnÞúkTTwgG½kS (transverse loading) NamYyEdlminKitfaragFrNImaRtrbs;EdkeRbkugRtaMg b¤kardak;bnÞúkman lkçN³sIuemRTIk¾Gt;. PaBdab b¤ camber cugeRkayKWCa superposition énPaBdabEdlbNþalBI kMlaMgeRbkugRtaMgCamYynwgPaBdabEdlbNþalBIbnÞúkxageRkA. @> karKNnabMErbMrYlrageFob nigkMeNag Strain and Curvature Evaluation karEbgEckbMErbMrYlrageFobtamkMBs;rbs;muxkat;enAdMNak;kalrgbnÞúkmanragCabnÞat; dUc bgðajenAkñúgrUbTI 7>4 EdlmanmMurbs;kMeNagGaRs½ynwgbMErbMrYlrageFobrbs;srésxagelI ε ct nigbMErbMrYlrageFobrbs;srésxageRkam ε cb rbs;ebtug. BIkarEbgEckbMErbMrYlrageFob (strain distribution) smIkarkMeNagenAdMNak;kalénkardak;bnÞúkepSg²mandUcxageRkam³ (I) dMNak;kalrgkMlaMgeRbkugRtaMgdMbUg (initial prestress) ε cbi − ε cti φi = (7.6a) h (II) dMNak;kalrgeRbkugRtaMgRbsiT§PaBeRkayeBlxatbg; (effective prestress after losses) ε cbe − ε cte φe = (7.6b) h PaBekag PaBdab nigkarRKb;RKgsñameRbH 415
  • 10. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa (III) dMNak;kalrgbnÞúkeFVIkar (service load) ε ct − ε cb φ= (7.6c) h (IV) dMNak;kal)ak; (failure) εu φu = (7.6d) c eRbIsBaØabUksMrab; tensile strain nigsBaØadksMrab; compressive strain. rUbTI 7>4 c bgðajBI karEbgEckkugRtaMg (stress distribution) sMrab;muxkat;Gt;eRbH. vaRtUv)anEkERbedIm,Ibgðajfakug RtaMgTajenAsrésxageRkamRbsinebImuxkat;enaHmansñameRbH. kMeNagRbsiT§PaB (effective curvature) φe enAkñúgsmIkar 7.4 (b) eRkaykMhatbg;CaplbUk EdleRbIsBaØasmRsbrvagkMeNagedIm (initial curvature) φi CamYynwgbMErbMrYlrbs;kMeNag dφl Edl bNþalBIkMhatbg;eRbkugRtaMgedaysar creep/ relaxation nig shrinkage nigbMErbMrYlrbs;kMeNag dφ2 EdlbNþalmkBI creep énebtugeRkamGMeBIkMlaMgeRbkugRtaMg. φe = φi + dφ1 + dφ2 (7.7) EdlBImUldæanénemkanicrbs;sMPar³ (basic mechanics of materials) M φ= (7.8a) Ec I c sMrab; primary moment M1 = Pee dUcenHeyIg)an Pe e φ= (7.8b) Ec I c edayCMnYsvaeTAkñúgsmIkar 7.5 sMrab;FñwmTMrsamBaØEdlmancMNakp©itebs;EdkeRbkugRtaMgefr eK)an φl 2 δc = (7.9a) 8 smIkarTUeTAsMrab;PaBdabEdleRbIkMeNagRtUv)anesñIeLIgeday Tadros manrag l2 2 δ = φc − (φe − φc ) a (7.9b) 8 6 Edl φc = kMeNagRtg;kNþalElVg φe = kMeNagRtg;TMr a = )a:ra:Em:RtRbEvgCaGnuKmn_én tendon profile Camber, Deflection and Crack Control 416
  • 11. Department of Civil Engineering NPIC #> PaBdabPøam²énFñwmTMrsamBaØEdlrgeRbkugRtaMgedayEdkeRbkugRtaMgrag)a:ra:bUl Immediate Deflection of Simply Supported Beam Prestressed with Parabolic Tendon ]TahrN_ 7>2³ kMNt;PaBdabkNþalElVgPøam²rbs;FñwmEdlbgðajenAkñúgrUbTI 7>5 EdlrgeRbkug RtaMgedayEdkeRbkugRtaMgrag)a:ra:bUlEdlmancMNakp©itGtibrma e enAkNþalElVg nigkMlaMgeRbkug RtaMgRbsiT§PaB Pe . eRbI elastic weight method nig equivalent weight method. ElVgrbs;FñwmKW l nigPaBrwgRkajrbs;vaKW Ec I c . dMeNaHRsay³ Elastic weight method BIsmIkar 7.5 (b) 1 ⎛ P el 2 ⎞ P el R 'e = ⎜ e × ⎟ = e 2 ⎜ Ec I c 3 ⎟ 3Ec I c ⎝ ⎠ m:Um:g;EdlbNþalBI elastic weight We eFobcMNuc C kNþalElVgKW ⎛ l ⎞ ⎡ P el 2 ⎛ 3 l ⎞⎤ M c = δ c = R 'e ⎜ ⎟ − ⎢ e × ⎜ × ⎟ ⎥ ⎝ 2 ⎠ ⎣ Ec I c 6 ⎝ 8 2 ⎠ ⎦ PaBekag PaBdab nigkarRKb;RKgsñameRbH 417
  • 12. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa 1 ⎛ Pe el 2 3Pe el 2 ⎞ 5Pe el 2 = ⎜ − ⎟= Ec I c ⎜ 6 48 ⎟ 48Ec I c ⎝ ⎠ 5 Pe el 2 enaH δc = 48 Ec I c (a) Equivalent weight method BIemeronTI1 equivalent balancing load intensity W Edl)anBIsMBaFén parabolic tendon eTAelIebtugKW 8 Pe e W = l2 BImUldæanénemkanicrbs;sMPar³ PaBdabkNþalElVgrbs;TMrsmBaØEdlrgbnÞúkBRgayesμIKW 5 wl 4 δc = (b) 384 Ec I c edayCMnYsGaMgtg;sIuetbnÞúk W eTAkñúgsmIkarxagelI eyIg)an 5 Pe el 2 δc = (c) 48 Ec I c dUckarrMBwgTuk eyIgTTYl)ansmIkar (c) nigsmIkar (a) sMrab;PaBdabkNþalElVgrbs;Fñwm. rUbTI 7>6 bgðajBIsmIkarPaBdabkNþalElVgsMrab;FñwmTMrsamBaØ Edlb®gÁb;elIsmIkar kMlaMgkat; nigsmIkarm:Um:g;sMrab;FñwmCab;EdleGayenAkñúgrUbTI 6>12. K> muxkat;eRbH Cracked Sections !> viFIKNnam:Um:g;niclPaBRbsiT§PaB Effective-moment-of-inertia Computation Method enAeBlEdlGgát;eRbkugRtaMgrgbnÞúkelIs (overload) b¤enAkñúgkrNIGgát;eRbkugRtaMgedayEpñk EdleKGnuBaØateGayman limited controlled cracking enaHkareRbI gross moment of inertia I g nwg pþl;nUvkar)a:n;sμan camber b¤PaBdabrbs;FñwmeRbkugRtaMgmanlkçN³esÞIrminRtwmRtUvtamPaBCak; Esþg. tamlkçN³RTwsþI eKKYreRbIm:Um:g;niclPaBrbs;muxkat;EdleRbH (cracked moment of inertia) I cr sMrab; muxkat;EdlekItmansñameRbH enAxN³EdleKeRbI gross moment of inertia I g sMrab;muxkat;FñwmenA cenøaHmuxkat;mansñameRbH. b:uEnþ eBlxøHeKminRtUvkarPaBeFVIeGayRbesIreLIgtamry³kareFVIplbUk énkMeNInPaBdabtambeNþayFñwmeT edaysareKBi)akkñúgkarkMNt;PaBdabeGay)ansuRkit. dUcenH eKGacykm:Um:g;niclPaBRbsiT§PaB I e CatMélmFümtambeNþayElVgrbs; simply supported bonded tendon beam/ vaCaviFIEdlbegáIteLIgeday Branson. eyagtamviFIenHeyIg)an³ Camber, Deflection and Crack Control 418
  • 13. Department of Civil Engineering NPIC 3 ⎛M ⎞ I e = I cr + ⎜ cr ⎜M ⎟ ( ) ⎟ I g − I cr ≤ I g (7.10a) ⎝ a ⎠ eKGacsresrsmIkar 7.10a kñúgTMrg; PaBekag PaBdab nigkarRKb;RKgsñameRbH 419
  • 14. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa ⎛M ⎞ 3 ⎡ ⎛M ⎞ 3⎤ I e = ⎜ cr ⎜M ⎟ I g + ⎢1 − ⎜ cr ⎟ ⎟ ⎥ I cr ≤ I g (7.10b) ⎝ a ⎠ ⎢ ⎜ Ma ⎟ ⎥ ⎣ ⎝ ⎠ ⎦ eKGacCMnYspleFob (M cr / M a ) BIsmIkar 7.4b eTAkñúgsmIkar 7.10 a nig b edIm,ITTYl)an m:Um:g;niclPaBRbsiT§PaB M cr ⎛ f − fr ⎞ = 1 − ⎜ tl ⎜ f ⎟ ⎟ (7.11) Ma ⎝ L ⎠ Edl m:Um:g;niclPaBrbs;muxkat;EdleRbH BIsmIkar 7.13 xageRkam I cr = I g = m:Um:g;niclPaBrbs;muxkat;TaMgmUl (gross moment of inertia) cMNaMfa TaMg M cr nig M a Cam:Um:g;KμanemKuNEdlbNþalmkEtBIbnÞúkGefrb:ueNÑaH EdleKyk M cr CacMENkénm:Um:g;EdlekItBIbnÞúkGefrEdlbgáeGaymansñameRbH. dUcenH m:Um:g;niclPaBRbsiT§- PaB I e enAkñúgsmIkar 7.10a nig b GaRs½ynwgm:Um:g;Gtibrma M a tambeNþayElVgEdlCab;Tak;Tg nwglT§PaBTb;m:Um:g;eRbH M cr rbs;muxkat;. enAkñúgkrNIFñwmCab;Gt;eRbHEdlmancugsgçagCab; I e mFüm = 0.70 I m + 0.15(I e1 + I e 2 ) (7.12a) sMrab;FñwmCab;Gt;eRbHEdlmancugmçagCab; I e mFüm = 0.85I m + 0.15(I cont.end ) (7.12b) Edl I m Cam:Um;g;niclPaBénmuxkat;kNþalElVg ehIy I e1 nig I e2 Cam:Um:g;niclPaBénmuxkat;cug. @> Bilinear Computation Method kñúgTMrg;RkaPic/ bilinear moment-deflection relationship sMrab;tMbn;TI I niigtMbn;TI II Edl manerobrab;enAkñúgcMnuc 3>k EdlGnuelameTAtam ACI Code. düaRkamsMrab;tMbn; I g nig I cr RtUv)anbgðajenAkñúgrUbTI 7>7. m:Um:g;niclPaBRbsiT§PaB I e rbs; Branson eGaynUvPaBdabPøam² srubmFüm δ tot = δ e + δ cr EdlBIxagedIm. ACI Code TamTarnUvkarKNnaPaBdabenAtMbn;EdleRbHenAkñúg bonded tendon beam KWEp¥k elI transformed section enARKb;eBlEdlkugRtaMgTaj ft enAkñúgebtugFMCag 6 f 'c . dUcenH eKGac kMNt; δ cr enAkñúgrUbTI 7>7 edayeRbI I cr transformed EdleRbIkarcUlrYmrbs;EdkBRgwgenAkñúg bilinear method kñúgkarKNnaPaBdab. eKGacKNnam:Um:g;niclPaBrbs;muxkat;EdleRbHeday PCI approach sMrab;Ggát;rgeRbkugRtaMgeBjtamsmIkarxageRkam Camber, Deflection and Crack Control 420
