SlideShare uma empresa Scribd logo
1 de 124
T.Chhay




                  IV.    karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;
                Flexural Design of Prestressed Concrete Elements

1> esckþIepþIm                 Introduction
         kugRtaMgBt;CalT§plénbnÞúkxageRkA nigm:Um:g;Bt;. kñúgkrNICaeRcIn vaCaGñkkMNt;kñúgkar
eRCIserIsTMhMFrNImaRtrbs;ebtugeRbkugRtaMgedayminKitfavargkarTajCamun (pretensioned) b¤rg
karTajCaeRkay (post-tensioned) eT. dMeNIrkarKNnacab;epþImCamYynwgkareRCIserIsmuxkat; bzm
nigedaykarsakl,g nigkarEktMrUveKnwgTTYl)anmuxkat;cugeRkayCamYynwgTMhMlMGitrbs;muxkat;
ehIynwgTMhM nigKnøgrbs;EdkeRbkugRtaMg. muxkat;RtUvbMeBjnUvkarkMNt;rbs;kugRtaMgBt;EdlRtUvkar
rbs;ebtug nigEdk. bnÞab;BIenH vaRtUv)anviPaK nigbMeBjktþamYycMnYneTotdUcCa lT§PaBrgkarkat;
lT§PaBrgkarrmYl PaBdab nigsñameRbH.
         edaysarTinñn½ysMrab;karviPaKxusKñaBITinñn½yEdlcaM)ac;sMrab;karKNna karKNnaTaMgGs;Ca
karviPaK. dMbUgeKsnμt;lkçN³muxkat;FrNImaRtEdlRtUvrgeRbkugRtaMg nigbnÞab;mkeKcab;epþÍmkMNt;
faetImuxkat;GacrgkMlaMgeRbkugRtaMg nigkMlaMgGnuvtþn_xageRkA)anedaysuvtßiPaBb¤k¾Gt;. dUcenHeyIg
RtUvyl;BIeKalkarN_mUldæanénkarviPaK nigkarKNnamuxkat;EdlmanlkçN³sMrYly:agxøaMgEdl)an
ENnaMkñúgemeronenH. dUc)aneXIjBICMBUkTI1 lkçN³emkanicmUldæanrbs;sMPar³ eKalkarN_lMnwgrbs;
m:Um:g; couple xagkñúg nigeKalkarN_eGLasÞicéntMrYtpl (superposition) RtUv)aneRbIenARKb;dMNak;
kalénkardak;bnÞúk.
         eKKNnamuxkat;ebtugGarem:rgkugRtaMgBt;EtkñúgsßanPaBkMNt;énkugRtaMgenAeBl)ak;sMrab;
muxkat;EdleRCIserIs RbsinebIvabMeBjnUvtMrUvkard¾éTeTotdUcCa serviceability, lT§PaBkñúgkarkat;/
nigPaBs¥itrvagebtug nigEdk. b:uEnþ kñúgkarKNnaGgát;ebtugeRbkugRtaMg eKcaM)ac;RtUveFVIkarRtYtBinitü
bEnßmeTotenAeBlepÞrkMlaMg nigsßanPaBkMNt;enAeBlrgbnÞúkeFVIkar k¾dUcCasßanPaBkMNt;enA
eBl)ak;. karRtYtBinitüTaMgenHmansar³sMxan;sMrab;Fanafa sñameRbHedaysarbnÞúkeFVIkarGac
ecal)an ehIyeKGacRKb;RKg)annUvT§iBlry³eBlyUrrbs;PaBdab nigPaBekag.
         eKeRbIsBaØadkedIm,IsMKal;kugRtaMgsgát; ehIyeKeRbIsBaØabUkedIm,IsMKal;kugRtaMgTajenAkñúg
muxkat;ebtug. ragekag (convex or hogging shape) rbs;Ggát;bgðajm:Um:g;GviC¢man ehIyragpt
(concave or sagging) bgðajmU:m:g;viC¢man dUcbgðajenAkñúgrUbTI 4>1.



Flexural Design of Prestressed Concrete Elements                                         90
NPIC




       mindUcKñaniwgkrNIGgát;ebtugGarem: kugRtaMgrbs;ebtugERbRbYleTAtamdMNak;kalepSg²én
kardak;bnÞúkefr nigbnÞúkGefr. xageRkamCakarsegçbénkardak;bnÞúkTaMgenH³
       eRkayeBlGnuvtþkMlaMgeRbkugRtaMgedIm Pi kMlaMgenHRtUv)anepÞrBIkabeRbkugRtaMgeTAebtug.
        TMgn;pÞal;TaMgGs; WD manGMeBIeTAelIGgát;rYmCamYynwgkMlaMgeRbkugRtaMgedIm RbsinebIGgát;
        enaHRTedayTMrsamBaØ ¬vaminmanTMrenAkNþalElVg¦.
        bnÞúkefrbEnßmTaMgGs; WSD edayrYmTaMg topping sMrab; composite action RtUv)anGnuvtþ
        eTAelIGgát;.
        kMhatbg;kMlaMgeRbkugRtaMgry³eBlxøIbMputekItman EdlnaMeGaymankarkat;bnßykMlaMg
        eRbkugRtaMg Peo .
        Ggát;rgnUvbnÞúkeFVIkareBjeljCamYynwgkMhatbg;ry³eBlyUrEdlbNþalmkBI creep,
        shrinkage nig stand relaxation EdlnaMeTAdl; net prestressing force Pe .

        bnÞúkelIsEdlmanGMeBIelIGgát;ekItmaneRkamlkçxNÐxøHEdlnaMdl;sßanPaBkMNt;enAeBl)ak;.




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                         91
T.Chhay




        rUbTI 4>2 bgðajBICMhanénkardak;bnÞúk nigkarBRgaykugRtaMgelImuxkat;EdlRtUvnwgkardak;
bnÞúktamCMhannImYy². ehIyrUbTI 4>3 bgðajBIdüaRkambnÞúk-kMhUcRTg;RTay ¬ekag b¤pt¦ sMrab;
kardMNak;kalénkardak;bnÞúktaMgBIeBlTTYlT§iBlénTMgn;pÞal;rhUtdl;eBl)ak;.




2> kareRCIserIslkçN³FrNImaRténmuxkat;
       Selection of Geometrical Properties of Section Components
     k> eKalkarN_ENnaMTUeTA                        General Guideline
       eRkamlkçxNÐbnÞúkeFVIkar FñwmRtUv)ansnμt;famanlkçN³esμIsac; (homogenous) nigeGLasÞic.
ehIyeKsnμt; ¬edaysarkarrMBwgTuk¦ fakMlaMgsgát;eRbkugRtaMgEdlbBa©ÚneTAebtugesÞIreFVIeGaysrés
rgkarTajrbs;FñwmekItmansñameRbH dUcenHeKcat;Tukmuxkat;FñwmCamuxkat;KμansñameRbH (uncracked

Flexural Design of Prestressed Concrete Elements                                   92
NPIC




section) . karviPaKkugRtaMgrbs;FñwmeRbkugRtaMgeRkamlkçxNÐTaMgenHminxusKñaBIkarviPaKkugRtaMgrbs;
FñwmEdk ¬Edlkan;Etc,as;CagenH KW beam column¦. vaEtgEtmankMlaMgtamG½kSEdlbNþalBI
kMlaMgeRbkugRtaMgeTaHbICaman b¤Kμanm:Um:g;Bt;EdlbNþalBIbnÞúkpÞal; b¤bnÞúkxageRkAd¾éTeTotk¾eday.
         dUc)aneXIjenAkñúgCMBUk1 vaCakarRbesIrEdlKnøgrbs;EdkeRbkugRtaMgcakp©itenARtg;muxkat;
eRKaHfñak; dUcCamuxkat;kNþalElVgsMrab;FñwmTMrsamBaØ nigmuxkat;elITMrsMrab;FñwmCab;. RbsinebIeK
eFVIkareRbobeFobrvagmuxkat;ctuekaN muxkat;EdlmansøabminsIuemRTImanRbsiT§PaBCagedaykareRbI
R)as;ebtug nigkarRbmUlpþúMebtugenAkñúgtMbn;sgát;énmuxkat;EdleKRtUvkarCageK.
    x> m:UDulmuxkat;Gb,brma                   Minimum Section Modulus
       edIm,IKNna nigeRCIserIsmuxkat; CadMbUgeKRtUvkMNt;m:UDulmuxkat;EdlRtUvkar Sb nig S t .
RbsinebI³
        f ci = kugRtaMgsgát;GnuBaØatGtibrmaenAkñúgebtugeRkayeBlepÞrPøam² munnwgmankMhatbg;

               = 0.60 f 'ci
               kugRtaMgTajGnuBaØatGtibrmaenAkñúgebtugeRkayeBlepÞrPøam² munnwgmankMhatbg;
           f ti =

              = 3 f 'ci psi (0.25 f 'ci MPa ) ¬eKGacbegáIntMélenHdl; 6 f 'ci psi (0.5 f 'ci MPa )

               enARtg;TMrsMrab;Ggát;TMrsmBaئ
         f c = kugRtaMgsgát;GnuBaØatGtibrmaenAkñúgebtugeRkayeBlepÞrenAeBlrgbnÞúkeFVIkar

              = 0.45 f 'c b¤ 0.60 f 'c enAeBlGnuBaØatedaykUd

         f t = kugRtaMgTajGnuBaØatGtibrmaenAkñúgebtugeRkayeBlepÞrenAeBlrgbnÞúkeFVIkar

              = 6 f 'ci psi (0.5 f 'ci MPa ) ¬eKGacbegáIntMélenHdl; 12 f 'ci psi ( f 'ci MPa ) enA

               kñúgRbB½n§mYyTis RbsinebIeKRtUvkarKNnaPaBdabry³eBlyUr¦.
        kugRtaMgsrésxageRkACak;EsþgenAkñúgebtugminGacFMCagkugRtaMgGnuBaØatEdl)anerobrab;xag
elIeLIy.
        edayeRbImuxkat;minsIuemRTIGt;eRbH karsegçbénsmIkarkugRtaMgEdl)anBICMBUk 1EpñkTI 3 sM
rab;dMNak;kalénkardak;bnÞúkepSg²mandUcxageRkam³
kugRtaMgenAeBlepÞr            Stress at Transfer
                              Pi ⎛ ect ⎞ M D
                    ft =−        ⎜1 − 2 ⎟ − t ≤ f ti                                 (4.1a)
                              Ac ⎝   r ⎠ S



karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                              93
T.Chhay



                               Pi ⎛ ecb ⎞ M D
                     fb = −       ⎜1 + 2 ⎟ +  ≤ f ci                               (4.1b)
                               Ac ⎝   r ⎠ Sb
Edl Pi CakMlaMgeRbkugRtaMgedIm. eKKYreRbIbgÁúMkMlaMgedkrbs; Pi edIm,ITTYl)antMélkan;EtsuRkitCag.
EtsMrab;karGnuvtþTaMgGs;eKmin)anKitdl;PaBRbesIrenHeT.
kugRtaMgRbsiT§PaBeRkaykMhatbg;                     Effective Stress after Losses

                               ⎛ ect ⎞ M D
                               Pe
                     ft =−     ⎜1 − 2 ⎟ − t ≤ f t                                  (4.2a)
                               ⎝
                               Ac  r ⎠ S
                            P ⎛ ec ⎞ M
                     f b = − e ⎜1 + 2b ⎟ + D ≤ f c                                 (4.2b)
                            Ac ⎝   r ⎠ Sb
kugRtaMgénbnÞúkeFVIkarcugeRkay                     Service-load Final Stresses
                             Pe ⎛ ect ⎞ M T
                     ft =−      ⎜1 − 2 ⎟ − t ≤ f c                                 (4.3a)
                            Ac ⎝    r ⎠ S
                            P ⎛ ecb ⎞ M
                     f b = − e ⎜1 + 2 ⎟ + T ≤ f t                                  (4.3b)
                            Ac ⎝    r ⎠ Sb
Edl       M T = M D + M SD + M L

           Pi = kMlaMgeRbkugRtaMgedIm
          Pe = kMlaMgeRbkugRtaMgRbsiT§PaBeRkayeBlxatbg;kMlaMgeRbkugRtaMg

                   t bgðajfasrésxagelI nig b bgðajfasrésxageRkam

          e = cMNakp©itrbs; tendon BITIRbCMuTMgn;rbs;munkat;ebtug cgc (center of gravity of

                 concrete section) q
          r 2 = kaer:énkaMniclPaB

          S t / Sb = m:UDulmuxkat;srésxagelI nigxageRkamrbs;muxkat;ebtug

          dMNak;kalénkacuHfykMlaMgsgát; (decompression) bgðajkarekIneLIgbMErbMrYlrageFob
rbs;EdkEdlbNþalBIkarekIneLIgrbs;bnÞúk taMgBIdMNak;kalEdlkMlaMgeRbkugRtaMgRbsiT§PaB Pe
eFVIGMeBIEtÉkÉgrhUtdl; dMNak;kalEdlbnÞúkbEnßmeFVIeGaykugRtaMgsgát;rbs;ebtugenARtg;nIv:U cgs
kat;bnßydl;sUnü¬emIlrUb TI 4>3¦. enARtg;dMNak;kalenH bMErbMrYlkugRtaMgebtugEdlbNþalBI
decompression KW
                                    Pe   ⎛ e2 ⎞
                     f decomp =          ⎜1 + ⎟                                    (4.3c)
                                    Ac   ⎜ r2 ⎟
                                         ⎝    ⎠