  • 15. Department of Civil Engineering NPIC ( ) I cr = n p A ps d 2 1 − 1.6 n p ρ p p (7.13a) Edl n p = E ps / Ec . RbsinebIeKeRbIEdkFmμtaeGayrgkugRtaMgTaj ¬enAkñúgGgát;eRbkugRtaMgeday Epñk¦ eKGacEkERbsmIkar 7.13 eGayeTACa I cr = (n p A ps d 2 + ns As d 2 )(1 − 1.6 n p ρ p + ns ρ ) p (7.13b) Edl ns = Es / Ec sMrab;EdkFmμta/ d = kMBs;RbsiT§PaBeTAdl;TIRbCMuTMgn;rbs;EdkFmμta b¤Edkminrg eRbkugRtaMg (nonprestressed strand steel). #> viFIkMeNInm:Um:g;-kMeNag Incremental Moment-Curvature Method eKGacKNnam:Um:g;niclPaBrbs;muxkat;EdleRbHkan;EtsuRkitBITMnak;TMngrvagm:Um:g;nigkMeNag (moment-curvature relationship) tambeNþayElVgFñwm nigBIkarEbgEckkugRtaMg nigbMErbMrYlrag eFobelIkMBs;énmuxkat;eRKaHfñak;. dUcbgðajenAkñúgrUbTI 7>4(d) sMrab; strain ε cr enAeBlmansñam eRbHdMbUg ε cr M φcr = = (7.14) c Ec I cr Edl ε cr Ca strain enARtg;srésrgkarsgát;rbs;ebtugxageRkAbMput nig M Cam:Um:g;srubEdlrYmbBa©Úl TaMg prestressing primary moment M1 eFobnwgTIRbCMuTMgn;rbs;muxkat;EdlBicarNa. eKGac sresrsmIkar 7.14 eLIgvij enaHeyIg)an PaBekag PaBdab nigkarRKb;RKgsñameRbH 421
  • 16. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa Mc Mc I cr = = (7.15) Ec ε cr f Edl f CakugRtaMgrbs;ebtugenARtg;srésrgkarsgát;rbs;muxkat;. Flowchart sMrab;KNnaPaBdabPøam² nigsMrab;sg;düaRkamTMnak;TMngrvagm:Um:g; nigkMeNag manbgðajenAkñúgrUbTI 7>8. Camber, Deflection and Crack Control 422
  • 17. Department of Civil Engineering NPIC PaBekag PaBdab nigkarRKb;RKgsñameRbH 423
  • 18. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa Camber, Deflection and Crack Control 424
  • 19. Department of Civil Engineering NPIC 4> PaBdabry³eBlxøIeRkamGMeBIbnÞúkeFVIkar Short-Term Deflection at Service Load k> ]TahrN_ 7>3 Non-Composite Uncracked Double T-Beam Deflection kMNt;PaBdabeGLasÞicPøam² ¬ry³eBlxøI¦ srubén 12 DT 34 Beam enAkñúg]TahrN_ 4>1 EdleRbI (a) viFIm:Um:g;niclPaBEdlGacGnuvtþ)an I g b¤ I e / (b) viFIkMeNInm:Um:g;-kMeNag (incremental moment-curvature method). FñwmrgnUv superimposed service load 1,100 plf (16.1kN / m ) nig superimposed dead load 100 plf (1.5kN / m ) . FñwmenHrgnUv bonded pretensioned CamYynwg stress- relieved strands 7-wire-270ksi ¬ f pu = 270ksi = 1,862MPa ¦ Ggát;p©it 1 / 2in.(12.7 mm ) cMnYn 16 ¬ Aps = 2.448in 2 ¦. enAkñúg]TahrN_enHminKitBIkarcUlrYmrbs;EdkminrgeRbkugRtaMgenAkñúgkarKNna m:Um:g;niclPaBeT. snμt;faeKTaj (jack) strand rhUtdl; 0.70 f pu Edl)anBIkMlaMgeRbkugRtaMgedIm Pi = 462,672lb . eRbkugRtaMgRbsiT§PaB Pe = 379,391lb ekItmanenAeBlrgkarGnuvtþbnÞúkelIkdMbUg Kw 30éf¶eRkayeBldMeLIg nigminKitbBa©ÚlkMhatbg;GaRs½ynwgeBlTaMgGs;. PaBekag PaBdab nigkarRKb;RKgsñameRbH 425
  • 20. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa Tiinñn½y³ (a) lkçxN³FrNImaRt (geometrical properties) ¬rUbTI 7>9¦ Ac = 978in.2 (6,310cm 2 ) I c = 86,072in.4 (3.59 ⋅10 6 cm 4 ) S b = 3,340in.3 (5.47 ⋅10 6 cm 3 ) S t = 10,458in.3 WD = 1,019 plf bnÞúkpÞal; WSD = 100 plf (1.46kN / m ) WL = 1,100 plf (16.05kN / m ) ec = 22.02in. ee = 12.77in. Camber, Deflection and Crack Control 426
  • 21. Department of Civil Engineering NPIC cb = 25.77in. ct = 8.23in. ( A ps = 16 × 0.153 = 2.448in.2 15.3cm 2 ) Pi = 462,672(2,058kN ) enAeBlepÞr Pe = 379,391lb(1.688kN ) (b) lkçN³sMPar³ (material properties) V / S = 2.39in. RH = 70% f 'c = 5,000 psi f 'ci = 3,750 psi f pu = 270,000 psi (1,862MPa ) f pi = 189,000 psi (1,303MPa ) f pe = 154,980 psi (1,067 MPa ) f py = 230,000 psi E ps = 28.5 ⋅10 6 psi (196GPa ) (c) kugRtaMgGnuBaØat (allowable stresses) f ci = 2,250 psi f c = 2,250 psi f ti = 184 psi ¬kNþalElVg¦ f t = 849 psi ¬kNþalElVg¦ dMeNaHRsay (a) !> kugRtaMgenARtg;muxkat;kNþalElVg eyIgmancMNakp©itkNþalElVg ec = 22.02in.(559mm ) m:Um:g;Bt;ekIteLIgedaysarbnÞúkpÞal;xøÜnGtibrma 1,019(60 )2 MD = × 12 = 5,502,600in. − lb 8 (a) enAeBlepÞr (at transfer) PaBekag PaBdab nigkarRKb;RKgsñameRbH 427
  • 22. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa kugRtaMgEdlRtUv)anKNnaKW BIsmIkar 4.1a Pi ⎛ ec ct ⎞ M D ft =− ⎜1 − 2 ⎟ − t Ac ⎝ r ⎠ S 462,672 ⎛ 22.02 × 8.73 ⎞ 5,502,600 =− ⎜1 − ⎟− 978 ⎝ 88.0 ⎠ 10,458 = +501 − 526 = −25 psi (C ) < f t = +184 psi(T ) / O.K. Pi ⎛ ec cb ⎞ M D fb = − ⎜1 + 2 ⎟ + Ac ⎝ r ⎠ Sb 462,672 ⎛ 22.02 × 25.77 ⎞ 5,502,600 =− ⎜1 + ⎟+ 978 ⎝ 88.0 ⎠ 3,340 = −3,524 + 1,647 = −1,877 psi (C ) < −2,250 psi / O.K. (b) enAeBlrgbnÞúkeFVIkar (service load) 100(60 )2 12 M SD = = 540,000in. − lb(61kN .m ) 8 1,100(60 )2 12 ML = = 5,940,000in. − lb(672kN .m ) 8 edaysarbnÞúkGefr ft = 5,940,000 10,458 = −568 psi (C ) edaysarbnÞúkGefr fb = 5,940,000 3,340 = 1,778 psi (T ) m:Um:g;srub M T = M D + M SD + M L = 5,502,600 + 6,480,000 = 11,982,600in. − lb(1,354kN .m ) BIsmIkar 4.3a ⎛ ec ct ⎞ M T Pe ft =− ⎜1 − 2 ⎟ − t ⎝ Ac r ⎠ S 379,391 ⎛ 22.02 × 8.23 ⎞ 11,982,600 =− ⎜1 − ⎟− 978 ⎝ 88.0 ⎠ 10,458 = +411 − 1146 = −735 psi < f c = −2,250 psi O.K. BIsmIkar 4.3b Pi ⎛ ec cb ⎞ M T fb = − ⎜1 + 2 ⎟ + Ac ⎝ r ⎠ Sb 379,391 ⎛ 22.02 × 25.77 ⎞ 11,982,600 =− ⎜1 − ⎟+ 978 ⎝ 88.0 ⎠ 3,340 = −2,689 + 3,587 = +698 pis (T ) < 849 psi O.K. Camber, Deflection and Crack Control 428