Flexural Design of Prestressed Concrete Elements                                      94
NPIC




TMnak;TMngenHQrelIkarsnμt;fabMErbMrYlrageFob (strain) rbs;ebtug nigEdkeRbkugRtaMgEdls¥itCab;
eTAnwgebtugEk,reFVIeGaykarekIneLIgénkugRtaMgEdkesμInwgkarfycuHénkugRtaMgebtug.
         1.   FñwmEdlmancMNakp©itEdkeRbkugRtaMgERbRbYl
              Beam with Variable Tendon Eccentricity
       FñwmrgnUvkMlaMgeRbkugRtaMgCamYynwg tendon Edl harped b¤ draped. CaTUeTAcMNakp©itGti-
brmaEtgEtsßitenARtg;muxkat;kNþalElVgsMrab;krNIFñwmTMrsamBaØ. edaysnμt;fakMlaMgeRbkugRtaMg
RbsiT§PaBKW
                    Pe = γPi
Edl γ CapleFobkMlaMgeRbkugRtaMgEdlenAsl; (residual prestress ratio) kMhatbg;énkMlaMgeRb
kugRtaMgKW
                    Pi − Pe = (1 − γ )Pi                                             (a)
RbsinebIkugRtaMgsrésxageRkAbMputrbs;ebtugCak;EsþgsmmUleTAnwgkugRtaMgGnuBaØat BIsmIkar 4.1a
nig b eyIgTTYl)anbMErbMrYlkugRtaMgenHeRkayeBlxatbg;kMlaMgeRbkugRtaMgdUcxageRkam³
                                  ⎛        M ⎞
                   Δf t = (1 − γ )⎜ f ti + tD ⎟                                      (b)
                                  ⎝         S ⎠
                                  ⎛          M ⎞
                   Δf b = (1 − γ )⎜ − f ci + D ⎟
                                  ⎜                                                  (c)
                                  ⎝          Sb ⎟
                                                ⎠
BIrUb 4>4 (a) edaysarm:Um:g;bnÞúkefrbEnßm M SD nigm:Um:g;bnÞúkGefr M L manGMeBIeTAelIFñwm kugRtaMg
suT§ (net stress) enAsrésxagelIKW
                    f nt = f ti − Δf t − f c

b¤                  f nt = γf ti − (1 − γ ) tD − f c
                                           M
                                           S
                                                                                     (d)

Net stress    enAsrésxageRkamKW
                    f bn = f t − f ci − Δf b

b¤               f bn = f t − γf ci − (1 − γ ) D
                                              M
                                              Sb
                                                                                     (e)

BIsmIkar (d) nig (e) muxkat;EdlRtUveRCIserIsmanm:UDulmuxkat;dUcxageRkam
                   St ≥
                          (1 − γ )M D + M SD + M L                                   (4.4a)
                                    γf ti − f c
ehIy               Sc ≥
                          (1 − γ )M D + M SD + ML                                    (4.4b)
                                     f t − γf ci



karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                                95
T.Chhay




cMNakp©itEdlRtUvkarrbs;EdkeRbkugRtaMgenARtg;muxkat;eRKaHfñak; dUcCamuxkat;kNþalElVg KW
                           (             )S
                                            t
                                                    MD
                     ec = f ti − f ci           +                                         (4.4c)
                                          P i       Pi
Edl     f ci   CakugRtaMgrbs;ebtugenAeBlepÞrRtg;nIv:UénTIRbCMuTMgn; cgc rbs;muxkat;ebtug ehIy
                     Pi = f ci Ac
dUcenH
                     f ci = f ti −
                                     ct
                                        ( f ti − f ci )                                   (4.4d)
                                     h




Flexural Design of Prestressed Concrete Elements                                                96
NPIC




         2.   FñwmEdlmancMNakp©itEdkeRbkugRtaMgefr
              Beam with Constant Tendon Eccentricity
        FñwmEdlmancMNakp©itEdkeRbkugRtaMgefrCaFñwmEdlman tendon Rtg; dUckñúgkrNIFñwmeRbkug
RtaMgTMrsamBaØcak;eRscEdlmantMéllμm. edaysar tendon mancMNakp©itFMenARtg;TMr vaeFVIeGay
mankugRtaMgTajFMenAsrésxagelIedayminmankarkat;bnßyNamYyedaym:Um:g;bnÞúkbEnßm M D +
M SD + M L eT. b¤eKGacniyaymü:ageTotfa sMrab;FñwmEbbenH muxkat;eRKaHfñak;KWsßitenARtg;TMr

ehIykarBRgaykugRtaMgenARtg;TMrRtUv)anbgðajenAkñúgrUbTI 4>4 (b). dUcenH
                   Δf t = (1 − γ )( f ti )                                    (a’)
ehIy               Δf b = (1 − γ )(− f ci )                                   (b’)

Net stress    enAsrésxagelI sMrab;lkçxNÐbnÞúkeFVIkareRkaykMhatbg;KW
                    f nt = f ti − Δf t − f c
b¤                  f nt = γf ti − f cs                                       (c’)




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                          97
T.Chhay




Edl fcs CakugRtaMgbnÞúkeFVIkarCak;EsþgenAkñúgebtug.   Net stress   enAsrésxageRkamsMrab;lkçxNÐ
bnÞúkeFVIkareRkaykMhatbg;KW
                     f bn = f t − f ci − Δf b
b¤              Δf bn = f t − γf ci                                                (d’)

BIsmIkar (c’) nig (d’) muxkat;EdlRtUveRCIserIsRtUvmanm:UDulmuxkat;dUcxageRkam³
                         M D + M SD + M L
                     St ≥                                                          (4.5a)
                             γf ti − f c
                         M + M SD + M L
ehIy                 Sb ≥ D
                              f t − γf ci
                                                                                 (4.5b)

cMNakp©itEdlRtUvkarenARtg;muxkat;eRKaHfñak; dUcCaRtg;TMrsMrab;muxkat;EdlmanlkçN³RsedogKñanwg
GVIEdlRtUvkaredaysmIkar 4.5a nig b KW
                            (           )S
                                            t
                     ee = f ti − f ci                                              (4.5c)
                                         P i

RkaPictMNageGaym:UDulmuxkat;rbs; nominal section RtUv)anbgðajenAkñúg rUbTI 4>5. eKGaceRbIva
kñúgkareRCIserIsmuxkat;sakl,gdMbUgkñúgdMeNIrkarKNna.




Flexural Design of Prestressed Concrete Elements                                          98
NPIC




         tarag 4>1 eGaynUvtMélm:UDulmuxkat;énmuxkat;ctuekaNEkg PCI sþg;dar. tarag 4>2
eGaynUvxñatxageRkAénmuxkat;GkSr T rbs; PCI sþg;dar nigmuxkat;GkSr I rbs; AASTHO erogKña
k¾dUcCam:UDul muxkat;srésxagelIénmuxkat;TaMgenaHEdlRtUvkarkñúgkareRCIserIsmuxkat;bzmsMrab;kar
viPaKeRkamlkçxNÐbnÞúkeFVIkar. tarag 4>4 (a) pþl;nUvxñatlMGiténragFrNImaRt “as built” én PCI
sþg;dar nigmuxkat; AASTHO ehIytarag 4>4 (b) pþl;nUvlkçN³muxkat;rbs; girder EdleRbIenA
kñúgrdæepSg². lkçN³ bulb section manenAkñúg]bsm<½n§ (appendix) C.
karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                         99
T.Chhay




Flexural Design of Prestressed Concrete Elements   100
NPIC




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;   101
T.Chhay




Flexural Design of Prestressed Concrete Elements   102
NPIC




3> ]TahrN_sMrab;karKNnaeRkamlkçxNÐbnÞúkeFVIkar
       Service-Load Design Examples
    k> cMNakp©itrbs;EdkeRbkugRtaMERbRbYl                      Variable Tendon Eccentricity
]TahrN_ 4>1³ KNnaFñwmeRbkugRtaMgmuxkat;GkSr T Dub sMrab;eFVIcMNtrfynþ. FñwmenHmanRbEvg
60 ft (18.3m ) nwgRtUv)anRTedayTMrsamBaØ. EdkeRbkugRtaMgEdleRbIenAkñúgFñwmenHRtUv)an harped.
eKeRbIkugRtaMgGnuBaØatrbs; ACI 318 Building code. FñwmenHRtUvRTbnÞúkeFVIkarbEnßm 1,100 plf
(16.1kN / m ) nigbnÞúkefrbEnßm 100 plf (1.5kN / m ) nigminman concrete topping eT. snμt;faeKeFVI
FñwmenHedayeRbIebtugTMgn;Fmμta (normal-weight concrete) Edlman f 'c = 5,000 psi (34.5MPa )
ehIykugRtaMgebtugenAeBlepÞr f 'ci esμInwg 75% én f 'c . ehIysnμt;fakMhatbg;GaRs½ynwgeBl
rbs;kMlaMgeRbkugRtaMgedImesμInwg 18% énkMlaMgeRbkugRtaMgedIm ehIy ultimate strength rbs;Edk
eRbkugRtaMg f pu = 270,000 psi (1,862MPa ) sMrab; stress-relieved tendon nig f 't = 12 f 'c psi
( f 'c MPa ) .
dMeNaHRsay³
                   γ = 100 − 18 = 82%
                    f 'ci = 0.75 × 5,000 = −3,750 psi (25.9MPa )
       eRbI f 't = 12 5,000 = 849 psi(5.9MPa ) CakugRtaMgrgkarTajGtibrma ehIysnμt;TMgn;xøÜn
Rbhak;RbEhlnwg 1,000 plf (14.6kN / m).
       kMNt;m:Umg;Edl)anBITMgn;pÞal;
                             wl 2 1,000(60 )2
                   MD =          =            × 12 = 5,400,000in. − lb(610kN .m )
                              8        8
         ehIym:Um:g;Edl)anBIbnÞúkbEnßmKW
                   M SD + M L =
                                      (1,100 + 100)(60)2 × 12 = 6,480,000in. − lb(732kN .m )
                                                  8
        muxkat;eRKaHfñak;sßitenAEk,rkNþalElVg CakEnøgEdlm:Um:g;Edl)anBIbnÞúkefr nigbnÞúkefr
bEnßmmantMélGtibram nigedaysar tendon RtUv)an harped dUcenHkñúgkrNIPaKeRcInmuxkat;
eRKaHfñak;RtUv)anykenARtg; 0.40L BITMr Edl L CaElVgFñwm. BIsmIkar 4.4a nig b eyIg)an
                   St ≥
                            (1 − γ )M D + M SD + M L
                                    γf ti − f c
                        ≥
                            (1 − 0.82)5,400,000 + 6,480,000 = 3,104in3 (50,860cm3 )
                                   0.82 × 184 + 2,250


karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                                    103
T.Chhay




                     Sb ≥
                            (1 − γ )M D + M SD + M L
                                    f t − γf ci

                         ≥
                           (1 − 0.82)5,400,000 + 6,480,000 = 2,766in3 45,330cm3
                                                                          (             )
                                  849 + (0.82 × 2,250 )
          BI                   eRCIserIs nontopped normal weight concrete double-T 12DT
               PCI design handbook

34 168-D1 edaysarvamantMélm:UDulmuxkat;srésxageRkamEk,rtMélEdlRtUvkarCageK.

       lkçN³muxkat;rbs;ebtugmandUcxageRkam³
                     Ac = 978in.2                                      ct = 8.23in.

                     I c = 86,072in.4                                  cb = 25.77in.
                            I
                     r 2 = c = 88.0in.2                                e c = 22 . 02 in .
                            Ac

                     S t = 10,458in.3                                  ee = 12.77in.