  • 23. Department of Civil Engineering NPIC eKGnuBaØateGayeRbI gross moment of inertia I g sMrab;karKNnaPaBdab. kñúgkrNIEbbenH eKGacyk effective moment of inertia I e esμInwg I g . RbsinebIeRbobeFobCamYy modules of rupture f r = 7.5 f 'c = 7.5 5,000 = 530 psi eKrMBwgfanwgmansñameRbHtUc² (minor cracking) ehIyedIm,IlkçN³suvtßiPaB (conservative) eKGnuBaØateGayRbIemKuN 7.5 . @> kugRtaMgenARtg;muxkat;TMr BIsmIkar 4.1 f ti = 6 f 'ci = 6 3,750 = 367 psi f t = 12 f 'c = 12 5,000 = 849 psi ee = 12.77in. eFVIdUcKñaenAkñúgCMhanénkarKNnakugRtaMgRtg;muxkat;kNþalElVg edayeRbI M = 0 CMnYskñúg smIkarkñúgral;CMhanxagelI. karRtYtBinitükugRtaMgmuxkat;TMrenAeBlepÞreGaynUvkugRtaMgEdlman tMéltUcCagkugRtaMgGnuBaØat O.K.. taragsegçbénkugRtaMgsrés ( psi ) #> KNnaPaBdab nigPaBekag (camber) enAeBlepÞr BI basic mechanics of materials b¤BIsmIkar 7>6 sMrab; a = l / 2 camber enAkNþalElVg EdlbNþalBI single harp b¤ depression énEdkeRbkugRtaMgKW Pec l 2 P(ee − ec )l 2 δ ↑= + 8EI 24 EI dUcenH Eci = 57,000 f 'ci = 57,000 3,750 = 3.49 ⋅10 6 psi (24.1MPa ) Ec = 57,000 f 'c = 57,000 5,000 = 4.03 ⋅10 6 psi (27.8MPa ) 462,672 × 22.02 × (60 × 12 )2 462,672 × (12.77 − 22.02)(60 × 12)2 δ pi ↑= + 8 × 3.49 ⋅10 6 × 86,702 24 × 3.49 ⋅10 6 × 86,072 PaBekag PaBdab nigkarRKb;RKgsñameRbH 429
  • 24. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa = −2.20 + 0.31 = −1.89in.(48mm ) ↑ PaBdabeLIgelIenH (camber) KWbNþalEtmkBIkMlaMgeRbkugRtaMgb:ueNÑaH. bnÞúkpÞal;enAkñúg 1in. KW 1,019 / 12 = 84.9lb / in. ehIyPaBdabEdlbNþalBIbnÞúkpÞal;KW δ D ↓= 5wl 4 / 384 EI 5 × 84.9(60 × 12)4 δD = = 0.99in. ↓ 384 × 3.49 ⋅10 6 × 86,072 dUcenH net camber enAeBlepÞrKW − 1.89 ↑ +0.99 ↓= −0.90in. ↑ (25mm) $> KNnaPaBdabPøam²srubeRkamGMeBI service load énmuxkat;Gt;eRbH (a) PaBdabedaysar superimposed dead load edayeRbI Ec = 4.03 ⋅106 psi Eci ⎛ 100 ⎞ ⎛ 3.49 ⎞⎛ 100 ⎞ δ SD = 0.99 ⎜ ⎟ = 0.99⎜ ⎟⎜ ⎟ = 0.08in.(2.0mm ) ↓ Ec ⎝ 1,019 ⎠ ⎝ 4.03 ⎠⎝ 1,019 ⎠ (b) PaBdabedaysarbnÞúkGefr 5wl 4 5(1100 )(60 × 12)4 1 δL = = × = 0.93in. ↓ 384 Ec I c 384 × 4.03 ⋅10 × 86,072 12 6 esckþIsegçbén camber nigPaBdabry³eBlxøIeRkamGMeBI service load mandUcxageRkam³ camber edaysarkMlaMgeRbkugRtaMgdMbUg = 1.89in.(48mm ) ↑ PaBdabedaysarbnÞúkpÞal; = 0.99in.(25mm) ↓ PaBdabedaysar superimposed dead load = 0.08in.(2mm) ↓ net deflection enAeBlepÞr = −1.89 + 0.99 = −0.90in. ↑ RbsinebIeKBicarNaPaBdabedaysarkMhatbg;BIdMNak;epÞrrhUtdl;ry³eBl 30éf¶ enaH camber RtUv)ankat;bnßy)an ⎛ 462,672 − 379,391 ⎞ ⎛ 0.34 ⎞ = 1.89⎜ ⎟ = 1.89⎜ ⎟ = 0.34in. ↓ ⎝ 462,672 ⎠ ⎝ 462,672 ⎠ dMeNaHRsay (b) dMeNaHRsaytamviFIkMeNInm:Um:g; nigkMeNag (incremental moment curvature method) ΔP = Pi − Pe = 462,672 − 379,391 = 83,281lb(370kN ) bMErbMrYlrageFobedaysarkMlaMgeRbkugRtaMgenAeBlepÞr enAry³eBl 7éf¶ Eci = 3.49 ⋅106 psi (i) edaysarkMlaMgeRbkugRtaMg Pi kNþalElVg³ Camber, Deflection and Crack Control 430
  • 25. Department of Civil Engineering NPIC f t = +501 psi f b = −3,524 psi 501 εc = t = +144 ⋅10 − 6 in. / in. 3.49 ⋅10 6 ε cb = −1,010 ⋅10 −6 in. / in. elITMr³ f t = +92 psi f b = −2,242 psi ε e = 26 ⋅10 −6 in. / in. t ε et = −642 ⋅10 −6 in. / in. ¬1 psi = 6.895kPa ¦ (ii) edaysarkMlaMgeRbkugRtaMg nigbnÞúkpÞal; Pi + WD kNþalElVg³ f t = −25 psi ε c = −7.2 ⋅10 −6 in. / in. t f b = −1,877 psi ε cb = −537.8 ⋅10 −6 in. / in. TMr³ dUcKñanwgkrNI (i) bMErbMrYl strain EdlbNþalBIkMhatbg;eRbkugRtaMg − ΔP = 83,281lb Eci = 3.49 ⋅10 −6 psi muxkat;kNþalElVg Δf t = − (− ΔP ) ⎛1 − ect ⎞ = + 83,281 ⎛1 − 22.02 × 8.23 ⎞ = −90 psi(C ) ⎜ ⎟ ⎜ ⎟ Ac ⎝ r2 ⎠ 978 ⎝ 88.0 ⎠ − 90 Δε c = t = −26 ⋅10 − 6 in. / in. 3.49 ⋅10 6 Δf b = − (− ΔP ) ⎛1 + ecb ⎞ = 83,281 ⎛1 + 22.02 × 25.77 ⎞ = +634 psi(T ) ⎜ ⎟ ⎜ ⎟ Ac ⎝ r2 ⎠ 978 ⎝ 88.0 ⎠ 634 Δε cb = = +182 ⋅10 − 6 in. / in. 3.49 ⋅10 6 muxkat;Rtg;TMr Δf t = − (− ΔP ) ⎛1 − ect ⎞ = 83,281 ⎛1 − 12.77 × 8.23 ⎞ = −16.5 psi(C ) ⎜ ⎟ ⎜ ⎟ Ac ⎝ r2 ⎠ 978 ⎝ 88.0 ⎠ PaBekag PaBdab nigkarRKb;RKgsñameRbH 431
  • 26. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa − 16.5 Δε e = t = −5 ⋅10 − 6 in. / in. 3.49 ⋅10 6 Δf b = − (− ΔP ) ⎛1 + ecb ⎞ = + 83,281 ⎛1 + 12.77 × 25.77 ⎞ = 404 psi(T ) ⎜ ⎟ ⎜ ⎟ Ac ⎝ r2 ⎠ 978 ⎝ 88.0 ⎠ + 404 ΔEbe = = +116 ⋅10 − 6 in. / in. 3.49 ⋅10 6 edaybUk strain enAeBlepÞrbEnßmBIelI strain EdlbNþalBIkMhatbg;eRbkugRtaMgeGaykar EbgEck strain eRkamGMeBI service load eRkayeBlrgEtkMlaMgeRbkugRtaMg dUcbgðajenAkñúgrUbTI 7>10. BIrUbTI 7>10 kMeNagenAkNþalElVg − 828 − 118 φc = × 10 − 6 = −27.82 ⋅10 − 6 rad / in. 34 kMeNagenARtg;TMr − 526 − 21 φe = × 10 − 6 = −16.09 ⋅10 − 6 rad / in. 34 BIrUbTI 7>6/ sMrab; a = l / 2 / camber rbs;FñwmEdlbNþalEtBI Pe KW Camber, Deflection and Crack Control 432
  • 27. Department of Civil Engineering NPIC ⎛ l2 ⎞ 2 δ e ↑= φc ⎜ ⎟ + (φe − φc ) l ⎜ ⎟ ⎝8⎠ 24 = −27.82 ⋅ 10 −6 (60 × 12)2 + (− 16.09 + 27.82) ⋅10 −6 (60 × 12)2 8 24 = −1.80 + 0.25 = −1.55in. ↑ (39mm ) (camber) EdlRsedogKñaeTAnwg (− 1.89 + 0.34) = −1.55in. ↑ eRkayeBlxatbg;enAkñúgdMeNaHRsay elIkmun. PaBdabEdlbNþalmkBIbnÞúkpÞal; WD / superimposed dead load WSD nigbnÞúkGefr WL KWRsedogKñanwgdMeNaHRsayelIkmun. cMNaMfatMélPaBEdl)anBIkarKNnaxusBItMélPaBdabCak;EsþgcenøaHBI 20% eTA 40% eday sar)a:ra:Em:RtCaeRcInEdlCHT§iBldl;m:UDulrbs;ebtug. dUcenH eKKYryktMélEdlKNnaenARKb;CM- hanTaMgGs;rbs;dMeNaHRsaybIxÞg;eRkayek,ósedIm,IkMurGayvaCHT§iBlxøaMgdl;lT§plcugeRkay. 5> PaBdabry³eBlxøIrbs;FñwmeRbkugRtaMgEdleRbH Short-Term Deflection of Cracked Prestressed Beams k> PaBdabry³eBlxøIrbs;FñwmenAkñúg]TahrN_ 7>3 RbsinebImuxkat;maneRbH Short-Term Deflection of Cracked Prestressed Beam in Example 7.3 if cracked ]TahrN_ 7>4³ edaHRsay]TahrN_ 7>3 eday (a) bilinear method, (b) viFIm:Um:g;RbsiT§PaBsMrab; lkçxNÐkugRtaMgTaj fb = 750 psi ¬EdlkugRtaMgTajmantMélFMCagm:UDuldac; f r = 7.5 f 'c = 530 psi ¦ eRkamGMeBI service load enAkNþalElVgRtg;srésxageRkamCMnYseGay f b = −56 psi(C ) enAkñúg]TahrN_elIkmun. snμt;fa net beam camber EdlbNþalBIkMlaMgeRbkugRtaMg nigbnÞúkpÞal;KW δ = 0.95in. . dMeNaHRsay³ Net tensile stressbnÞab;BI first cracking load Rtg;m:UDuldac;KW f net = fb − f r = 750 − 530 = +220 psi (T ) . BIrUbTI 7>3/ kugRtaMgTajEdlbNþaledaysarEtbnÞúkGefrenARtg;srésxageRkamKW + 1,778 psi . enAeBlenH edaysar WL = 1,100 plf cMENkénbnÞúkEdlmin)aneFVIeGaymankugRtaMg TajenARtg;srésxageRkamKW w1 = (1,778 − 220) ×1,100 = 964 plf 1,778 964 = = 80lb / in. 12 PaBekag PaBdab nigkarRKb;RKgsñameRbH 433