                     Sb = 3,340in.3                                    WD = 1,019 plf
                                                                       V
                                                                         = 2.39in.
                                                                       S




KNna strands nigRtYtBinitükugRtaMg
      BIrUbTI 4>7 TMgn;xøÜnEdlsnμt;mantMélEk,rTMgn;xøÜnCak;Esþg.
      KNnam:Um:g;Edl)anBITMgn;pÞal;Cak;EsþgBIm:Um:g;Edl)anBITMgn;pÞal;snμt;
                              1,019
                     MD =           × 5,400,000 = 5,502,600in. − lb
                              1,000
                     f pi = 0.70 × 270,000 = 189,000 psi

                     f pe = 0.82 f pi = 0.82 × 189,000 = 154,980 psi



Flexural Design of Prestressed Concrete Elements                                            104
NPIC




     (a)   viPaKkugRtaMgenAeBlepÞr
           BIsmIkar 4.1a
                             Pi ⎛ ect ⎞ M D
                    ft =−       ⎜1 − 2 ⎟ − t ≤ f ti = 184 psi
                             Ac ⎝    r ⎠ S
                                      P ⎛ 22.02 × 8.23 ⎞ 5,502,600
           bnÞab;mk          184 = − i ⎜1 −
                                     978 ⎝        88.0
                                                           ⎟−
                                                           ⎠   10,458
                             Pi = (184 + 526.16)
                                                 978
                                                      = 655,223lb
                                                 1.06
           cMnYn tendon EdlRtUvkar    =
                                            655,223
                                        189,000 × 0.153
                                                         = 22.66 edImtendon   EdlmanGgát;p©it 1 / 2in.
           sakl,g tendon Ggát;p©it 1 / 2in. cMnYn 16 edIm sMrab;muxkat;sþg;dar
                    Aps = 16 × 0.153 = 2.448in.2 ( .3cm 2 )
                                                 15

                    Pi = 2.448 × 189,000 = 462,672lb(2,058kN )

                    Pe = 2.448 × 154,980 = 379,391lb(1,688kN )
     (b)   viPaKkugRtaMgeRkamGMeBIbnÞúkeFVIkarenAkNþalElVg
                    Pe = 379,391lb(1,688kN )
                             100(60 )212
                   M SD =                = 540,000in. − lb(61kN .m )
                                  8
                            1,100(60 )212
                   ML =                   = 5,940,000in.lb(788kN .m )
                                  8
           m:Um:g;srub M T = M D + M SD + M L = 5,502,600 + 6,480,000
                                                 = 11,982,600in. − lb(1,354kN .m )
           BIsmIkar 4.3a
                            Pe ⎛ ect ⎞ M T
                    ft =−      ⎜1 − 2 ⎟ − t
                            Ac ⎝   r ⎠ S
                           379,391 ⎛ 22.02 × 8.23 ⎞ 11,982,600
                        =−          ⎜1 −              ⎟−
                              978 ⎝        88.0       ⎠   10,458
                        = 411 − 1146 = −735 psi < f c = −2250 psi         O.K.
     (c)   viPaKkugRtaMgRtg;muxkat;TMr
                   ee = 12.77in.(324mm )
                    f ti = 6 f 'ci = 6 3,750 ≅ 367 psi

                    f t = 12 f 'c = 12 5,000 = 849 pis

           (i)     enAeBlepÞr

karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                                  105
T.Chhay




                            462,672 ⎛ 12.77 × 8.23 ⎞
                     ft =−          ⎜1 −           ⎟ − 0 = +92 psi (T )
                              978 ⎝       88.0     ⎠
                            462,672 ⎛ 12.77 × 25.77 ⎞
                     fb = −         ⎜1 +             ⎟ + 0 = −2,240 psi (C )
                              978 ⎝       88.0       ⎠
                                                           < f ci = −2,250 psi     O.K.
          RbsinebI fb > fci / eKRtUveFVIkarpøas;bþÚrcMNakp©it.
          (ii)   eRkamGMeBIbnÞúkeFVIkar
                            379,391 ⎛ 12.77 × 8.23 ⎞
                     ft =−          ⎜1 −           ⎟ − 0 = +75 psi (T )
                              978 ⎝       88.0     ⎠
                            379,391 ⎛ 12.77 × 25.77 ⎞
                     fb = −         ⎜1 +             ⎟ + 0 = −1.840 psi (C )
                              978 ⎝       88.0       ⎠
                                                            < f ci = −2,250 psi    O.K.
       TTYlykmuxkat;sMrab;lkçxNÐbnÞúkeFVIkaredayeRbI strand Ggát;p©it 1 / 2in.(12.7mm) cMnYn 16
edImedaymancMNakp©itenAkNþalElVg ec = 22.02in.(560mm) nigcMNakp©itenAcugTMr ee = 12.77in.
(324mm ) .


     x> cMNakp©itrbs;EdkeRbkugRtaMERbRbYledayminmankarkMNt;kMBs;
          Variable Tendon Eccentricity with No Height Limitation
]TahrN_ 4>2³ KNnamuxkat;GkSr I sMrab;FñwmEdlmanElVg 65 ft (19.8m) Edlmanm:UDulmuxkat;dUc
xageRkam. cUreRbInUvkugRtaMgGnuBaØatdUcKñaEdl)aneGayenAkñúg]TahrN_ 4>1.
       S t EdlRtUvkar = 3,570in.3 (58,535cm3 )

       Sb EdlRtUvkar = 3,780in.3 (61,940cm3 )




Flexural Design of Prestressed Concrete Elements                                      106
NPIC




dMeNaHRsay³
         edaysarm:UDulmuxkat;enAsrésxagelI nigsrésxageRkamesÞIresμIKña eKGaceRCIserIsmux
kat;sIuemRTI)an. bnÞab;mk viPaKmuxkat;enAkñúgrUbTI 4>8 EdleRCIserIsedaykarsakl,g nigEktMrUv.
viPaKkugRtaMgenAeBlepÞr
         BIsmIkar 4.4d
                               ct
                    f ci = f ti − ( f ti − f ci )
                               h
                        = +184 −
                                  21.16
                                           (+ 184 + 2,250) ≅ −1,104 psi(C )(7.6MPa )
                                    40
                    Pi = Ac f ci = 377 × 1,104 = 416,208lb(1,851kN )
                              393(65)2
                   MD =                × 12 = 2,490,638in. − lb(281kN .m )
                                 8
         BIsmIkar 4.4c cMNakp©itEdlRtUvkarenARtg;muxkat;m:Um:g;GtibrmaenAkNþalElVgKW
                          (
                   ec = f ti − f ci  )
                                    St M D
                                    Pi
                                       +
                                           Pi

                      = (184 + 1,104 )
                                        3,572   2,490,638
                                              +
                                       416,208 416,208

                       = 11.05 + 5.98 = 17.04in.(433mm )
         edaysar cb = 18.84in. nigedaysnμt;fakMras;ebtugkarBarEdk 3.75in. sakl,g
                   ec = 18.84 − 3.75 ≅ 15.0in.(381mm )

         RkLaépÞ    tendon     EdlRtUvkar      P
                                        Ap = i =
                                                    416,208
                                               f pi 189,000
                                                                         (
                                                            = 2.2in 2 14.2cm 2    )
               cMnYn tendon = 02153 = 14.38 edIm
                               .
                                 .2


        sakl,g tendon Ggát;p©it 1 / 2in.(12.7mm) cMnYn 13 edIm/ Ap = 1.99in.2 (12.8cm2 ) / ehIy
kMlaMgeRbkugRtaMgedImCak;Esþg
                    Pi = 189,000 × 1.99 = 376,110lb(1,673kN )
         RtYtBinitükugRtaMgsrésxageRkArbs;ebtug
         BIsmIkar 4.1a
                           Pi ⎛ ect ⎞ M D
                    ft =−     ⎜1 − 2 ⎟ − t
                           Ac ⎝   r ⎠ S
                           376,110 ⎛ 15.0 × 21.16 ⎞ 2,490,638
                        =−         ⎜1 −           ⎟−
                             377 ⎝       187.5 ⎠      3,340



karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                            107
T.Chhay




                          = +691.2 − 745.7 = −55 psi (C )       minmankugRtaMgTajenAeBlepÞr (O.K.)
           BIsmIkar 4.1b
                             Pi ⎛ ecb ⎞ M D
                     fb = −     ⎜1 + 2 ⎟ +
                             Ac ⎝    r ⎠ Sb
                            376,110 ⎛ 15 × 18.84 ⎞ 2,490,638
                         =−          ⎜1 +          ⎟+
                               377 ⎝       187.5 ⎠        3,750
                         = −2,501.3 + 664.2 = −1,837 psi (C ) < f ci = 2,250 psi O.K.
viPaKkugRtaMgenAeBlrgbnÞúkeFIVkar
        BIsmIkar 4.3a
                               Pe ⎛ ect ⎞ M T
                     ft =−        ⎜1 − 2 ⎟ − t
                               Ac ⎝   r ⎠ S
                     Pe = 13 × 0.153 × 154,980 = 308,255lb(1,371kN )
           m:Um:g;srub M T = M D + M SD + M L
                           = 2,490,638 + 7,605,000 = 10,095,638in. − lb(1,141kN .m )
                           308,255 ⎛ 15.0 × 21.16 ⎞ 10,095,638
                     ft =−         ⎜1 −             ⎟−
                             377 ⎝         187.5 ⎠        3,340
                         = +566.5 − 3,022.6 = −2,456 psi (C ) > f c = −2,250 psi
           dUcenH eKRtUvdMeLIgkMBs;rbs;muxkat; b¤eRbIebtugEdlmanersIusþg;FMCag.
           edayeRbI f 'c = 6,000 psi
                     f c = 0.45 × 6,000 = −2,700 psi O.K.
                             Pe ⎛ ecb ⎞ M T         308,255 ⎛ 15.0 × 18.84 ⎞ 10,095,638
                     fb = −     ⎜1 + 2 ⎟ +      =−           ⎜1 +          ⎟+
                             Ac ⎝    r ⎠ Sb            377 ⎝      187.5 ⎠       3,750
                         = −2,050 + 2,692.2 = 642 psi (T ) O.K.
RtYtBinitümuxkat;Rtg;TMr
         kugRtaMgGnuBaØati                f 'ci = 0.75 × 6,000 = 4,500 psi

                                          f ci = 0.60 × 4,500 = 2,700 psi
                                          f ti = 3 f 'ci = 201 psi   sMrab;kNþalElVg
                                          f ti = 6   f 'ci = 402 psi sMrab;elITMr

                                          f c = 0.45 f 'c = 2,700 psi
                                          f t1 = 6 f 'c = 465 psi

                                          f t 2 = 12 f 'c = 930 psi

     (a)    enAeBlepÞr
Flexural Design of Prestressed Concrete Elements                                                108
NPIC




         kugRtaMgsgát;srésxageRkArbs;muxkat;elITMr
                             ⎛ ecb ⎞
                             pi
                    fb = −   ⎜1 + 2 ⎟ + 0
                             ⎝
                             Ac   r ⎠
                               376,110 ⎛ e × 18.84 ⎞
                   − 2,700 = −         ⎜1 +        ⎟
                                 377 ⎝      187.5 ⎠
         dUcenH e = 16.98in.
         dUcenHsakl,g ee = 12.49in.
                             376,110 ⎛ 12.49 × 21.16 ⎞
                    ft =−            ⎜1 −            ⎟−0
                               377 ⎝       187.5     ⎠
                        = 409 psi (T ) > f ti = 402 psi
                             376,110 ⎛ 12.49 × 18.84 ⎞
                    fb = −           ⎜1 +            ⎟+0
                               377 ⎝      187.5      ⎠
                        = 2,250 psi < f ci = 2,700 psi
        dUcenHeRbIEdkFmμtaenAsrésxagelIRtg;muxkat;elITMredIm,ITTYlykkugRtaMgTajkñúgebtugTaMg
Gs; b¤eRbIebtugEdlmanersIusþg;FMCagsMrab;muxkat;enH b¤k¾kat;bnßycMNakp©it.
    (b) enAeBlrgbnÞúkeFVIkar
                           308,255 ⎛ 12.49 × 21.16 ⎞
                    ft =−          ⎜1 −            ⎟ − 0 = 335 psi (T ) < 930 psi       O.K.
                             377 ⎝       187.5     ⎠
                           308,255 ⎛ 12.49 × 18.84 ⎞
                    fb = −         ⎜1 +            ⎟ + 0 = −1,844 psi (C ) < −2,700 psi O.K.
                             377 ⎝      187.5      ⎠
            dUcenH eKGacTTYlykFñwmebtugeRbkugRtaMgEdlmanmuxkat;GkSr I kMBs; 40in.(102cm)
     eRbIebtugTMgn;FmμtaEdlmanersIusþg; 6,000 psi(41.4MPa ) CamYynwg tendon Ggát;p©it
     1 / 2in.(12.7 mm ) EdlmancMNakp©itenAkNþalElVg ec = 15.0in.(381mm ) nigcMNakp©itenARtg;

     muxkat;xagcug ee = 12.5in.(318mm)
eKGaceRbIviFImü:ageTotsMrableFVIkaredaHRsay edaybnþeRbI       f 'c = 5,000 psi   b:uEnþeFVIkarpøas;bþÚrcMnYn
EdkeRbkugRtaMg nigcMNakp©it.