  • 28. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa PaBdabEdlkMNt;eday I g énmuxkat;EdlGt;eRbHKW 5w1l 4 5 × 80(60 × 12)4 δg = = = 0.8in. ↓ (20mm ) 384 Ec I g 384 × 4.03 ⋅10 6 × 86,072 (a) bilinear method ( I cr = n p A ps d p 1 − 1.6 n p ρ p 2 ) E ps 28.5 ⋅ 106 np = = = 7.07 Ec 4.03 ⋅ 10 6 d p = ec + ct = 22.02 + 8.23 = 30.25in. > 0.8h = 27.2in. dp EdleRbI = 30.25in. nig Aps = 2.448in.2 enaH A ps 2.448 ρp = = = 0.0006 bd p 144 × 30.25 ( I cr = 7.07 × 2.448(30.25)2 1 − 1.6 7.07 × 0.0006 ) ( ) = 14,187in.4 5.9 ⋅ 105 cm 4 tulüPaBénbnÞúksrubEdleFVIeGaymuxkat;eRbHKW 1,100 − 964 w2 = = 11.3lb / in. 1,100 × 12 5w2l 4 5 × 11.3(60 × 12 )4 δ cr = = 384 Ec I cr 384 × 4.03 ⋅ 10 6 × 14,187 = 0.69in. ↓ (17mm ) dUcenH PaBdabsrubEdlbNþalBIbnÞúkGefr δ L = 0.80 + 0.69 = +1.49in. ↓ (38mm ) (b) viFIm:Um:g;niclPaBRbsiT§PaB (effective moment inertia moment) I e BIsmIkar 7.10b ⎛M ⎞ 3 ⎡ ⎛M ⎞ 3⎤ I e = ⎜ cr ⎜M ⎟ I g + ⎢1 − ⎜ cr ⎟ ⎟ ⎥ I cr ≤ I g ⎝ a ⎠ ⎢ ⎜ Ma ⎟ ⎥ ⎣ ⎝ ⎠ ⎦ BIsmIkar 7.11 ⎛ M cr ⎞ ⎛ f − ft ⎞ ⎜ ⎜M ⎟ = 1 − ⎜ tl ⎟ ⎜ f ⎟ ⎟ ⎝ a ⎠ ⎝ L ⎠ f tl =kugRtaMgsrubcugeRkay = +750 psi(T ) f r = m:UDuldac; = 530 psi )anBIelIkmun f L = kugRtaMgbnÞúkGefr = 1,778 psi Camber, Deflection and Crack Control 434
  • 29. Department of Civil Engineering NPIC ⎛ M cr ⎞ ⎛ 750 − 530 ⎞ ⎜ ⎜M ⎟ = 1− ⎜ ⎟ ⎟ = 1 − 0.124 = 0.876 ⎝ a ⎠ ⎝ 1,778 ⎠ 3 ⎛ M cr ⎞ ⎜ ⎜M ⎟ = 0.67 ⎟ ⎝ a ⎠ I e = 0.67 × 86,072 + (1 − 0.67 )14,187 = 62,350in.4 GaMgtg;sIuetbnÞúkGefrsrub = 1,100 / 12 = 92lb / in. PaBdabEdlbNþalBIbnÞúkGefr 5 × 92(60 × 12 )4 δL = = 1.28in. ↓ (33mm ) 384 × 4.03 ⋅ 10 6 × 62,350 edayeRbobeFobCamYynwg 1.49in. enAkñúgdMeNaHRsay (a) eyIgyk δ L = +1.49in. ↓ . eRbI tMélenHsMrab; final net long-term deflection eRkayeBlxatbg;dUcGIVEdl)anerobCataragenA kúñg]TahrN_ 7>6. 6> karsg;düaRkamTMnak;TMngrvagm:Um:g; nigkMeNag Construction of Moment-Curvature Diagram ]TahrN_ 7>5³ cUrsg;düaRkamTMnak;TMngm:Um:g; nigkMeNagsMrab;muxkat;kNþalElVgrbs; bonded double-T beam enAkñúg]TahrN_ 7>3 sMrab;CMhanénkarekIneLIgnUvbMErbMrYlrageFobdUcxageRkam³ !> bMErbMrYlrageFobenAeBlepÞr f pi = 189,000 psi EdlbNþalEtBI Pi @> bMErbMrYlrageFobenAeBl f pe = 154,980 psi muneBlrgbnÞúkTMnaj #> enAeBldkkMlaMg (decompression) enARtg;TIRbCMuTMgn;rbs;EdkeRbkugRtaMg $> enAeBlkugRtaMgeFVIkardl;m:UDuldac; (modulus of rupture) %> muxkat;EdlmaneRbH. bMErbMrYlrageFob ε c1 enAsrésxagelI = 0.001in. / in. ^> muxkat;EdlmaneRbH. bMErbMrYlrageFob ε c1 enAsrésxagelI = 0.003in. / in. dMeNaHRsay³ !> dMNak;kalepÞrkMlaMgeRbkugRtaMg BITinñn½ysMrab;]TahrN_ 7>3 kugRtaMgkNþalElVgEdlbNþalmkEtBIkMlaMgeRbkugRtaMgKWman dUcxageRkam³ f t = +501 psi PaBekag PaBdab nigkarRKb;RKgsñameRbH 435
  • 30. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa f b = −3,524 psi + 501 εc = t = +144 ⋅10 − 6 in. / in. 3.49 ⋅10 6 − 3,524 ε cb = = −1,010 ⋅10 − 6 in. / in. 3.49 ⋅10 6 φi = (ε cb −εc t = )(− 1,010 − 144) ×10 − 6 = −33.94 ⋅10 − 6 rad / in. h 34 BI]TahrN_ 7>3 m:Um:g;EdlbNþalmkBI Pi + M D KW M i = −462,672 × 22.02 + 5,502,600 = −4.69 ⋅10 6 in. − lb @> dMNak;kaleRkayeBlxagbg; enAkñúgdMNak;kaldkbnÞúkCabnþbnÞab; tMélrbs;m:Um:g; M g EdlbNþalmkBIbnÞúkTMnajRtUv)an rkedaykarkat;bnßykugRtaMgenAkñúgEdkeRbkugRtaMgrhUtdl;sUnü. BI]TahrN_ 4>1/ Pe = 379,391lb . dUcenH Pe 379,391 = = 0.82 Pi 462.672 kugRtaMg nigbMErbMrYlrageFobenAkNþalElVgeBlepÞrkMlaMgeRbkugRtaMg Pi KW f ct = +501 psi f cb = −3,524 psi ε c = +144 ⋅10 −6 in. / in. t ε cb = −1,010 ⋅10 −6 in. / in. kat;bnßybMErbMrYlrageFobrhUtdl;dMNak;kal Pe dUcxageRkam³ ε c = 0.82(144 ⋅10 −6 ) = 118 ⋅10 −6 in. / in. t ε cb = 0.82(− 1,010 ⋅10 −6 ) = −828 ⋅10 −6 in. / in. karBRgaybMErbMrYlrageFobnwgkøaydUcGVIEdlbgðajenAkñúgrUbTI 7>11 φ2 = (ε cb − ε ct ) = (− 828 − 118)10− 6 = −27.82 ⋅10− 6 rad / in. h 34 m:Um:g;EdlbNþalBIbnÞúkTMnaj M g = 0 cMNaMfakarEbgEckbMErbMrYlrageFobenAkñúgrUbTI 7>11 KWbNþalBIkMlaMgeRbkugRtaMg Pe . eRbI düaRkamTMnak;TMngkugRtaMg nigbMErbMrYlrageFobkñúgrUbTI 7>12 sMrab;EdkeRbkugRtaMg nigeRbIdüaRkam kñúgrUbTI 7>13 sMrab;ebtugedIm,IkMNt;kugRtaMgCak;Esþgtamry³ strain compatibility. Camber, Deflection and Crack Control 436
  • 31. Department of Civil Engineering NPIC PaBekag PaBdab nigkarRKb;RKgsñameRbH 437
  • 32. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa #> dMNak;kaleRkaydkbnÞúkCamYynwgkugRtaMgebtugsUnüenARtg;TIRbCMuTMgn;rbs;EdkeRbkugRtaMg BIrUbTI 7>12 bMErbMrYlrageFobénkardkbnÞúkenARtg;nIv:UTIRbCMuTMgn;EdkeRbkugRtaMgKW 26.01 ε decomp = −828 ⋅10 − 6 × = 723 ⋅10 − 6 in. / in. 26.01 + 3.75 f nig ε pe = Epe = 27.5,⋅9806 = 5,636 ⋅10 − 6 in. / in. 154 10 ps PaBRtUvKña (compatibility) rbs;bMErbMrYlrageFobTamTareGayEdkeRbkugRtaMgenAkñúg bonded beam manbMErbMrYlrageFobdUcKña dUcEdlkugRtaMgTajrbs;ebtugEdlB½T§CMuvijvaekIneLIgedIm,Ikat; bnßykugRtaMgsgát;enARtg;nIv:UTIRbCMuTMgn;rbs;EdkeRbkugRtaMgrhUtdl;esμIsUnü. dUcenH bMErbMrYlrageFobsrub ε pe = 5,636 ⋅10−6 + 723 ⋅10−6 = 6,359 ⋅10−6 in. / in. BIdüaRkamTMnak;TMngkugRtaMg nigbMErbMrYlrageFobenAkñúgrUbTI 7>12 kugRtaMg f pe = 177,00 psi dUcenH eyIg)an Pe EdlEksMrYl = 177,000 × 0.153 × 16 = 433,296 433,296 ⎛ 22.02 × 8.23 ⎞ f t EdlEksMrYl = − ⎜1 − ⎟ ≅ +469 psi (T ) 978 ⎝ 88.0 ⎠ + 469 εc = − t = 116 ⋅10 − 6 in. / in. 4.03 ⋅10 6 fb EdlEksMrYl = − 433,296 ⎛1 + 22.02 ×.0 .77 ⎞ ≅ −3,300 psi(C ) 978 ⎝ ⎜ 88 25 ⎟ ⎠ − 3,300 ε cb = = −819 ⋅10 − 6 in. / in. 4.03 ⋅10 6 M decomp × y M decomp × 22.02 f decomp = = = 2,884 psi Ic 86,072 M decomp = 2,884 × 86,072 22.02 ( = 11.27 ⋅10 6 in. − lb 1.27 ⋅10 6 N .m ) M decomp 11.27 ⋅10 6 ft = = = −1,078 psi (C ) St 10,458 net stress f t = −1,078 + 469 = −609 psi (C )(4.16 MPa ) − 609 εc = t = −151.1 ⋅10 − 6 in. / in. 4.03 ⋅10 6 11.27 ⋅10 6 11.27 ⋅10 6 fb = = = +3,374 psi (T ) Sb 3,340 net stress f b = +3,374 − 3,300 = +74 psi (T ) 74 ε cb = = +18.4 ⋅10 − 6 in. / in. 4.03 ⋅10 6 Camber, Deflection and Crack Control 438
  • 33. Department of Civil Engineering NPIC φ decomp = (ε cb −εc t = ) (18.4 + 151.1) × 10 − 6 = +4.99 ⋅10 − 6 rad / in. h 34 M = 11.27 ⋅10 6 in. − lb rUbTI 7>14 eGaynUvkarBRgaykugRtaMg nigbMErbMrYlrageFobenAkúñgFñwmenHenAkñúgsßanPaBénkar dkbnÞúk. $> dMNak;kalm:UDuldac; f r = 7.5λ f 'c = 7.5 5,000 = 530 psi ⎡ P ⎛ ec ⎞⎤ M cr = S b ⎢7.5λ f 'c + e ⎜1 + 2b ⎟⎥ ⎣ Ac ⎝ r ⎠⎦ BIelIkmun GgÁTIBIrénsmIkarxagelIsMrab;m:Um:g;eGaykugRtaMg 3,300 psi . dUcenH M cr = 3,340(530 + 3,300) = 12.8 ⋅10 6 in. − lb net bottom concrete stress = m:UDuldac; f r sMrab;krNIenH = +530 psi(T ) + 530 ε cb = = +132 ⋅10 − 6 in. / in. 4.03 ⋅10 6 12.8 ⋅10 6 ft = = −1,224 psi (C ) 10,458 net stress f t = −1,224 + 469 = −755 psi (C ) − 755 εc = t = −187 ⋅10 − 6 in. / in. 4.03 ⋅10 6 φs = (ε cb −εc t = ) (132 + 187 ) ×10 − 6 h 34 = +9.38 ⋅10 −6 rad / in. PaBekag PaBdab nigkarRKb;RKgsñameRbH 439
  • 34. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa %> dMNak;kalmuxkat;mansñameRbH/ ε c = 0.001in. / in. BIelIkmun/ ε pe = 6,359 ⋅10 −6 = 0.0064in. / in. . tamkarsakl,g nigEktMrUv snμt;kMBs;G½kS NWt c = 1.5in. BIxageRkamsrésxagelIbMputrbs;søab. ehIy Δε ps CabMErbMrYlrageFobbEnßmenAkñúg bonded prestressing strand EdlbNþalBI ε c = 0.001in. / in. enAsrésxagelIbMput ehIyBIRtIekaN dUc (similar triangle) enAkñúgrUbTI 7>15 Δε ps = (30.25 − 1.5) × 0.001 = 0.0192in. / in. 1.5 dUcenH srub = 0.0192 + 0.0064 = 0.0256in. / in. ε ps BIdüaRkamTMnak;TMngrvagkugRtaMg nigbMErbMrYlrageFobrbs;EdkeRbkugRtaMgenAkñúgrUbTI 7>12 kugRtaMgEdlRtUvnwgtMélbMErbMrYlrageFob ε ps srubKW f ps ≅ 260,000 psi nig A ps = 16 × 0.153 = 2.448in.2 dUcenH kMlaMgTaj T p = 260,000 × 2.448 = 636,480lb BIrUbTI 7>13/ f c = 3,000 psi RtUvKñanwg ε c = 0.001in. / in. . enaH kMlaMgsgát; Cc = (12 × 12 × 1.5)3,000 = 648,000 > T = 636,480lb dUcenH eKKYrkat;bnßykMBs;G½kSNWt. sakl,gelIkTIBIr snμt; c = 1.45in. . enaH Δε ps = (30.25 − 1.45) × 0.001 = 0.0199in. / in. 1.45 nig ε ps srub = 0.0199 + 0.0064 = 0.0263in. / in. Camber, Deflection and Crack Control 440
  • 35. Department of Civil Engineering NPIC BIrUbTI 7>13/ f ps ≅ 255,000 psi / T p = 255,000 × 2.448 = 624,240lb nig Cc = (12 × 12 × 1.45)3000 = 624,400lb ≅ T p . dUcenH c Edlsnμt; = 1.45in. KW O.K. ⎛ 1.45 ⎞ M n = 624,240⎜ 30.25 − ⎟ = 18.4 ⋅10 in. − lb 6 ⎝ 2 ⎠ nigBIsmIkar 7.5d εu 0.001 φu = = = 690 ⋅ 10 − 6 rad / in. c 1.45 ^> dMNak;kalmuxkat;mansñameRbHeBj/ ε c = 0.003in. / in. (ultimate load) ε c = 0.003in. / in. CabMErbMrYlrageFobGtibrmaEdlGnuBaØateday ACI Code eRkamGMeBI ultimate load. snμt; f ps = 263,000 psi . enaH A ps f ps 2.448 × 263,000 a= = = 1.1in. 0.85 f 'c b 0.85 × 5,000 × 144 a 1.1 c= = = 1.38in. β1 0.8 BIrUbTI 7>15 30.25 − 1.38 ε ps = × 0.003 = 0.0628in. / in. 1.38 ε ps srub = 0.0628 + 0.0064 = 0.0692in. / in. BIdüaRkamTMnak;TMngrvagkugRtaMg nigbMErbMrYlrageFobenAkúñgrUbTI 7>13/ f ps ≅ f pu = 270,000 psi . dUcenH eRbI a ≅ 1.1in. EdleGay ⎛ a⎞ ⎛ 1.1 ⎞ M n = A ps f ps ⎜ d p − ⎟ = 2.448 × 270,000⎜ 30.25 − ⎟ ⎝ 2⎠ ⎝ 2 ⎠ PaBekag PaBdab nigkarRKb;RKgsñameRbH 441
  • 36. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa = 19.6 ⋅10 6 in. − lb yk c ≅ 1.4in. εu 0.003 φu = = = 2,143 ⋅10 − 6 rad / in. c 1 .4 düaRkaménTMnak;TMngrvagm:Um:g; nigkMeNagRtUv)anbgðajenAkñúgrUbTI 7>16. düaRkamTMnak;TMng rvagbnÞúk nigPaBdabmanTMrg;RsedogKña ehIyeyIgGacsnñidæanvaecjBIdüaRkamTMnak;TMngrvagm:Um:g; nig kMeNag. 7> T§iBlénry³eBlEvgeTAelIPaBdab nigPaBekag Long-Term Effects on Deflection and Camber k> viFIemKuN PCI PCI Multipliers Method ACI Codepþl;nUvsmIkarxageRkamsMrab;)a:n;RbmaNemKuNGaRs½ynwgeBlsMrab;PaBdabén Ggát;ebtugeRbkugRtaMg³ ξ λ= (7.16) 1 + 50 ρ ' Edl ξ= emKuNGaRs½yeBlsMrab;bnÞúkGcié®nþy_ (sustained load) ρ ' = pleFobEdkrgkarsgát; λ = emKuNsMrab;PaBdabry³eBlEvgbEnßm kñúgTMrg;RsedogKña/ PCI multipliers method pþl;nUvemKuN C1 EdlKitT§iBlénry³eBlEvgenAkñúg Ggát;ebtugeRbkugRtaMg. Et C1 xusBI λ enAkñúgsmIkar 7.16 edaysarkarkMNt;PaBdab nig camber ry³eBlEvgenAkñúgGgát;eRbkugRtaMgmanlkçN³sμúKsμajCagedaysarktþadUcxageRkam³ !> T§iBlry³eBlEvgénkMlaMgeRbkugRtaMg nigkMhateRbkugRtaMg. @> karekIneLIgénersIusþg;rbs;ebtugeRkayeBlkMlaMgeRbkugRtaMgfycuHedaysarkMhatbg;. #> T§iBlénPaBdab nig camber kñúgGMLúgeBldMeLIg. edaysarktþaTaMgenH eKminGaceRbIsmIkar 7.16 eT. tarag 7>1 pþl;nUvemKuNénPaBdab nig camber Pøam²d¾smrmü RbsinebI camber nigPaB dabEdl)anKNnaBIdMbUgRtUv)anKitdac;edayELkBIKñaedIm,IKitBIT§iBlénkMhatbg;kMlaMgeRbkugRtaMg eTAelI camber. Camber, Deflection and Crack Control 442
  • 37. Department of Civil Engineering NPIC nig Brason ENnaMfaeKGacTTYl)annUvkarkat;bnßyCaGcié®nþy_nUv camber ry³eBl Shaikh EvgedaykarbEnßmEdkminrgeRbkugRtaMg. enAkñúgkrNIenH eKGaceRbIemKuNEdlkat;bnßy C2 Edl eGayeday C1 + As / A ps C2 = (7.17) 1 + As / A ps Edl C1 = emKuNEdl)anBItarag 7>1 As = RkLaépÞrbs;EdkminrgeRbkugRtaMg A ps = RkLaépÞrbs;EdkrgeRbkugRtaMg x> viFIkMeNIntameBl Incremental Time-Steps Method viFIkMeNIntameBl (incremental time-steps method) KWQrelIbnSMénkarKNnaPaBdabCa- mYynwgkarKNnakMhatbg;edaysar creep, shrinkage nig relaxation EdlGaRs½ynwgeBl. kar KNnaBICIvitrbs;eRKOgbgÁúMEbgEckCaeRcIncenøaHeBlEdleRCIserIsedayQrelIeKalkarN_énEdn kMNt;rbs;bMErbMrYlrageFobebtugCak;lak; (specific concrete strain limits) dUcCabMErbMrYlrageFob Éktþa ε c1 = 0.001 nig ε c1 = 0.002in. / in. nig ultimate allowable strain ε c1 = 0.003in. / in. . eK PaBekag PaBdab nigkarRKb;RKgsñameRbH 443