    K> cMNakp©itrbs;EdkeRbkugRtaMefr                 Constant Tendon Eccentricity
]TahrN_ 4>2³ edaHRsay]TahrN_ 4>2 edaysnμt;fakabeRbkugRtaMgmancMNakp©itefr. eRbIebtug
TMgn;FmμtaEdlmanersIusþg; f 'c = 5,000 psi(34.5MPa) ehIykugRtaMgTajGnuBaØatGtibrmarbs;eb
tugKW ft = 12 f 'c = 849 psi .

karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                                      109
T.Chhay




dMeNaHRsay³ edaysar tendon mancMNakp©itefr ehIym:Um:g;edaysarbnÞúkefr m:Um:g;edaysarbnÞúk
efrbEnßm nigm:Um:g;edaysarm:Um:g;GefrRtg;muxkat;elITMrrbs;FñwmsamBaØesμIsUnü dUcenHeKRtUvKNna
FñwmenHedayeRbImuxkat;Rtg;TMr. m:UDulmuxkat;EdlRtUvkarenARtg;TMrEdl)anBIsmIkar 4.5a KW
                         M D + M SD + M L
                     St ≥
                             γf ti − f c
                         M + M SD + M L
                     Sb ≥ D
                              f t − γf ci
          snμt; WD = 425 plf . bnÞab;mk
                              425(65)2
                     MD =              × 12 = 2,693,438in. − lb(304kN .m )
                                 8
                     M SD + M L = 7,605,000in. − lb(859kN .m )
          dUcenH m:Um:g;srub   M T = 10,298,438in. − lb(1,164kN .m )

          ehIyeyIgk¾mankugRtaMgGnuBaØatdUcxageRkam
                     f ci = −2,250 psi

                     f 'ci = −3,750 psi
                     f ti = 6 f 'ci = 367 psi          sMrab;muxkat;elITMr
                     f c = −2,250 psi (15.5MPa )

                     f t = 849 psi

                     γ = 0.82
          m:UDulmuxkat;EdlRtUvkar
                     St =
                             10,298,438
                          0.82 × 367 + 2,250
                                                             )
                                             = 4,035.8in.3 61,947cm3  (
                     Sb =
                             10,298,438
                          849 + 0.82 × 2,250
                                                             )
                                             = 3,823.0in.3 62,713cm3  (
       sakl,gelIkTI 1³ edaysar S EdlRtUvkar = 4,035.8 psi FMCag S rbs;muxkat;enA
                                                   t                         t


kñúg]TahrN_ 4>2 dUcenHeRCIserIsmuxkat;GkSr I Edlman h = 44in. dUcbgðajenAkñúgrUbTI 4>9.
lkçN³muxkat;rbs;vamandUcxageRkam³
                     I c = 92,700in.4

                     r 2 = 228.9in.2
                     Ac = 405in.2

                     ct = 23.03in.


Flexural Design of Prestressed Concrete Elements                                      110
NPIC




                   S t = 4,303in.3
                   cb = 20.97in.

                   Sb = 4,420in.3

                   WD = 422 plf




         BIsmIkar 4.5c cMNakp©itEdlRtUvkarRtg;muxkat;elITMrEdlCamuxkat;eRKaHfñak;KW
                           (          )S
                                         t
                   ee = f ti − f ci
                                       P i

         Edl        f ci   = f ti − t ( f ti − f ci )
                                   c
                                    h
                           = 367 −
                                     23.03
                                              (367 + 2,250) = −1,002 psi(6.9MPa )
                                      44
         nig Pi = Ac f ci = 405 × 1,002 = 405,810lb(1,805kN )
         dUcenH ee = (367 + 1,002) 405030 = 13.60in.(346mm)
                                    4,
                                       ,810
         RkLaépÞEdkeRbkugRtaMgEdlRtUvkarKW
                                      = 2.15in.2 ( .4cm 2 )
                       P     405,810
                Ap = i =                         14
                       f     189,000
                               pi

         dUcenHeyIgsakl,geRbIEdkeRbkugRtaMgEdlmanGgát;p©it 1 / 2in. .
         cMnYn tendon EdlRtUvkarKW

karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                           111
T.Chhay




                     2.15 / 0.153 = 14.05
           dUcenHeRbI tendon Ggát;p©it 1 / 2in.(12.7mm) cMnYn 14 edIm. CalT§pl
                     Pi = 14 × 0.153 × 189,000 = 404,838lb(1,801kN )
     (a)    viPaKkugRtaMgenAeBlepÞrenARtg;muxkat;xagcug
            BIsmIkar 4.1a
                               pi ⎛ ect ⎞ M D             404,838 ⎛ 13.60 × 23.03 ⎞
                     ft =−        ⎜1 − 2 ⎟ − t = −                ⎜1 −            ⎟−0
                              Ac ⎝    r ⎠ S                 405 ⎝       228.9     ⎠
                           = +368.2 psi (T ) ≅ f ti = 367       O.K.
            BIsmIkar 4.2b
                              Pi ⎛ ecb ⎞ M D             404,838 ⎛ 13.6 × 20.97 ⎞
                     fb = −      ⎜1 + 2 ⎟ +           =−         ⎜1 +           ⎟+0
                              Ac ⎝    r ⎠ Sb               405 ⎝      228.9 ⎠
                           = −2,245 psi (C ) ≅ f ci = −2,250 O.K.
            eKk¾GaceRbIvatMélTaMgenHsMrab;muxkat;kNþalElVgpgEdr edaysarcMNakp©it e efr.
     (b)    viPaKkugRtaMgenAeBlrgbnÞúkeFVIkarcugeRkayenARtg;TMr
                     Pe = 14 × 0.153 × 154,980 = 331,967lb(1,477kN )
                 m:Um:g;srub              M T = M D + M SD + M L = 0

            BIsmIkar 4.3a
                               Pe⎛ ect ⎞ M T
                     ft =−       ⎜1 − 2 ⎟ − t
                               Ac⎝   r ⎠ S
                              331,967 ⎛ 13.60 × 23.03 ⎞
                           =−         ⎜1 −            ⎟ − 0 = 302 psi (T ) < f t = 849 psi O.K.
                                405 ⎝       228.9     ⎠
            BIsmIkar 4.3b
                               Pe ⎛ ecb ⎞ M T           331,967 ⎛ 13.6 × 20.97 ⎞
                     fb = −       ⎜1 + 2 ⎟ +       =−            ⎜1 +             ⎟+0
                               Ac ⎝     r ⎠ Sb             405 ⎝          228.9 ⎠
                           = −1,841 psi (12.2MPa )(C ) < f c = −2,250 psi      O.K.
     (c)    viPaKkugRtaMgenAeBlrgbnÞúkeFVIkarcugeRkayenAkNþalElVg
            m:Um:g;srub M T = M D + M SD + M L = 10,298,438in. − lb
            dUcenHkugRtaMgsrésxageRkArbs;ebtugEdlbNþalBI M T KW
                                                  = −2,555 psi (C )(17.6MPa )
                             MT        10,298,438
                     f1t =      t
                                    =−
                            S             4,030
                                                 = +2,330 psi (T )(16.1MPa )
                            M         10,298,438
                     f1b   = T      =
                            Sb           4,030
            dUcenH kugRtaMgsrésxageRkArbs;ebtugcugeRkayKW

Flexural Design of Prestressed Concrete Elements                                            112
NPIC




                    f t = +302 − 2,555 = −2,253 psi (C ) ≅ f c = −2,250 psi   TTYlyk)an
                    f b = −1,841 + 2,330 = +489 psi (T ) < f t = 849 psi      O.K.
           dUcenH TTYlykmuxkat;sakl,gEdlmancMNakp©itefr e = 13.6in.(345mm) sMrab; tendon
Ggát;p©it 1 / 2in.(12.7mm) cMnYn 14 srés.

4> kareRCIserIsmuxkat; niglkçN³rbs;Fñwmd¾RtwmRtUv
       Proper Selection of Beam Sections and Properties
    k> eKalkarN_ENnaMTUeTA                    General Guidelines
          muxkat;ebtugeRbkugRtaMgmindUc steel-rolled section eT eRBaHvaminTan;manlkçN³sþg;dar
eBjeljenAeLIy. kñúgkrNICaeRcIn visVkrKNnaeRKOgbgÁúMRtUvEteRCIserIsRbePTmuxkat;edIm,IeRbI
R)as;enAkñúgKMeragenaH. enAkñúgkarKNnaFñwmTMrsamBaØPaKeRcIn cMgayBI cgc nigExS cgs EdleKsÁal;
CacMNakp©it e smamaRteTAnwgkMlaMgeRbkugRtaMgEdlRtUvkar.
          CaTUeTA edaysarEteKKNnaeRcIneRbIm:Um:g;kNþalElVg eRBaHvamantMélFMCageK. cMNakp©it
enAkNþalElVgkan;EtFM kMlaMgeRbkugRtaMgEdlRtUvkarkan;EttUc ehIyvapþl;nUvlkçNesdækic©kan;Et
xøaMgkñúgkarKNna. sMrab;cMNakp©itFM eKRtUvkarRkLaépÞebtugenAsrésxagelIFMEdr. dUcenH muxkat;
GkSr T nigmuxkat;GkSr I EdlmansøabFMCamuxkat;Edlsaksm. CaTUeTA muxkat;xagcugEtgCamux
kat;tan;edIm,IeCosevogcMNakp©itFMenAelIbøg;m:Um:g;sUnü ehIyk¾edIm,IbegáInlT§PaBTb;kMlaMgkat;énmux
kat;elITMr nigkarBar anchorage zone failure.
         muxkat;epSgeTotEdleKeRbIPaKeRcInEdrKW muxkat;GkSr T Dub. muxkat;enHbEnßmGtßRbeyaCn_
eTAmuxkat;GkSr T eTaledIm,IPaBgayRsYl nigesßrPaBkñúgkarelIkdak; nigdMeLIg. rUbTI 4>10 bgðaj
BIRbePTmuxkat;EdleKeRcIneRbICaTUeTA. muxkat;d¾éTeTotdUcCakMralRbehagkñúg (hollow-core slab)
muxkat;Gt;sIuemRTI k¾RtUv)aneRbICaTUeTApgEdr. cMNaMfa eKeRbImuxkat;mansøabCMnYseGaymuxkat; ctu-
ekaNtan;EdlmankMBs;dUcKñaedayminman)at;bg;ersIusþg;rgkarBt;eT. b:uEnþ eKeRbImuxkat;ctuekaNCa
girder EdlmanElVgxøI.

         eKeRbImuxkat;GkSr I CaRbePTFñwmkMralEdlmankMralxNÐsmascak;BIelIsMrab;eeRKOgbgÁMúcMNt
rfynþEdlmanElVgEvg. CaTUeTA eKeRcIneRbImuxkat;GkSr T EdlmansøabxageRkamF¶n;dUcbgðajenA
kñúgrUbTI 4>10 (d) enAkñúgeRKOgbgÁúMs<an. eKeRbImuxkat; T Duby:agTUlMTUlayenAkñúgRbB½n§kMralxNÐ


karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                            113
T.Chhay




rbs;GKar k¾dUcCageRKOgbgÁúMcMNtrfynþ edaysarRbeyaCn_énskmμPaBsmasrbs;søabFMxagelI
EdlmanTTwgBI 10 ft eTA 15 ft .
     kMralRbehagkñúgCacMerokFñwmmYyTisRbehagkñúgEdlGacdMeLIgCakMralxNÐ)any:aggayRsYl.
eKGaceRbIr:tRbehagragRbGb;Car:tFñwmsMrab;ElVgEvg EdleKsÁal;vaCaRbB½n§kMralkMNat;s<an
(segmental bridge deck system). kMNat;r:t (segmental girder) enHmanlT§PaBTb;karrmYlFM

ehIypleFoblT§PaBTb;karBt;elITMgn;xøÜnrbs;vaFMCagRbePTmuxkat;RbB½n§eRbkugRtaMgd¾éTeTot.




     x> RkLaépÞTaMgmUl muxkat;bMElg nigvtþmanrbs;bMBg;
          Gross Area, the Transformed Section, and the Presence of Ducts
        CaTUeTA RkLaépÞrbs;muxkat;TaMgmUlrbs;muxkat;ebtug (gross cross sectional area ) KWRKb;
RKan;sMrab;eRbIenAkñúgkarKNna muxkat;ebtugeRbkugRtMgeRkamlkçxNÐbnÞúkeFVIkar. kñúgxN³EdlGñk
KNnaxøHeBjcitþnwgkarKNna EdlmanlkçN³suRkitCagtamry³kareRbImuxkat;bMElg. PaBsuRkit
Edl)anBIkarKitbBa©ÚlkarcUlrYm énmuxkat;rbs;EdkeTAkñúgPaBrwgRkaj (stiffness) rbs;ebtugmin

Flexural Design of Prestressed Concrete Elements                                      114
NPIC




RtUv)anKitfaCakarcaM)ac;enaHeT. enA kúñgFñwmrgeRbkugRtaMgCaeRkay (post-tensioned beam) Edl
bMBg;RtUv)ankMe)arebtug (grout), gross cross section enAEtRKb;RKan;sMrab;RKab;KNnaTaMgenH. man
EtkñúgkrNIs<anElVgEvg nigFñwmeRbkugRtaMgEdlplitCalkçN³]sShkmμEdlmanRkLaépÞEdkeRbkug
RtaMgFMeT EdleKRtUveRbImuxkat;bMElg b¤muxkat;ebtugsuT§ (net concrete area) EdlminKitbMBg;.