  • 38. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa KNnakarBRgaybMErbMrYlrageFob/ kMeNag nigkMlaMgeRbkugRtaMgsMrab;cenøaHeBlnImYy²CamYynwgkM- eNInénkMhatbg;edaysarbMErbMrYlrbs;karrYmmaD/ creep nig relaxation EdlekItmankñúgcenøaHeBl enaH. eKRtUveFVIkarKNnaenHCadEdl²sMrab;cenøaHkMeNInbnþbnÞab; nigkareFVIplbUkénkarKNnaenH pþl;eGayeyIgnUvPaBdabGaRs½ynwgeBlcugeRkaysMrab;muxkat;Cak;lak;NamYyenAtambeNþayElVg rbs;Fñwm. eKRtUveFIVkarKNnaenHsMrab;cMnYncMnucenAelIbeNþayElVgFñwmRKb;RKan; dUcCakNþalElVg nigcM- nucmYyPaKbYnedIm,IGackMNt;düaRkamTMnak;TMngrvagPaBdab nigkMeNageGaymanlkçN³suRkit. eKGacsmIkarTUeTAsMrab;mMuvilsrub (total rotation) enAcugbBa©b;éncenøaHeBldUcxageRkam³ t t Pi e x ex e φt = − + ∑ (Pn −1 − Pn ) − ∑ (C n − C n−1 )Pn −1 x (7.18a) Ec I c 0 Ec I c 0 Ec I c Edl Pi = kMlaMgeRbkugRtaMgedImmuneBlxatbg; e x = cMNakp©itrbs; tendon enARtg;muxkat;NamYytambeNþayElVg n −1 = cMnuccab;epþIméncenøaHeBl (time-step) n = cugbBa©b;én time-step Edl)anniyayBIxagelI C n−1 / C n = emKuN creep enAcMnuccab;epþIm nigcMnucbBa©b; erogKña én time-step NamYy Pn − Pn−1 = kMhatbg;eRbkugRtaMgenARtg;cenøaHeBlNamYyEdlekItBIktþaTaMgGs; Cak;Esþg eKeFVIkarKNnay:agl¥itl¥n;EbbenHEtenAkñúgkarkMNt;rkPaBdab nigPaBekagrbs; RbB½n§s<anEdlmanElVgEvg² dUcCas<anEdlsg;CakMNat;² (segmental bridge) EdlkardMeLIg nigkar pÁúMkMNat;s<anenaHTamTarnUvkar)a:n;RbmaNPaBdabeGaymanlkçN³suRkit. BIsmIkar 7.18a PaBdab srubenARtg;muxkat;NamYyKW δ x = φt kl 2 (7.18b) ]bmafaeKeRbIbMErbMrYlrageFobxageRkamBI]TahrN_ 7>7 xageRkamedIm,IbgðajBIkarKNna kMeNInénmMuvil (incremental rotation) nigmMuvilsrub (total rotation)³ ε ' n−1 = gross strain EdlbNþalEtmkBIkMlaMgeRbkugRtaMgenAsrésxagelIbMput Edl ε c = 144 ⋅ 10 −6 in. / in. ¬rUbTI 7>19¦ t ε b,n−1 = gross strain EdlbNþalEtBIkMlaMgeRbkugRtaMgenAsrésxageRkambMput Edl ε cb = −1,010 ⋅ 10 −6 in. / in. ¬rUbTI 7>19¦ Camber, Deflection and Crack Control 444
  • 39. Department of Civil Engineering NPIC Δε CR ,n = t kMeNInénbMErbMrYlrageFobedaysar gross creep enAsrésxagelIbMput Edl Δε CRc = 127 ⋅10 −6 in. / in. ¬rUbTI 7>20¦ t Δε CRb, n = kMeNInénbMErbMrYlrageFobedaysar gross creep enAsrésxageRkambMput Edl Δε CRcb = −895 ⋅10 −6 in. / in. ¬rUbTI 7>20¦ Δε ps , n = karkat;bnßybMErbMrYlrageFobedaysarkMhatbg;eRbkugRtaMgEdlbgáedaykMlaMg creep ΔP, n ¬dUcCa 169 ⋅10 −6 in. / in. dUceXIjkñúgrUbTI 7>20¦ Net incremental creep strain Edlnwgpþl;nUv incremental rotation φn KW sMrab;srésxagelI Δε CR , net = (Δε CR , n − Δε tps , n ) t t (7.19a) sMrab;srésxageRkam ( Δε CRb, net = Δε CRb, n − Δε psb, n ) (7.19b) kMeNInénmMuvil (incremental rotation) KW Δε CR , net − Δε CRb, net t Δφ n = (7.19c) h PaBekag PaBdab nigkarRKb;RKgsñameRbH 445
  • 40. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa ehIymMuvilsrub (total rotation) køayCa φT = φ n −1 + Δφn (7.20) bMErbMrYlénbMErbMrYlrageFob nigmMuvil (rotation) BI time-step n − 1eTA time-step n RtUv)anbgðajenA kñúgrUbTI 7>17. kareRCIserIscenøaHeBl (time interval) GaRs½ynwgPaBsuRkitEdleKcg;)anBIkarKNna camber. sMrab; time step nImYy² kMeNInbMErbMrYlrageFobEdlbNþalmkBI creep nigkarrYjmaD nig karxatbg;kMlaMgeRbkugRtaMgedaysar relaxation RtUv)anKNnadUcbgðajenAkñúg]TahrN_ 7>7 edIm,I TTYl)ankMeNInkMeNag (curvature increment) Δφ . bnÞab;mk eKnwgTTYl)antMélkugRtaMg bMErbMrYl rageFob nigkMeNagfμIenAcugbBa©b;éncenøaHeBl EdlbEnßm curvature increment Δφn eTAelIkMeNag srub φn −1 enARtg;cMnuccab;epþIméncenøaHeBlEdleKcg;)an dUceGayenAkñúgsmIkar 7.18. Cak;Esþg incremental time-step procedure manlkçN³Evg. eKGacTTYlPaBekagsrub (↑) b¤PaBdab (↓) EdlbNþalBIkMlaMgeRbkugRtaMgBIsmIkar 7.20 δ T = φT kl 2 (7.21) Edl k CaGnuKmn_énElVg nigragFrNImaRtrbs;muxkat; nigragFrNImaRtrbs;EdkeRbkugRtaMg. GñkGegÁtCaeRcIn)anesñInUvTMrg;epSg²sMrab;kar)a:n;RbmaNPaBdabbEnßmGaRs½yniwgeBl Δδ BITMnak;TMngrvagm:Um:g; nigkMeNag φ Edl)anEkERbsMrab; creep. TaMg Tadros nig Dilger ENnaMeGay eFVIplbUk modified curvature tambeNþayElVgrbs;Fñwm xN³Edl Naaman KitPaBdabry³eBl EvgedayeRbIkMeNagkNþalElVg nigkMeNagRtg;TMrRtg;cenøaHeBl t . Ca]TahrN_ smIkarrbs; Naaman sMrab; parabolic tendon KW l2 l2 Δδ (t ) = φ1 (t ) + [φ 2 (t ) − φ1 (t )] 8 48 Edl kMeNagkNþalElVgenAxN³ t φ1 (t ) = φ 2 (t ) = kMeNagelITMrenAxN³ t EdlkñúgenaH φ (t ) = E Mt )I ce ( c Edl Ece (t ) = m:UDulEdlEksMrYltameBl (time adjusted modulus) Ec (t1 ) E ce (t ) = 1 + KC c (t ) EdlkñúgenH Ec (t1 ) = m:UDulrbs;ebtugenAeBlcab;epþIméncenøaHeBl Cc (t ) = emKuN creep enAcugbBa©b;éncenøaHeBl Camber, Deflection and Crack Control 446
  • 41. Department of Civil Engineering NPIC K> viFIRbhak;RbEhledaycenøaHeBl Approximate Time-Steps Method CaviFIEdlEp¥kelITMrg;y:agsmBaØEdlbUkbBa©ÚlKñanUvPaB- Approximate time-steps method dabTaMgGs;EdlbNþalBIemKuNGaRs½ynwgeBlepSg². RbsinebI Cu CaemKuN creep ry³eBlEvg eKGackMNt;kMeNageRkamGMeBIkMlaMgeRbkugRtaMgRbsiT§PaB Pe tamsmIkarxageRkam ⎛ P + Pe ⎞ e x + (Pi − Pe ) x − ⎜ i Pi e x e φe = ⎟ Cu (7.22) Ec I c Ec I c ⎝ 2 ⎠ Ec I c PaBdabcugeRkayeRkamGMeBI Pe KW ⎛ δi + δe ⎞ δ et = −δ i + (δ i − δ e ) − ⎜ ⎟Cu (7.23a) ⎝ 2 ⎠ ⎛δ +δ ⎞ b¤ δ et = −δ e − ⎜ i e ⎟Cu (7.23b) ⎝ 2 ⎠ edaybEnßmPaBdabedaysarbnÞúkpÞal; δ D nig superimposed dead load δ SD EdlrgT§iBleday- sar creep pþl;nUvkMeNInPaBdabcugeRkayGaRs½ynwgeBlEdlbNþalBIkMlaMgeRbkugRtaMg nigbnÞúk Gcié®nþy_ (sustained load) dUcxageRkam ⎛ δ + δe ⎞ Δδ = −δ e − ⎜ i ⎟Cu + (δ D + δ SD )(1 + Cc ) (7.24a) ⎝ 2 ⎠ ehIy net deflection srubcugeRkayEdlrYmbBa©ÚlTaMgPaBdabedaysarbnÞúkGefrKW ⎛ δi + δe ⎞ δ T = −δ e − ⎜ (7.24b) ⎟Cu + (δ D + δ SD )(1 + Cu ) + δ L ⎝ 2 ⎠ eKGackMNt;PaBdabkMritmFüm (intermediate deflection) edayCMnYs Ct eGay Cu enAkñúgsmIkar 7.24a nig b. Edl t 0.60 Ct = Cu (7.25) 10 + t 0.60 EdlkñúgenaH t 0.60 / (10 + t 0.60 ) CapleFob creep α Brason et al. )anesñInUvsmIkarxageRkamsMrab;TaykarekIneLIgénPaBdabGaRs½ynwgeBl Δδ énsmIkar 7.24 a dUcxageRkam³ ⎡ Δδ = − ⎢η + (1 + η ) k C ⎤δ + k C δ + K k C δ r t ⎥ i ( Pi ) r t i (D ) a r t i (SD ) (7.26) ⎣ 2 ⎦ Edl η = Pe / Pi Ct = emKuN creep enAxN³ t K a = emKuNEdlRtUvnwgGayurbs;ebtugeRkamGMeBIrbs; superimposed load PaBekag PaBdab nigkarRKb;RKgsñameRbH 447