    K> Envelope sMrab;kardak;kabeRbkugRtaMg
         Envelopes for Tendon Placement
         kugRtaMgTajenAsrésxageRkAbMputrbs;ebtugeRkamlkçxNÐbnÞúkeFVIkarminGacFMCagkugRtaMg
GnuBaØatEdleGayeday code dUcCa ACI, PCI, AASTHO b¤ CEB-FIP eT. dUcenH eKcaM)ac;RtUv
begáItnUvtMbn;kMNt;mYyenAkññúgmuxkat;ebtugEdlCa envelope EdleKGacGnuvtþkMlaMgeRbkugRtaMgeday
mineFVIeGaymankugRtaMgTajenAsrésxageRkAbMputrbs;ebtug. BIsmIkar 4.1a eyIgman
                                 Pi ⎛ ect ⎞
                    ft = 0 = −      ⎜1 − 2 ⎟
                                 Ac ⎝   r ⎠
                           2
eK)an           e=
                    r
                    ct
dUcenH cMnucsñÚlxageRkam (lower kern point)
                           r2
                    Kb =
                           ct
dUcKña BIsmIkar 4.1b RbsinebI fb = 0 enaHeK)an − e = r 2 / cb EdlsBaØadktMNageGaytMNag
eGaykarvas;eLIgelIBIG½kSNWt ÉcMNakp©itviC¢manCakarvas;cuHeRkam. dUcenH upper kern point KW
                           r2
                    Kt =
                           cb
       BIkarkMNt;cMnucsñÚlxagelI nigxageRkammk eyIgeXIjy:agc,as;fa³
    (a) RbsinebIkMlaMgeRbkugRtaMgmanGMeBIenAxageRkam lower kern point vanwgekItmankugRtaMgTaj

        enAsrésxagelIrbs;muxkat;ebtug.
    (b) RbsinebIkMlaMgeRbkugRtaMgmanGMeBIenAxagelI upper kern point vanwgekItmankugRtaMgTaj

        enAsrésxageRkamrbs;muxkat;ebtug.
        eKGackMNt;cMnucsñÚlxagsþaM nigxageqVgénExSsIuemRTIbBaÄrrbs;muxkat;tamlkçN³dUcKña dUc
enHeKnwgTTYl)anépÞsñÚlsMrab;GnuvtþkMlaMgeRbkugRtaMgeTAelIEdkeRbkugRtaMg. rUbTI 4>11 bgðajBI
sñÚlsMrab;muxkat;ctuekaN.

karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                          115
T.Chhay




     X> plRbeyaCn_énkardak;kabeRbkugRtaMgCa curved b¤ harped
           Advantages of Curved or Harped Tendons
        eTaHbICaeKeRbIEdkeRbkugRtaMgRtg;y:agTUlMTUlayenAkñúgFñwmRbEvglμmEdlcak;eRsck¾eday
k¾CaTUeTAeKeRbIkabeRbkugRtaMgEdlmanTMrg;ekagenAkñúgGgát;rgkarTajCaeRkay (post-tensioned
element) Edlcak;enAnwgkEnøgEdr. eKEck tendon EdlminRtg;CaBIrRbePT³

    (a) Draped: manTMrg;ekagdUc)a:ra:bUl RtUv)aneKeRbIenAkñúgFñwmEdlrgbnÞúkxageRkABRgayesμICa

        bzm.
    (b) Harped: tendon eRTtEdlminCab; ¬tamn½yKNitviTüa¦ enARtg;bøg;rgbnÞúkcMcMnuc RtUv)aneK

        eRbIenAkñúgFñwmEdlrgbnÞúkcMcMnucTTwgG½kSCabzm.
        rUbTI 4>12/ 4>13 nig 4>14 bgðajBI alignment, m:m:g;Bt; nigkarBRgaykugRtaMgsMrab;Fñwm
EdlrgkMlaMgeRbkugRtaMgedaykabeRbkugRtaMgRtg;/ draped/ nig harped erogKña. düaRkamTaMgenHcg;
bgðajBIplcMeNjEpñkesdækic©rbs; draped nig harped tendon elIEdkeRbkugRtaMgRtg;. enAkñúgrUbTI
4>12 Rtg;muxkat; 1-1 kugRtaMgTajrbs;ebtugEdleKminR)afñacg;)an)anbgðajenAsrésxagelI.
muxkat; 1-1 enAkñúgrUbTI 4>13 nig 4>14 bgðajfakugRtaMgsgát;rayesμIRbsinebI tendon eFVIGMeBIenA
Rtg; cgc énmuxkat;enARtg;TMr. plRbeyaCn_epSgeTotrbs; draped nig harped tendon KWvaGnuBaØat
eGayFñwmeRbkugRtaMgRTbnÞúkF¶n; edaysarT§iBllMnwgrbs;bgÁúMkMlaMgbBaÄrrbs;kabeRbkugRtaMgmin
Rtg;. niyaymü:ageTot kMlaMgeRbkugRtaMgEdlRtUvkar Pp sMrab; parabolic tendon enAkñúgrUbTI 4>13
nig Ph sMrab; harped tendon enAkñúgrUbTI 4>14 mantMéltUcCagkMlaMgEdlRtUvkarenAkñúg straight

Flexural Design of Prestressed Concrete Elements                                     116
NPIC




tendon enAkñúgrUbTI 4>14. dUcenH sMrab;kMritkugRtaMgdUcKña eKRtUvkarcMnYn strand ticCagsMrab;krNI
draped b¤ harped tendon nigeBlxøHeKGaceRbImuxkat;ebtugtUcCagkñúgkarKNnaedayTTYl)annUv

lT§plRbkbedayRbsiT§PaB ¬eRbobeFob]TahrN_ 4>2 nig 4>3 mþgeTot¦.




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                              117
T.Chhay




Flexural Design of Prestressed Concrete Elements   118
NPIC




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;   119
T.Chhay




     g> Limiting-Eccentricity Envelopes
        eKcg;)ancMNakp©itKNnarbs; tendon tambeNþayElVgEdleFVIy:agNaminbegáItkugRtaMg
TajenAsrésxageRkAbMputrbs;muxkat;FñwmEdleRKaHfñak;. RbsinebIeKmincg;)ankugRtaMgTajtam
beNþayElVgrbs;FñwmenAkñúgrUbTI 4>15 EdleRbI draped tendon eKRtUvkMNt;cMNakp©itRtg;muxkat;
tambeNþayFñwm. RbsinebI M D Cam:Um:g;TMgn;pÞal; ehIy M T Cam:Um:g;srubEdlekItBIbnÞúkTTwgG½kS
TaMgGs; enaHédXñas;rbs;m:Um:g; couple EdlbegáIteday center-of-pressure line (C-line) nigG½kSTI
RbCMuTMgn;rbs;EdkeRbkugRtaMg (cgs line) EdlekItBI M D nig M T KW amin nig amax erogKña dUc
bgðajkñúgrUbTI 4>15.




Lower cgs Envelop
          édXñas;Gb,brmarbs; tendon couple KW
                               MD
                     amin =                                                         (4.7a)
                               Pi
smIkarenHkMNt;cMgayGtibrmaenABIxageRkam bottom kern EdlCaTItaMgrbs;ExS cgs dUcenH C-line
minFøak;enABIxageRkamExS bottom kern )aneT GBa©wgehIyvaGackarBarmineGaymankugRtaMgTajenA
srésxagelIbMput)an.
Flexural Design of Prestressed Concrete Elements                                      120
NPIC




         dUcenH limiting bottom eccentricity KW
                   eb = (amin + kb )                                              (4.7b)


Upper cgs Envelop
         édXñas;Gtibrmarbs; tendon couple KW
                               MT
                   amax =                                                         (4.7c)
                               Pe
smIkarenHkMNt;cMgayGb,brmaenABIxageRkam top kern EdlCaTItaMgrbs;ExS cgs dUcenH C-line
minsßitenABIxagelIExS top kern )aneT GBa©wgehIyvaGackarBarmineGaymankugRtaMgTajenAsrés
xageRkambMput)an.
        dUcenH limiting top eccentricity KW
                   et = (amax − kt )                                              (4.7d)
kUdxøHGnuBaØateGayeRbIkugRtaMgTajkMNt;sMrab;enAeBlepÞr nigenAeBlrgbnÞúkeFVIkar. enAkñúgkrNI
EbbenH eKGacGnuBaØateGayExS cgs GacsßitenAxageRkA limiting cgs envelop Edl)anbgðajenA
kñúgsmIkar 4.7a nig c bnþicbnþÜc.
        RbsineKbEnßmcMNakp©itbEnßmenAelI cgs-line envelop enaHvanwgeFVIeGaymankugRtaMgTaj
kMNt;enAelIsrésxagelI nigxageRkamrbs;ebtug. kugRtaMgxagelI nigxageRkambEnßmKW
                    f (t ) =
                             Pi e'b ct
                                                                                  (4.8a)
                                 Ic

nig                         P e' c
                    f (b ) = e t b
                                Ic
                                                                             (4.8b)

Edl t nig b tMNageGaysrésxagelI nigxageRkam erogKña. BIsmIkar 4.6 cMNakp©itbEnßmEdl
RtUvbEnßmeTAelIsmIkar 4.7b nig d KW
                           f (t ) Ac kb
                   e'b =                                                          (4.9a)
                                  Pi
                           f (b ) Ac kt
nig                e't =
                               Pe
                                                                                  (4.9b)

         EnvelopEdlGnuBaØatkugRtaMgkMNt;RtUv)anbgðajenAkñúgrUbTI 4>16. eKKYrcMNaMfa enAeBl
upper envelop enAxageRkAmuxkat; ehIykugRtaMgenAmantMélkMNt;GnuBaØat enaHbgðajfamuxkat;Kμan

lkçN³esdækic©eT. bMErbMrYlcMNakp©it b¤kMlaMgeRbkugRtaMgeFIVeGaykarKNnakan;EtRbesI.



karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                         121
T.Chhay




     c> Envelopes EdkeRbkugRtaMg                   Prestressing Tendon Envelopes
]TahrN_ 4>4³ ]bmafaFñwmenAkñúg]TahrN_ 4>2 Ca post-tensioned bonded beam ehIyEdkeRbkug
RtaMgmanrag)a:ra:bUl. kMNt; limiting envelop sMrab;TItaMgrbs; tendon EdlkMritkugRtaMgsrésrbs;
ebtugminFMCagkugRtaMgGnuBaØat. Kitfamuxkat;Rtg;cMnuckNþalElVg mYyPaKbYnénElVg nigcugFñwmCa
muxkat;EdlRtUvKNna. snμt;fatMélrbs;kMhatbg;eRbkugRtaMgdUcKñaenAkñúg]TahrN_ 4>2 b:uEnþ
 Pi = 549,423lb / Pe = 450,526lb / f 'c = 6,000 psi / ec = 13in nig ee = 6in .

dMeNaHRsay³ BI]TahrN+_ 4>2 eyIgGacsegçbm:Um:g;KNnarbs;FñwmGkSr I niglkçN³muxkat;Edl
RtUvkardUcxageRkam³
                     Pi = 549,423lb(2,431kN )

                     Pe = 450,526lb(2,004kN )

                     M D = 2,490,638in. − lb(281kN .m )
                     M SD + M L = 7,605,000in. − lb(859kN .m )

                     M T = M D + M SD + M L = 10,095,638in. − lb(1,141kN .m )

                                      (
                     Ac = 377in.2 2,536cm 2        )
                     f 'c = 6,000 psi

                                          (
                     r 2 = 187.5in.2 1,210cm 2         )
                     ct = 21.16in.(537mm )

                     cb = 18.84in.(479mm )


Flexural Design of Prestressed Concrete Elements                                    122
NPIC




        edaysarEtm:Um:g;Bt;enAkñúg]TahrN_enH)anmkBIbnÞúkBRgayesμI TMrg;rbs;düaRkamm:Um:g;man
ragCa)a:ra:bUl CamYynwgm:Um:g;EdlmantMélsUnüenARtg;cugTMrrbs;FñwmsamBaØ. dUcenH m:Um:g;enARtg;
mYyPaKbYnénRbEvgElVgKW
                   M D = 0.75 × 2,490,638 = 1,867,979in. − lb(211kN .m )

                   M T = 0.75 × 10,095,638 = 7,571,729in. − lb(856kN .m )
         BIsmIkar 4.6a nig b, kern point limit KW
                          r 2 187.5
                   kt =      =      = 9.95in.(253mm )
                          cb 18.84
                          r 2 187.5
                   kb =      =      = 8.86in.(225mm )
                          ct 21.16
Lower envelop
         BIsmIkar 4.7a cMgayGtibrmaEdlExS cgs RtUv)andak;BIeRkam bottom kern edIm,IkarBarkug
RtaMgTajenAsrésxagelIbMputRtUv)ankMNt;dUcxageRkam
     (i) kNþalElVg

                                                     = 4.53in.(115mm )
                                       M D 2,490,638
                             amin =        =
                                        Pi   549,423
          eyIgTTYl)an e1 = kb + amin = 8.86 + 4.53 = 13.39in.(340mm)
     (ii) mYyPaKbYnénElVg

                                                = 3.40in.(340mm )
                                      1,867,979
                             amin =
                                       549,423
         eyIgTTYl)an         e2 = 8.86 + 3.40 = 12.26in.(311mm )

     (iii) elITMr

                             amin = 0
         eyIgTTYl)an         e3 = 8.86 + 0 = 8.86in.(225mm )


Upper envelop
       BIsmIkar 4.7b cMgayGtibrmaEdlExS cgs RtUv)andak;BIeRkam top kern edIm,IkarBarkugRtaMg
TajenAsrésxageRkambMputRtUv)ankMNt;dUcxageRkam
   (i) kNþalElVg

                                                      = 22.41in.(569mm )
                                       M T 10,095,638
                             amin =       =
                                       Pe   450,526



karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                           123
T.Chhay




          eyIgTTYl)an e1 = amax − kt = 22.41 − 9.95 = 12.46in.(316mm)
          kMras;ebtugkarBarEdk = 3.0in.
          cMNaMfa e1 minGacFMCag cb ebImindUecñaHeT tendon nwgenAxageRkAmuxkat;.
     (ii) mYyPaKbYnénElVg

                                                      = 16.80in.(427mm )
                                            7,571,729
                                amin =
                                             450,526
         eyIgTTYl)an            e2 = 16.80 − 9.95 = 6.85in.(174mm )

     (iii) elITMr

                                amin = 0
        eyIgTTYl)an e3 = 0 − 9.95 = 9.95in.(− 253mm) ¬9.95in. sßitenABIelIExS cgs¦
sMrab;kargarGnuvtþn_ snμt;fakugRtaMgsrésTajGtibrmaeRkamlkçxNÐbnÞúkeFVIkarsMrab;kargarbegáIt
cgs envelope minRtUvFMCag f t = 6 f 'c = 465 psi sMrab;srésxagelI nigxageRkam. BIsmIkar 4.9a

cMNakp©itbEnßmEdlRtUvbEnßmeTAelI lower cgs envelope edIm,IGnuBaØateGaymankugRtaMgTajkMNt;
enAsrésxagelIKW
                           f (t ) Ac kb 465 × 377 × 8.86
                     e'b =             =                 = 2.83in.(72mm )
                                Pi         549,423
dUcKña BIsmIkar 4.9b cMNakp©itEdlRtUvbEnßmeTAelI upper cgs envelop edIm,IGnuBaØateGayman
kugRtagTajkMNt;enAsrésxageRkamKW
                             f (b ) Ac kt       465 × 377 × 9.95
                     e't =                  =                    = 3.87in.(98mm )
                                 Pe                 450,526
dUcenH eyIgmantaragsegçbBI cgs envelope cMNkp©itdUcxageRkam³




Flexural Design of Prestressed Concrete Elements                                    124
NPIC




         rUbTI 4>17 bgðajBI cgs envelope sMrab;kugRtaMgTajesμIsUnü nigkugRtaMgTajkMNt;enAkñúg
ebtug.




    q> karkat;bnßykMlaMgeRbkugRtaMgenAEk,rTMr
         Reduction of Prestress Force near Support
       dUc)aneXIjBI]TahrN_ 4>3 nigEpñk K nig g xagelI straight tendon enAkñúg pretensioned
member GacbNþaleGaymankugRtaMgTajFMenAsrésxageRkArbs;ebtugenARtg;TMr edaysarGvtþ-
mankugRtaMgm:Um:g;Bt;Edl)anBITMgn;pÞal; nigbnÞúkbEnßm. eKmanviFIFmμtaBIrkñúgkarkat;bnßykugRtaMg
enARtg;muxkat;TMrEdlbNþalmkBIkMlaMgeRbkugRtaMg. viFITaMgBIrenaHKW³
    - pøas;bþÚrcMNakp©itrbs;kabxøHedayelIkBYkvaeLIgeTAkan;tMbn;TMrdUcbgðajenAkñúgrUbTI 4>18
        (a). viFIenHkat;bnßytMélm:Um:g;.

    - eRsabkabxøHedaybMBg;)aøsÞiceTAkan;tMbn;TMr dUcbegðIjenAkñúgrUbTI 4>18(b). viFIenHkat;bnßy
        EpñkénkugRtaMgepÞrrbs;kabenAcMgayxøHBImuxkat;TMrénFñwmeRbkugRtaMgTMrsamBaØ.

       cMNaMfakabEdlelIkeLIgk¾RtUv)aneRbIenAkñúgFñwmeRbkugRtaMgElVgEvgEdlrgeRbkugRtaMgCa
eRkaypgEdr. eKminRtUvkarEpñkminCab;rbs; tendon edaylkçN³RTwsþI edayelIkvaeLIgelI. kMhat
bg;edaysarkMlaMgkkitbEnßmedaysarExSekagbBa©ÚleTAkñúgkarKNna b¤karviPaKmuxkat;.


karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                           125
T.Chhay




5>     End Block at Support Anchorage Zones
     k> karEbgEckkugRtaMg                          Stress Distribution
          kugRtaMgsgát;cMcMnucd¾FMenAkñúgG½kSbeNþayekItmanenARtg;muxkat;TMrenAelIkMNat;d¾tUcénépÞ
rbs;cugFñwm ¬TaMgenAkñúg pretensioned beam nig post-tensioned beam¦ EdlbNþalmkBIkMlaMg
eRbkugRtaMgd¾FM. enAkñúg pretensioned beam bnÞúkepÞrcMcMnucrbs;kMlaMgeRbkugRtaMgeTAelIebtugEdl
B½T§CMuvijekIteLIgbnþicmþg²rhUtdl;vakøayeTACamanlkçN³BRgayesμIelIRbEvg lt BIépÞénmuxkat;TMr.
          enAkñúg post-tensioned beam karEbgEck nigkarepÞrkMlaMgbnþicmþg²tamrebobenHminGaceFVI
eTA)aneT edaysarkMlaMgmanGMeBIedaypÞal;eTAelIépÞrbs;cugFñwmtamry³ bearing plate nig anchors.
ehIy tendon xøH b¤k¾TaMgGs;enAkñúg post-tensioned beam RtUv)anelIkeLIg b¤ draped eTAkan;srés
xagelItamry³EpñkénRTnugrbs;muxkat;ebtug.
          edaysarkarpøas;bþÚrkugRtaMgsgát;tamG½kSBIcMcMnuceTABRgayesμIminsnSwm² vabegáIteGayman
kugRtaMgTajTTwg (transverse tensile stress) FMkñúgTisbBaÄr dUcenHehIy longitudinal bursting
cracks k¾ekItmanenA anchorage zone. enAeBlEdlkugRtaMgFMCagm:UDulkat;rbs;ebtug end block



Flexural Design of Prestressed Concrete Elements                                     126
NPIC




nwgeRbHtambeNþay elIkElgEteKdak;EdkbBaÄrsmRsb. TItaMgrbs; concrete-bursting stress nig
resulting bursting crack k¾dUcCa surface-spalling crack KWGaRs½ynwgTItaMg nigkarEbgEckkMlaMg

cMcMnuctamTisedkEdlGnuvtþedayEdkeRbkugRtaMgeTAelI end bearing plate.
         eBlxøHeKcaM)ac;begáInRkLaépÞrbs;muxkat;eTArkTMredayeFVIkarBRgIkRTnugbnþicmþg²eGayesμI
TTwgrbs;søabenARtg;TMr kñúgeKalbMNgedIm,IeFVIkarelIk tendon eLIgelI ¬emIlrUbTI 4>19(a)¦. b:uEnþ
karekIneLIgRkLaépÞmuxkat;EbbenHmin)ancUlrYmkarBar bursting b¤ spalling crack eT ehIyvak¾min
manT§iBlkñúgkarkat;bnßykMlaMgTajtamTTwgenAkñúgebtugEdr. tamBit TaMglT§plénkarBiesaF
nigkarviPaKedayRTwsþIén three-dimension stress problem bgðajfakugRtaMgTajGacekIneLIg.
         dUcenH eKRtUvkardak; anchorage reinforcement caM)ac;enAkñúgtMbn;epÞrkMlaMgkñúgTMrg;Edkkg
biTCit (closed ties b¤ stirrup) b¤]bkrN_ anchorage edaydak;B½T§CMuvijEdkeRbkugRtaMgemTaMgGs; nig
EdkBRgwgFmμtatambeNþay. rUbTI 4>20 bgðajBIKnøgkugRtaMgTaj nigKnøgkugRtaMgsgát;.




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                            127
T.Chhay




     x> RbEvgbgáb; nigRbEvgepÞrenAkñúgGgát;rgeRbkugRtaMgCamun
         nigkarKNna Anchorage Reinforcement
          Development and Transfer Length in Pretensioned Members and
          Design of Their Anchorage Reinforcement
        edaysarkMlaMgTaj (jacking force) RtUv)anRbElgeTAelIGgát;rgeRbkugRtaMgCamun enaH
kMlaMgeRbkugRtaMgRtUv)anepÞredaylkçN³DINamictamry³épÞb:HrvagEdkeRbkugRtaMg nigebtugeTAeb
tugEdlB½T§CMuvijEdkeRbkugRtaMg. PaBs¥itrvagEdkeRbkugRtaMg nigebtugelIRbEvgkMNt;rbs;Edk
eRbkugRtaMgepÞrkMlaMgeRbkugRtaMgcMcMnucsnSwm²eTAmuxkat;TaMgmUlrbs;ebtugRtg;bøg;EdlecjBI end
block eTAkan;kNþalElVg. RbEvgbgáb;kMNt;TMhMkMlaMgeRbkugRtaMgEdlGacekItmantambeNþayElVg.

RbEvgbgáb;kan;EtEvg kMlaMgeRbkugRtaMgkan;EtFM.
       Ca]TahrN_ sMrab; 7-wire strand Ggát;p©it 1 / 2in. EdlmanRbEvgbgáb; 40in.(102cm) begáIt
kugRtaMg 180,000 psi(1,241MPa ) b:uEnþCamYynwgRbEvgbgáb; 70in.(178cm) begáItkugRtaMg 206,000 psi
(1,420MPa ) . BIrUbTI 4>21 vabgðajy:agc,as;faRbEvgbgáb; ld EdlbegáItkugRtaMgeBjeljCabnSM
rvagRbEvgepÞr (transfer length) lt nigRbEvgs¥itedaykarBt; (flexural bond length) l f .
                        1 ⎛ f pe ⎞
                 lt =       ⎜    ⎟d b          (xñat US)                             (4.10a)
                      1,000 ⎜ 3 ⎟  ⎝      ⎠




Flexural Design of Prestressed Concrete Elements                                     128
NPIC




                        ⎛ f pe ⎞
                   lt = ⎜
                        ⎜ 20.7 ⎟d b
                               ⎟                       (   xñat SI)
                        ⎝      ⎠
                          f pe
b¤                 lt =
                        3000
                               db                                                    (4.10b)


nig                lf =
                            1
                          1,000
                                   (
                                f ps − f pe d b   )    (   xñat US)                  (4.10c)


                   lf =
                           1
                          6.9
                               (
                              f ps − f pe d b )        (   xñat SI)
Edl          kugRtaMgenAkñμúgEdkeRbkugRtaMgenAeBl nominal strength
          f ps =

      f pe = eRbkugRtaMgRbsiT§PaBeRkayeBlxatbg;

      d b = nominal diameter rbs;EdkeRbkugRtaMg

edaybBa¢ÚlsmIkar 4.10b nig 4.10c eyIg)an
                          1 ⎛                ⎞
                                                           (xñat US)
                                       2
               ld min =        ⎜ f ps − f pe ⎟d b                                    (4.10d)
                        1,000 ⎝        3     ⎠
                               1 ⎛              ⎞
                   ld min =
                              6.9 ⎝
                                          2
                                  ⎜ f ps − f pe ⎟d b
                                          3     ⎠
                                                                      (   xñat SI)




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                            129
T.Chhay




        smIkar 4.10d eGaynUvRbEvgbgáb;caM)ac;Gb,brmasMrab;EdkeRbkugRtaMg. RbsinebIeKeRsab
EdkeRbkugRtaMgxøHeq<aHeTAkan;cugFñwmedIm,Ikat;bnßykugRtaMgs¥itenAEk,rxagcug enaHkugRtaMgepÞrenAkñúg
tMbn;enaHRtUv)ankat;bnßy ehIyeKcaM)ac;RtUveFVIkarEksMrYledaybegáInRbEvgbgáb; ld .

          !> KNnaEdktMbn;epÞrenAkñúgFñwmrgeRbkugRtaMgCamun
              Design of Transfer Zone Reinforcement in Pretensioned Beams
       tamkarBiesaF Mattock et al. )anbegáItsmIkarEdl)anBIkarBiesaFsMrab;rkkMlaMgEdkkg
srub F dUcxageRkam³
                                      Pi h
                     F = 0.0106                                                            (4.11)
                                       lt
Edl h CakMBs;rbs;FñwmrgeRbkugRtaMgCamun ehIy lt Ca transfer length. RbsinebIeKykkugRtaMg
mFümenAkñúgEdkkgRtwmBak;kNþalkugRtaMgGnuBaØatGtibrma f s rbs;Edk enaH F = 1 / 2( At f s ) .
edayCMnYsvacUleTAkñúgsmIkar 4.11 eyIgTTYl)an³
                         Ph
               At = 0.021 i
                          f l
                                    ¬xñat Us¦                                   (4.12)
                                      s t

                     At = 21,000 ¬xñat IS¦
                                      Pi h
                                      f s lt
Edl At CaRkLaépÞsrubrbs;Edkkg ehIy f s ≤ 20,000 psi(138MPa) sMrab;karRKb;RKgsñameRbH.