  • 42. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa = 1.25t −0.118sMrab; moist-cured concrete = 1.13t −0.095 sMrab; steam-cured concrete t = GayuenAeBlrgbnÞúk KitCaéf¶ k r = 1 / (1 + As / A ps ) Edl As / A ps << 1.0 = 1 sMrab;RKb;karGnuvtþTaMgGs; sMrab;kMeNInPaBdab (deflection increment) cugeRkay eKeRbI Cu CMnYseGay Ct enAkñúg smIkar 7.26. sMrab;FñwmminEmnsmas (noncomposite beams) PaBdabsrub δ T ,t køayCa ⎡ ΔP ⎤ δ T , t = −δ pi ⎢1 − + λ (k t Ct )⎥ + δ D [1 + k t Ct ] + δ SD [1 + K a k r Ct ] + δ L (7.27) ⎣ P o ⎦ Edl δp =PaBdabEdlbNþalBIkMlaMgeRbkugRtaMg ΔP = kMhateRbkugRtaMgsrubEdlminrYmbBa©ÚlkMhateRbkugRtaMgeGLasÞicedIm (initial elastic loss) λ = 1 − ΔP / 2 P0 EdlkñúgenaH kMlaMgeRbkugRtaMgenAeBlepÞreRkay elastic loss P0 = = Pi tUcCag elastic loss. sMrab;Fñwmsmas PaBdabsrubKW ⎡ ΔP ⎤ δ T = −δ pi ⎢1 − + K a k r Cu λ ⎥ + δ D [1 + K a k t Cu ] ⎣ P0 ⎦ ⎡ ΔP − ΔPc ⎤ + k r Cu (λ − αλ ')⎥ Ie + δ pi ⎢1 − I comp. ⎣ P0 ⎦ Ic ⎡ I ⎤ + (1 + α )k r Cu δ D + δ D ⎢1 + αk r Cu c ⎥ + δ df + δ L (7.28) I comp ⎢ ⎣ I comp ⎥ ⎦ Edl λ ' = 1 − (ΔPc / 2 P0 ) P0 = kMhatbg;eRbkugRtaMgenAxN³EdleKcak; composite topping slab edayminKitbBa©Úl initial elastic loss δ df =PaBdabedaysar differential shrinkage nig differential creep rvagmuxkat;cak;Rsab; nig composite topping slab = Fycs l 2 / 8 Ecc I comp sMrab;FñwmTMrsamBaØ ¬sMrab;FñwmCab; eRbIemKuNsmrmüenAPaKEbg¦ ycs = cMgayBITIRbCMuTMgn;rbs;muxkat;smaseTATMRbCMuTMgn;rbs; topping slab Camber, Deflection and Crack Control 448
  • 43. Department of Civil Engineering NPIC kMlaMgEdl)anBI differential shrinkage nig differential creep F= Ecc = m:UDulénmuxkat;smas α = creep strain enAxN³ t EdlEckeday ultimate creep strain = t 0.60 / ( + t 0.60 ) . 10 Cakarsegçb visVkrRtUvvinicä½ykñúgkarkMNt;tMélm:UDulrbs;ebtug Ec eRkamGMeBIénkardak;bnÞúk epSg²eGay)ansuRkit edIm,ITTYl)antMélemKuN creep smrmü. X> karKNnaPaBdabedaykMuBüÚT½r Computer Methods for Deflection Evaluation eKGacKNnaPaBdabedayeRbIkmμviFIepSg²CaeRcIn. kMuBüÚT½rCYyvisVkry:ageRcInsMrab; time- step method. b:uEnþ eKRtUvcaMfaPaBdabeRkamGMeBIkardak;bnÞúkry³eBlxøI nigry³eBlEvgRtUv)anRKb; RKgedaylkçxNÐEdlGacekItmanCaeRcInEdlsßitenAkñúgvIFIénkarkMNt;PaBdabEtmYy. lkçxNÐTaMg enHTak;TgnwglkçN³énsarFatupSMrbs;ebtugEdlCHT§iBldl;PaBdab CaBiessPaBdabry³eBlEvg. dUcenH elIkElgkrNIs<anElVgEdlEvg dUcCa cable-stayed bridges dMeNIrkar nigviFIénkarKNnaPaB dabKYrmankMritERbRbYl ± 40% . karbBa©ÚllkçN³sMPar³eTAkñúgkmμviFIkMuBüÚT½rRtUveFVIeLIgedayRby½tñ RbEygbMputedayEp¥kelIlT§plBiesaFn_RbsinebIElVgrbs;eRKOgbgÁMúEvg. g> PaBdabrbs;Fñwmsmas Deflection of Composite Beams karKNnaPaBdabrbs;FñwmeRbkugRtaMgsmasmanlkçN³RsedogKñanwgkarKNnaPaBdabsMrab; noncomposite section Edr. viFIsaRsþKNnanwgkøayCasμúKsμajCagRbsinebIeKeRbI incremental time-steps method. CMhanbEnßméndMNak;kalsagsg;CaeRcInrbs;Ggát;cak;Rsab; nigsMrab; situ-cast top slab TamTarkarBicarNaénkarERbRbYlm:Um:g;niclPaBBImuxkat;cak;Rsab;eTAmuxkat;smasenA Rtg;dMNak;kalsmrmü. elIsBIenH PaBxusKñaénlkçN³rbs; shrinkage nigkMeNIncenøaHeBl (time- step increments) EdlbNþalBIPaBxusKñaéntMélrbs; shrinkage énmuxkat;cak;Rsab; nigkarbEnßm concrete topping )anbegáInPaBBi)akdl;dMeNIrkarKNna. CasMNagl¥ kareRbIkmμviFIkMuBüÚT½rsMrYlkar KNnaPaBdab nig camber rbs;Ggát;smas)any:ageRcIn. PaBekag PaBdab nigkarRKb;RKgsñameRbH 449
  • 44. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa 8> PaBdabGnuBaØat Permissible Limits of Calculated Deflection ACI CodeTamTareGayPaBdabEdl)anKNnaRtUvbMeBjtMrUvkar serviceability énPaBdabGnuBaØatGtibrmasMrab;lkçxNÐrcnasm<½n§epSg²Edlmanerobrab;enAkñúgtarag 7>2. cMNaMfa T§iBlry³eBlEvgbgáeGayPaBdab nig camber ekIneLIgeTAtameBl ehIyeFVIeGayebtug nigEdk rgkugRtaMgelIs (overstress). PaBdabGnuBaØatrbs; AASHTO EdlbgðajenAkñúgtarag 7>3 manlkçN³suRkitCageday- sar karb:HTgÁícCalkçN³DINamic (dynamic impact) énbnÞúkcl½tenAelIElVgs<an. Camber, Deflection and Crack Control 450
  • 45. Department of Civil Engineering NPIC xageRkamCa dMeNIrkarCaCMhan² (step-by-step procedure) sMrab;KNnaPaBdab³ !> kMNt;lkçN³rbs;ebtug edayrYmbBa©ÚlTaMgm:UDuleGLasÞicrbs;ebtug Ec / creep rbs;ebtug @> eRCIserIskMeNInry³eBl (time increment) EdlRtUveRbIenAkñúgkarKNnaPaBdab #> KNnakugRtaMgsrésebtugedaysarbnÞúkTaMgGs;TaMgenAEpñkxagelIbMput nigTaMgenAEpñk xageRkambMput $> KNnabMErbMrYlrageFobdMbUg (initial strains) ε ci enAsrésxagelI nigsrésxageRkam nig mMuvil (rotation) EdlRtUvKña k¾dUcCabMErbMrYl nigmMuvilbnþbnÞab;. eRbIsmIkar ε cbi − ε ci t φi = h ε −ε φe = cbe cte h ε −ε t φ = c cb h εu φu = c %> kMNt;karERbRbYlbMErbMrYlrageFobsrubenAkñúgEdkeRbkugRtaMgedaysar creep, shrinkage nig relaxation EdlGnuvtþCakMlaMg F enARtg;TIRbCMuTMgn;rbs;EdkeRbkugRtaMg. bnÞab;mk KNnakugRtaMgsrésebtugenAnIv:U cgs EdlbNþalBIkMlaMg F . ^> bEnßmlT§plénCMhan % eTAkñúglT§plénCMhan 3. &> GnuvtþdMeNIrkarKNnasMrab;RKb;cenøaHeBl nigbEnßmT§iBlén superimposed dead load. *> bEnßmPaBdabedaysarbnÞúkGefredIm,ITTYl)anPaBdabsrub δT . (> epÞógpÞat;faetI δT Edl)anKNnasßitenAkñúgEdnkMNt;GnuBaØatb¤Gt;. RbsinebImindUecñaHeT eFVIkarpøas;bþÚrmuxkat;. rUbTI 7>18 bgðajBI flowchart sMrab;karKNnaPaBdabeday approximate time-step method. PaBekag PaBdab nigkarRKb;RKgsñameRbH 451
  • 46. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa Camber, Deflection and Crack Control 452
  • 47. Department of Civil Engineering NPIC 9> karKNnaPaBdab nigPaBekagry³eBlEvgedayviFIemKuN PCI Long-Term Camber and Deflection Calculation by the PCI Multipliers Method ]TahrN_ 7>6³ edayeKeGay cUrKNnaPaBdab nigPaBekagrbs; boded double f pi = 189,000 psi T-beam enAkñúg]TahrN_ 7>3 eday PCI multiplers method nigepÞógpÞat;fatMélPaBdabbMeBjEdn kMNt;GnuBaØatrbs; ACI. RbsinebIFñwmRtUv)anrg post-tensioned snμt;fa f pi = 189,000 psi eRkay eBl anchorage losses nigeRkayeBllubbM)at; frictional losses edaykarTajBIcugsgçagrbs;cug Fñwm nigbnÞab;mkeKRtUvTajeLIgvijedIm,IFana net prestressing f pi = 189,000 psi munnwgdMeLIg. dUc Kña snμt;faGgát;EdlminEmnCaeRKOgbgÁúMrgbnÞúkEdlP¢ab;eTAnwgeRKOgbgÁúMrgbnÞúkminrgkarxUcxateday sarPaBdab ehIybnÞúkGefrmanlkçN³ transient. yk Ec = 4.03 ⋅106 psi sMrab;bnÞúkTaMgGs;enA kñúgkaredaHRsayenH. dMeNaHRsay³ I g = 86,072in.4 WD = 1,019 plf = 84.9lb / in. PaBekag PaBdab nigkarRKb;RKgsñameRbH 453