          @> kareRCIserIsEdkenAkñúgFñwmrgeRbkugRtaMgCamun
              Reinforcement Selection in Pretensioned Beams
]TahrN_ 4>5³ KNna anchorage reinforcement EdlRtUvkaredIm,IkarBar bursting crack b¤
spalling crack      EdlekItmanenAkñúgFñwmén]TahrN_ 4>2.
dMeNaHRsay³                    Pi = 376,110lb(1,673kN )

BIsmIkar 4.12 At = 0.021 Pi lh
                           fs t
BIsmIkar 4.10b RbEvgepÞrKW lt = ( f pe / 3,000)db . dUcenH edaysar    f pe = 154,980 psi   nig
d b = 1 / 2in. eyIgman

                                            × 0.5 = 25.83in.(66cm )
                                   154,980
                               lt =
                                    3,000
dUcenH                                    Ph
                               At = 0.021 i
                                          f s lt



Flexural Design of Prestressed Concrete Elements                                             130
NPIC




edaysar      f s ≤ 20,000 psi   / eyIgTTYl)an
                                               376,110 × 40
                             At = 0.021
                                              20,000 × 25.83

                                               (
                                 = 0.61in.2 3.9cm 2    )
         sakl,gEdkkgbiTCit #3
                             2 × 0.11 = 0.22in.2           ¬Ggát;p©it 9.5mm ¦
                cMnYnEdkkgGb,brma = 0..22 = 2.78
                                         0 61


        eRbIEdkkg #3 cMnYnbIkgedIm,Ih‘MuB½T§EdkembeNþay. cgh‘uMB½T§EdkeRbkugRtaMgCamYy helical
steel wire elIRbEvgepÞr lt edIm,ITTYl)ankarepÞrEdlmanRbsiT§PaBl¥.



    K> Post-tensioned Anchorage Zones: Linear Elastic and Strut-and-Tie
         Theories
        eKGacKit anchorage zone CamaDebtugEdlkMlaMgeRbkugRtaMgcMcMnucenARtg; anchorage
device BRgayCalkçN³smamaRttamTisTTwgeBjépÞTaMgmUlrbs;muxkat;ebtugtambeNþayElVg.

RbEvgrbs;tMbn;enHGnuvtþtameKalkarN_ St. Venant EdlkugRtaMgkøayCaBRgayesμIenAcMgayRbhak;
RbEhlmYyBImux anchorage device esμInwgkMBs; h rbs;muxkat;. RBIsTaMgmUlEdlman RbEvgepÞr h
Ca anchorage zone srub.
        dUcenHtMbn;enHpSMeLIgedayBIrEpñk³
     - General Zone: karraldalTUeTAéntMbn;enHRsedogKñanwg anchorage zone srub. dUcenH
          RbEvglatsn§wgtambeNþayFñwmesμInwgkMBs;muxkat; h enAkñúgkrNIsþg;dar.
     - Local Zone: tMbn;enHCaRBIsbEnßménebtugEdlB½T§CMuvij nigenABIxagmux anchorage device
          Pøam² nigBI confining reinforcement. emIlépÞqUtenAkñúgrUbTI 4>22 (c) nigTMhMrbs;vaenA
          kñúgrUbTI 4>22 (a). rUbenHbgðajBIkarEbgEckkugRtaMgTaj nigkugRtaMgsgát;enAkñúg local
          zone nig stress contour rbs;vaEdlTTYl)anBI finite element analysis rbs; Rutgers test.

          RbEvgrbs; tMbn;enHCatMélFMCageKkñúgcMeNamTTwgGtibrma b¤RbEvgrbs; anchorage device.
         eKeRCIserIs confining reinforcement eBj anchorage zone edIm,IkarBar bursting nig
splitting EdlekItBIkMlaMgsgát;cMcMnucFMEdlbBa¢Úntamry³ anchorage device. elIsBIenH eKRtUvRtYt




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                           131
T.Chhay




Binitü bearing stress enAelIebtugkñúg local zone EdlbNþalmkBIkMlaMgsgát;d¾FMenH edIm,IFana
favaminFMCag allowable compressive bearing stress rbs;ebtug.




Flexural Design of Prestressed Concrete Elements                                 132
NPIC




         !> viFIKNnasMrab; General Zone Design Method for General Zone
         eKmanviFIbIEdlGacKNna anchorage zone
     -    Linear Elastic Stress analysis approach Including Use of Finite Element:                       viFIenH
       Bak;B½n§nwgkarKNnasßanPaBlMGitrbs;kugRtaMgdUcCa linearly elastic. karGnuvtþén finite
       element method manPaBlM)akxøHkñúgkarbegáItKMrUrEdlmansñameRbHd¾RtwmRtUvenAkñúgebtug.

       Et CamYynwgkarsnμt;d¾smRsbmYyeKGacTTYl)annUvlT§plEdlGacTTYlyk)anmYy.
     - Equilibrium-Based Plasticity Approach dUcCa Strut-and Tie Method: viFI strut-and-tie
       pþl;nUvKnøgd¾l¥rbs;kMlaMgeRbkugRtaMgEdlmanTMrg;dUcCaeRKOgbgÁúM truss EdlkMlaMgkñúgrbs;va
       eKarBeTAtameKalkarN_lMnwgTUeTA. Ultimate load EdlBüakrN_edayviFIenHTTYlykBI
       kar)ak;énbgÁúM strut b¤ tie NamYy. viFIenHEtgEtpþl;nUvlT§plEdlmansuvtßiPaBsMrab;kargar
       Gnuvtþn_.
     - Approach Method: viFIenHGnuvtþsMrab;muxkat;ctuekaNEdlmindac;.

         @> viFIviPaK Linear Elastic sMrab;kMNt; Confining Reinforcement
             Linear Elastic Analysis Method for Confining Reinforcement Determination
         Anchorage zone           rgnUvkugRtaMgbIkMritdUcbgðajenAkñúgrUbTI 4>22   (a)   nig   stress contour
zone:
     -    High bearing stress   BImux anchorage device. eKRtUvkarebtugEdlmankarRtYtBinitüd¾Rtwm
         RtUvedIm,IkarBarkar)ak;edaykugRtaMgsgát;énkMNat;rgkarsgÁt;dUcbgðajenAkñúgRkLaépÞqñÚtén
         rUbTI 4>22(a) nig 4>22(c).
    - Extensive tensile-bursting stress enAkñúg tensile contour areas EdlEkgeTAnwgG½kSrbs;
         tendon dUcbgðajenAkñúgrUbTI 4>22(a) nig (b) nig enAkñúgrUbTI 4>23(b).

    - kugRtaMgsgát;FMenAkñúgEdnkugRtaMg (stress field) RkLaépÞ D nig E enAkñúgrUbTI 4>22(a).
        eKGaceRbI linear elastic stress analysis edIm,ITay)annUvTItaMgrbs;sñameRbH nigpþl;nUv
kar)a:n;sμan Rbhak;RbEhlmYyEdlGacTTYlyk)anBIrMhUrkugRtaMgeRkayeBleRbH. RkLaépÞEdk
TajRtUv)ankMNt;edIm,ITb;Tl;kMlaMgTajsrubEdlTTYl)anBIkarRbmUlpþMúkugRtaMgTajenAkñúgebtug.
eKRtUvbEnßmEdkrgkarsgát;enAkñúgtMbn;sgát; RbsinebIkMlaMgsgát;FM.


karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                                        133
T.Chhay




                                                 EdlbgðajenAkñúgrUbTI 4>22 pþl;nUvkarKNnasßan
          Linearly elastic finite element analysis

PaBrbs;kugRtaMgenAkñúg anchorage zone suRkitCag. b:uEnþ CMhanénkarKNnaRtUvkarefr³evlaeRcIn
Cag nigcMNayeRcInCag. lT§plRtUv)ankMNt;edaysarPaBBi)akkñúgkarbegáItKMrUEdlmansñameRbH
enAkñúgebtugd¾RtwmRtUv. eKGaceRbI nonlinear finite element analysis edIm,ITaynUv post-cracking
response.




Flexural Design of Prestressed Concrete Elements                                    134
NPIC




        rUbTI 4>23 bgðajBI linearly elastic end block forces. vabgðajBIkMlaMg end-block
nigkugRtaMgsrésEdlbNþalBIkMlaMgeRbkugRtaMg Pi k¾dUcCatMélm:Um:g;Bt;sMrab;kMBs;eRbH y EdlGac
ekItmannImYy² BIelI)atFñwm CD . tMélm:Um:g;Gtibrma M max kMNt;TItaMgén horizontal bursting
crack. m:Um:g;enHRtUv)anTb;Tl;edaym:Um:g; couple EdlekItBIkMlaMgTaj T én vertical anchorage

zone reinforcement nigkMlaMgsgát; C Edlpþl;eday end-block concrete xN³EdlkMlaMgkat;tam

Tisedk V enARtg; crack spite surface RtUv)anTb;Tl;eday aggregate interlock force.
tamkarGegát Edkkg vertical anchorage zone Edlpþl;kMlaMg T RtUv)anEbgEckelItMbn;Edlman
TTwg h / 2 BIépÞxagcugrbs;Fñwm EdldUcCa X enAkñúgrUbTI 4>23 GacERbRbYlBI h / 5 eTA h / 4 .
        BIsmIkarlMnwgrbs;m:Um:g;
                         M max
                   T=                                                              (4.13)
                         h−x
ehIyRkLaépÞrbs;EdkbBaÄrEdlRtUvkarsrubkøayCa
                           T
                    At =                                                           (4.14)
                           fs
EdlkugRtaMgEdk f s EdlRtUv)aneRbIenAkñúgkarKNnaenHminRtUvFMCag 20,000 psi(138.5MPa ) sMrab;
karRKb;RKgTTwgsñameRbH.
        Casegçb nigCMnYseGay linear elastic finite element analysis eKGacTTYldMeNIrkar
Edl)anENnaM eTaHbICaminminsUvsuRkitdUckarKNna anchorage y:aglMGitEdlnwgpþl;eGayenA
kñúg]TahrN_ 4>6 Epñk (a) k¾eday.

        #> Strut-and-Tie Method for Confining End-Block Reinforcement
        Strut-and-tie concept KWQrelI plasticity approach Edl)a:n;RbmaNkMlaMgenAkñúg

anchorage zone edayes‘rIén strut sgát;Rtg; nig tie TajRtg;EdlP¢ab;KñaRtg;cMnucmYyEdleKehAfa

node edIm,IkøayeTACa truss Éktþa. kMlaMgsgát;RtUv)anTb;Tl;eday plastic compressive strut

ehIykMlaMgTajRtUv)anTb;Tl;edayEdkminEmneRbkugRtaMg b¤edayEdkeRbkugRtaMg. Yield strength
rbs; anchorage confining reinforcement RtUv)aneRbIedIm,IkMNt;RkLaépÞsrubrbs;EdkEdlcaM)ac;
eRbIenAkñúg anchorage block. rUbTI 4>24 bgðajBIkMlaMgeRbkugRtaMgcMp©it nigcakp©it P BImuxcMnucén
karGnuvtþkMlaMgTaMgenHtamry³ anchorage device eTAkan;cugén general zone EdlkugRtaMgkøayCa
rayesμItameKalkarN_ St. Venatn.

karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                           135
T.Chhay




Flexural Design of Prestressed Concrete Elements   136
NPIC




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;   137
T.Chhay




Flexural Design of Prestressed Concrete Elements   138
NPIC




        eRkayBIekItmansñameRbHKYreGaycab;GarmμN_mk KnøgkugRtaMgsgát;enAkñúgebtug)anRbmUlpþúM
KñaeTACaExSRtg;EdlGacKitdUcCa straight compressive strut rgkMlaMgsgát;tamG½kSmYy. Srut TaMg
enHnwgkøayCacMENkrbs; truss ÉktþaEdkkugRtaMgTajemRtUv)anKitCa tension tie enAkñúg truss Éktþa
EdlmanTItaMgrbs; node RtUv)ankMNt;edayTisedArbs; compression strut. rUbTI 4>25 (a) bgðajBI
karbegáIt strut nigrUbTI 4>25(b) bgðajBI truss EdlekItBI strut-and-tie sMrab; multiple anchorage
enAkñúgmuxkat;GkSr T. rUbTI 2>26 segçbBIKMnitén strut nig tie enAkñúg anchorage zone. rUbTI
2>27 bgðajBI standard strut-and-tie truss sMrab;krNIcMp©it nigcakp©iténmuxkat;tan; nigmuxkat;man
søabEdleGayeday ACI 318-99 Code.
        eKsnμt; tension tie enAkñúg truss sib,nimitþmancMgay h / 2 BI anchorage device. karsnμt;
enHGacGnuvtþeTA)anCamYynwgTItaMgrbs;kMlaMgTaj T enAkñúgrUbTI 4>23 én elastic stress-analysis

karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                           139
T.Chhay




approach. Epñk (b) én]TahrN_ 4>6 bgðajBIKnøgEdlsnμt;sMrab; anchorage zone enAkñúg I-beam
EdleKBicarNa.
                                         ⎛ a⎞
                     Tburst = 0.25 ∑ Psu ⎜1 − ⎟                                   (4.15a)
                                         ⎝ h⎠
                     d burst = 0.5(h − 2e )                                       (4.15b)
Edl       ∑ Psu =plbUkénkMlaMg tendon emKuNsrub
        a = kMBs;rbs; anchorage device b¤RkumeTalén closely-spaced device

        e = cMNakp©itén anchorage device b¤Rkumén closely-spaced device BITIRbCMuTMgn;rbs;mux

            kat;Fñwm
        h = kMBs;rbs;muxkat;

       eKeRbI anchorage device Ca closely-spaced device RbsinebIKMlatBIG½kSeTAG½kSrbs;vamin
FMCag 1.5 dgénTTwgrbs; anchorage device.
          4. Allowable Bearing Stresses
                    GnuBaØatGtibrmaenARtg; anchorage device seating minRtUvFMCagtMél
          Bearing stress

RsedogKñaBIrEdlTTYl)anBIsmIkar 4.16a nig 4.16b dUcxageRkam³
                     f b ≤ 0.7φf 'ci     A / Ag                                   (4.16a)
                     f b ≤ 2.25φf 'ci                                             (4.16b)
Edl           kMlaMg tendon emKuNGtibrma Pu EckCamYynwg effective bearing area Ab
           fb =

        f 'ci = ersIusþg;sgát;rbs;ebtugenAeBlrgkugRtaMg

        A = RkLaépÞGtibrmaéncMENkrbs;épÞEdlRTEdlmanragFrNImaRtRsedogKñanwgRkLaépÞrg

              bnÞúk ehIyRtYtsIuKña.
        Ag = gross area rbs; bearing plate

        Ab = effective net area rbs; bearing plate EdlRtUv)anKNnaedaydkRkLaépÞ As BIRkLa

               épÞRbehagenAelI bearing plate.
smIkar 4.16a nig 4.16b mann½yEtRbsinebIeKdak; general zone reinforcement nigRbsinebIRbEvg
énkarlatsn§wgrbs;ebtugtambeNþayG½kSrbs; tendon BImux anchorage device esμIBIrdgRbEvgén
local zone y:agtic.