  • 48. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa 5Wl 4 5 × 84.9(60 × 12)4 δD = = = 0.99in. ↓ (14mm ) 384 Eci I g 384 × 3.49 ⋅10 6 × 86,072 WSD = 100 plf = 8.3lb / in. 5 × 8.3(60 × 12 )4 δ SD = = 0.08in. ↓ (2.0mm ) 384 × 4.03 ⋅10 6 × 86,072 WL = 1,100 plf = 91.7lb / in. muxkat;Gt;mansñameRbH ¬emIl]TahrN_ 7>3¦ I e = I g = 86,072in.4 ( f t max < f r = 530 psi ) 5 × 91.7(60 × 12 )4 δL = = 0.93in. ↓ (24mm ) 384 × 4.03 ⋅ 10 6 × 86,072 RbsinebImuxkat;maneRbH eKeRbItMélRbsiT§PaBrbs; I e CMnYseGay I g . kareRbI PCI multi- plier method sMrab;KNnaPaBdabenAeBldMNak;kaldMeLIg (30éf¶) nigenAeBlmanPaBdabcugeRkay edaysar service-load ¬5qñaM¦ taragxageRkamnwgbgðajBItMélrbs;PaBdab nig camber ry³eBlEvg EdlTTYledayeRbIemKuN PCI enAkñúgtarag 7>1. RbsinebImuxkat;lkøayCamuxkat;smaseRkay eBldMeLIg eKeRbI I comp kñúgkarKNna δ L nig δ SD RbsinebIFñwmRtUv)anTl;kñúgGMLúgeBlcak; con- crete topping. ehIyRbsinebIeKeRbIEdkFmμta As enAkñúgFñwmeRbkugRtaMg eKRtUveRbIemKuNEdlkat; bnßy (reduced multiplier). emKuN C1 RtUv)ankat;bnßyedayemKuN C2 Edl C1 + As / A ps C2 = 1 + As / A ps Camber, Deflection and Crack Control 454
  • 49. Department of Civil Engineering NPIC edaysarEdkFmμtaRKb;RKgkarrIkralFMénsñameRbHedaysarkarBt;begáageRkamGMeBIbnÞúkry³eBl Evg dUcenHPaBrwgRkajrbs;vaRtUv)anbegáIn. Ca]TahrN_ snμt;faeKeRbIEdk 3#5 enAkñúgFñwmeRbkug RtaMg As 3 × 0.31 = = 0.43 Aps 2.142 eyIgTTYl)an C2 = 2.01 Ca]TahrN_énkarEksMrYltMélEdlmanenAkñúgtarag 7>1 tMélrbs; camber edImnwgkøayCa 3.80in. ↑ CMnYseGay 4.63in. ↑ EdlbgðajenAkñúgtarag edayeKeRbIemKuN 2.01 CMnYseGayemKuN 2.45 . eK GaceFVIkarEksMrYlEdlmanlkçN³RsedogKñaeTAelIPaBdabTaMgGs;edayeRbIemKuNEksMrYlEdlRtUvKña. BItarag 7>4/ camber eRkayeBltMeLIg nigeRkayeBlrg superimposed dead load enAGayu 30éf¶ = 1.49in. ↑ (38mm ) . ehIy net camber cugeRkayeRkayGayu 5qñaM = 0.79in. ↑ (20mm ) / PaBdabedaysarbnÞúkGefr = 0.93in. ↓ (24mm) ehIyPaBdabGnuBaØat = l / 240 = (60 × 12) / 240 = 30in.(76mm ) > 0.79in. . enAkñúgkrNIenH RbsinebIeKsnμt;fabnÞúkGefrmanlkçN³ transient enaH vanwgRKb;RKan;. 10> karKNnaPaBdab nigPaBekagry³eBlEvgedayviFIkMeNIncenøaHeBl Long-Term Camber and Deflection Calculation by the Incremental Time-Steps Method ]TahrN_ 7>7³ edaHRsay]TahrN_ 7>6 tam incremental time-steps method edaysnμt;fa f pi = 189,000 psi ehIyeKsegÁteXIjfakMlaMgeRbkugRtaMgmankarekIneLIgenAeBlrgeRbkugRtaMg ¬7éf¶ bnÞab;BIcak;ebtug¦/ 30éf¶bnÞab;BIepÞr ¬kartMeLIg nigkardak; superimposed dead load rYceRsc¦/ 90 éf¶ nig 5qñaM. snμt;fa ultimate creep coefficient Cu = 2.35 sMrab;ebtug nig f py = 230,000 psi sMrab;EdkrgeRbkugRtaMgEdleRbIenAkñúgFñwm. sg;düaRkamTMnak;TMngrvagcamber CamYynwgeBl nigPaB dab CamYynwgeBledayeRbI Ec = 4.03 ⋅ 106 sMrab;RKb; incremental steps TaMgGs;kñúgkaredaHRsay enH edayelIkElgenAeBlepÞr Edl f 'ci = 3,750 psi . snμt;faFñwmenHCaFñwm post-tensioned. yk E ps = 27.5 ⋅ 10 6 psi . dMeNaHRsay³ kugRtaMg/ bMErbMrYlrageFob nigPaBdabxN³ Eci = 57,000 3,750 = 3.49 ⋅ 10 6 psi PaBekag PaBdab nigkarRKb;RKgsñameRbH 455
  • 50. T.Chhay viTüasßanCatiBhubec©keTskm<uúCa BI]TahrN_ 7>3 nigrUbTI 7>9/ kugRtaMg nigbMErbMrYlragdMbUgsMrab;FñwmenAeBlepÞrEdlbNþalBIkMlaMg eRbkugRtaMg Pi nig Pi + WD mandUcxageRkam kMlaMgeRbkugRtaMg P i kNþalElVg³ f t = +501 psi (3.1MPa ) f b = −3,524 psi (24.3MPa ) 501 εc = t = 144 ⋅ 10 − 6 in. / in. 3.49 ⋅ 10 6 ε cb = −1,010 ⋅ 106 psi TMr³ f t = +92 psi (0.7 MPa ) f b = −2,242 psi(15.5MPa ) ε c = +26 ⋅ 10 −6 in. / in. t ε cb = −642 ⋅ 10 −6 in. / in. cMNaMfa eKRtUveFVIkarKNnam:UDuleGLasÞic Ec sMrab;karpøas;bþÚreBlenAeBlEdlkMeNIncenøaHeBl nImYy²cb;. Cabnþ eyIgman − 1,010 − 144 φci kNþalElVg = × 10 − 6 = −33.94 ⋅ 10 − 6 rad / in. 34 − 642 − 26 φei TMr = × 10 − 6 = −19.65 ⋅ 10 − 6 rad / in. 34 BIrUbTI 7>6 ⎛ l2 ⎞ 2 ⎜ ⎟ + (φe − φc ) l δ i ↑= φc ⎜ ⎟ ⎝8⎠ 24 δ i ↑= −33.94 ⋅10 −6 (60 ×12)2 + (− 19.65 + 33.94)×10 − 6 × (60 ×12)2 8 24 = (60 × 12) 2 × 10 − 6 (− 33.94 × 2 − 19.65) 24 = −1.89in. ↑ (48mm ) cMNaMfa tMélenHdUcKñanwgGVIEdlTTYl)anedaysmIkarm:Um:g;enAkñúg]TahrN_ 7>3 ⎛ 1019 ⎞ 5× ⎜ ⎟(60 × 12 ) 4 4 δD TMgn;pÞal; =+ 5wl = ⎝ 12 ⎠ 384 Ec I g 384 × 3.49 ⋅10 6 × 86,072 = +0.99in. ↓ (25mm ) net camber enAeBlepÞr = −1.89 ↑ +0.99 ↓= −0.90in. ↑ (23mm) Camber, Deflection and Crack Control 456
  • 51. Department of Civil Engineering NPIC emKuNGaRs½ynwgeBl (a) creep BIsmIkar 3.10 ε CR = Ct ( f cs ) = C1ε cs Ec Edl kugRtaMgebtugenARtg;nIv:U cgs f cs = ε cs = bMErbMrYlrageFobenARtg;nIv:U cgs ε CR = unit creep stain kñúgmYyÉktþakugRtaMgeRkam ultimate creep = Cu / Ec = 2.35 / 4.03 ⋅106 = 0.583 ⋅10 −6 in. / in. kñúgmYyÉktþakugRtaMg cMNaMfa eKRtUvKNna creep strain enARtg;TMRbCMuTMgn;rbs;edIm,IKNnakMhatbg;edaysar creep enAkñúgeRbkugRtaMg. BIsmIkar 3.9b, emKuN creep enAeBlNak¾eday EdlKitCaéf¶KW t 0.60 Ct = Cu 10 + t 0.60 Ca]TahrN_ enAGayu 30éf¶eRkayeBlepÞr ⎛ t 0.60 ⎞ ⎛ 0.60 ⎞ ε 'CR , s = ε 'CR ⎜ ⎟ = 0.583 ⋅10 − 6 ⎜ 30 ⎟ ⎜ 0.60 ⎟ ⎜ 10 + 30 0.60 ⎟ ⎝ 10 + t ⎠ ⎝ ⎠ kñúgmYyÉktþakugRtaMg = 0.254 ⋅10 −6 in. / in. Creep strain enAcenøaHeBlepSgeTotRtUv)anKNnakñúgTMrg;dUcKña. (b) karrYmmaDrbs;ebtug BIsmIkar 3.15a sMrab; moist-cured concrete t ε SH , s = ε SH t + 35 Edl ε SH = 800 ⋅10−6 in. / in. sMrab; moist-cured concrete. 30éf¶eRkayeBlepÞr/ ry³eBlrYmmaD t = 30 éf¶ RbsinebIGgát;CaFñwm post-tensioned ehIy t = 30 + 7 = 37 éf¶ RbsinebIvaCa pretensioned. dUcenH 30 ε SH ,30 = × 800 ⋅10 − 6 = 369 ⋅10 − 6 in. / in. 30 + 35 tamrebobdUcKña eKGacKNna ε SH sMrab;RKb;CMhanepSgdéTeTotEdlerobrab;enAkñúgtarag 7>5. PaBekag PaBdab nigkarRKb;RKgsñameRbH 457