Flexural Design of Prestressed Concrete Elements                                     140
NPIC




      X> KNnaEdk End Anchorage sMrab;FñwmeRbkugRtaMgrgkarTajCaeRkay
         Design of End Anchorage Reinforcement for Post-tensioned Beams
]TahrN_ 4>6³ KNna end anchorage reinforcement sMrab; post-tensioned beam enAkñúg]TahrN_
4>2 EdleGayTMhM RbePT nigkarBRgayEdk. eRbIebtugTMgn;Fmμta f 'c = 5,000 psi(34.5MPa) .
       snμt;facugFñwmCabøúkctuekaNEdllUtcUleTAkñúgElVg 40in.(104cm) BIeRkay anchorage
device bnÞab;mkkat;bnßykMras;RTnug 6in. . edaHRsaybBaðaedayeRbI (a) linear elastic stress

analysis method, (b) plastic strut-and-tie method. KUrKMrU truss Edl)ankMNt;.

dMeNaHRsay³
(a) edaHRsayeday linear elastic stress method³
!> begáItKMrUén tendon edaymancMNakp©it ee = 12.49in.(317mm) BI]TahrN_ 4>2.
          cb = 18.84in.
dUcenHcMgayBIsrésxageRkamrbs;Fñwm = cb − ee = 6.35in.(161mm)
sMrab;cMgayTIRbCMuTMgn;rbs; tendon Ggát;p©it 1 / 2in. cMnYn 13 edIm = 6.35in. BIsrésxageRkamFñwm
sakl,gkartMerobCaCYredkdUcxageRkam
         CYredkTI 1³ 5 tendon enAcMgay 2.5in
         CYredkTI 2³ 5 tendon enAcMgay 7.0in.
         CYredkTI 3³ 3 tendon enAcMgay 11.5in.
cMgayénTIRbCMuTMgn;rbs; tendon = 5 × 2.5 + 5 ×13.0 + 3 × 11.5 ≅ 6.35in.
                                                 7
                                                                                   O.K.

@> Ultimate forces enAkñúgCYredkén tendon nig bearing capacity rbs;ebtug
         kMlaMg Pu1 CYredkTI 1³ 5 × 0.153 × 270,000 = 206,550lb(919kN )
         kMlaMg Pu 2 CYredkTI 2³ 5 × 0.153 × 270,000 = 206,550lb(919kN )
         kMlaMg Pu3 CYredkTI 3³ 3 × 0.153 × 270,000 = 123,930lb(551kN )
#> Elastic analysis énkMlaMg
         EckkMBs;FñwmCacMerokEdlmankMBs; 4in. dUcbgðajenAkñúgrUbTI 4>28(a) nigsnμt;fakugRtaMg
ebtugrbs;cMeroknImYy²esμInwgkugRtaMgenARtg;G½kSrbs;cMerokenaH. bnÞab;mkKNnakMeNInm:Um:g;Edl
bNþalBIkugRtaMgxagkñúg nigkMlaMgeRbkugRtaMgxageRkA Pi eFobnwgbøg;edknImYy²edIm,IkMNt; net
moment enAelImuxkat;. Net moment GtibrmanwgkMNt;TItaMgrbs; potential horizontal bursting

crack nigEdkEdlRtUvdak;edIm,IkarBarsñameRbHEdlnwgekItmanenaH. edayeRbIsBaØabUk (+) sMrab;


karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                             141
T.Chhay




m:Um:g;vilRsbRTnicnaLika. BI]TahrN_ 4>2 kMlaMgeRbkugRtaMgedImmuneBlxatbg;KW Pi = 376,110lb
(1,673kN ) . BIrUbTI 4>28 m:Um:g;xagkñúgebtugenARtg;bøg; 4in. BIsrésxageRkamKW
                     M c 4 = 2,117 × 4 × 18 × (2in.) = 304,848in. − lb

                            = 0.3 ⋅ 10 6 in. − lb(34.4kN .m )
          nigenARtg;bøg; 8in. BIsrésxageRkamKW
                                                                    18 + 10
                     M c8 = 2,117 × 4 × 18 × (6in.) + 1,851 × 4 ×           × (2in.)
                                                                       2
                            = 1,121,856in. − lb = 1.12 ⋅ 10 6 in. − lb(127 kN .m )




          m:Um:g;kMlaMgeRbkugRtaMgenARtg;bøg; 8in. BIsrésxageRkamKW
                     M c8 = 376,110 × (8 − 6.35) = −620,582in. − lb

                            = −0.62 ⋅ 10 6 in. − lb(70.1kN .m )
          Net moment KW = 1.12 ⋅106 − 0.62 ⋅106 = 0.50 ⋅106 in. − lb(56.6kN .m)
tamrebobdUcKña eyIgGacrk net moment sMrab;cMerokd¾éTeTot ehIytMélrbs;vaRtUv)anerobdak;enA
kñúgtarag 4>5. BItaragenH net moment GtibrmaKW + M max = +0.75 ⋅106 in. − lb(84.6kN .m)
enARtg;bøg;edk 6.35in. BIsrésxageRkamrbs;Fñwm (bursting potential crack effect) ehIy

Flexural Design of Prestressed Concrete Elements                                       142
NPIC




− M max = −0.20 ⋅ 106 in. − lb       enARtg;bøg; 24in.(64cm) BIxagelIsrésxageRkamrbs;Fñwm (spalling
potential crack effect)     .




$> KNna anchorage reinforcement
       BIsmIkar 4>11 nigedaysnμt;vaG½kSrbs;kMlaMgTajbBaÄr T KWenARtg;cMgay x ≈ 15in.
eyIgTTYl)an
                         M max 0.75 ⋅ 106
                   T=         =           = 30,000lb(133kN )
                         h−x    40 − 15
         edayGnuBaØatkugRtaMgEdkGtibrma         f s = 20,000 psi   ¬kUdGnuBaØat 0.60 f y = 36,000 psi ¦
         Bursting zone reinforcement KW

                    At =
                           Tb 30,000
                              =
                           f s 20,000
                                                  (
                                      = 1.50in 2 968mm 2    )
dUcenH sakl,gEdkkgbiTCit #3 ³ (As = 2 × 0.11 = 0.22in.2 )
       cMnYnEdkkgEdlRtUvkar = 1..50 = 6.82 kg
                                0 22
eRbIEdkkg #3 cMnYn 6 kg bEnßmBIelIEdkkgsMrab;Tb;nwgkMlaMgkat;.
karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                                     143
T.Chhay



Spalling zone force
                         − 0.2 × 106
                     Ts =            = 8,000lb
                            40 − 15
dUcenH                   T
                     As = s =
                                 8,000
                          f s 20,000
                                             (        )
                                       = 0.40in.2 250mm 2

dUcenH eyIgman
        cMnYnEdkkg #3 EdlRtUvkar = 0..40 = 1.82 kg
                                    0 22
eRbIEdkkg #3 cMnYnBIrkgbEnßmeTot.
dUcenH cMnYnEdkkgsrub = 6.82 + 1.82 + 4 = 12.64 kg
        eRbIEdkkgbiTCit #3 cMnYn 12 kg. dak;EdkkgbBa©ÚleTAkñúgtMbn;sgát;enAkñúgrUbTI 4>23.
        dak;Edkkg #3 KMlatBIKña 3in. edayKitBIG½kSeTAG½kS edayEdkkgTImYycab;epþImCamYynwgKM
lat 3in. BIcugFñwm. ehIy dak;Edk #3 RbEvg 10in. cMnYn 4 edImEdlmanKMlatBIKña 3in. KitBIG½kSeTA
G½kS nigmanKMlat 2in. BIépÞxagcugRtg;TItaMg anchorage edaysarsñameRbHGacekItmantamTis
bBaÄr nigTisedk. RbsinebImantMrUvkarrbs;plitkr eKRtUvbEnßm spiral reinforcement BIxageRkam
anchor.



(b) edaHRsayeday plastic Strut-and-tie method³
!> begáItKMrUén tendon EdlmancMNakp©it ee = 12.49in.(317mm)
         BI]TahrN_ 4>2 cb = 18.84in. dUcenHcMgayBIsrésrbs;Fñwm = cb − ee = 6.35in.(161mm)
         sMrab;cMgayTIRbCMuTMgn;rbs; strand Ggát;p©it 1 / 2in. cMnYn 13 edImEdlesμInwg 6.35in BIsrés
xageRkamrbs;Fñwm sakl,gkartMerob tendon CaCYredkEdlmancMgayBIsrésxageRkamdUcteTA³
                  CYredkTI 1³ 5 tendon enARt;g 2.5in.
                  CYredkTI 2³ 5 tendon enARt;g 7.0in.
                  CYredkTI 3³ 3 tendon enARt;g 11.5in.
         cMgayénTIRbCMuTMgn;rbs; tendon = 5 × 2.5 + 5 ×13.0 + 3 ×11.5 ≅ 6.35in. O.K.
                                                          7


@> Ultimate force enAkñúgCYredkrbs; tendon nig bearing capacity rbs;ebtug
         kMlaMg Pu1 CYredkTI 1³ 5 × 0.153 × 270,000 = 206,550lb(919kN )
         kMlaMg Pu 2 CYredkTI 2³ 5 × 0.153 × 270,000 = 206,550lb(919kN )
         kMlaMg Pu3 CYredkTI 3³ 3 × 0.153 × 270,000 = 123,930lb(551kN )

Flexural Design of Prestressed Concrete Elements                                           144
NPIC




         kMlaMgsgát; ultimate srub = 206,550 + 206,550 + 123,930 = 537,830lb(2,389kN )
         RkLaépÞsrubrbs; rigid bearing plate EdlRT Supreme 13-chucks anchorage device
                 = 14 × 11 + 6 × 4 = 178in.2 ( cm 2 )
                                             113

         Bearing stress Cak;Esþg f b =           = 3020 psi(20.8MPa )
                                        537,380
                                          178
         BIsmIkar 4.16(a) nig (b), bearing pressure GnuBaØatGtibrmaenAelIebtugKW
                    f b ≤ 0.7φf 'ci    A / Ag

                    f b ≤ 2.25φf 'ci
         snμt;fa ersIusþg;ebtugdMbUgenAeBlEdlrgkugRtaMgKW   f 'ci = 0.75 f 'c

                   = 0.75 × 5,000 = 7,750 psi
         RkLaépÞcMp©it A rbs;ebtugEdlman bearing plate ≅ 18 ×14 + 10 × 7 = 322in.2
         Bearing stress GnuBaØat f b = 0.70 × 0.90 × 3,750
                                                           322
                                                               = 3,178 psi > 3,020 psi         O.K.
                                                           178
         Bearing stress BIsmIkar 4.14(b) Gt;lub.

#> KUr strut-and-tie model
         RbEvgcMgaysrub a enAkñúgrUbTI 4>25 rvagkMlaMg Pu1 nig Pu3 = 11.5 − 2.5 = 9.0in.
         dUcenHcMgay a / 2 BImux anchorage = 9.0 / 2 = 4.5in.
         sg; strut-and-tie edaysnμt;vadUcbgðajenAkñúgrUbTI 4>29.
         TMhMFrNImaRtsMrab;rkbgÁúMkMlaMgedkBI tie 1 − 2 nig 2 − 3 EdlmantMélkUtg;sg; 26.5 / 15.5
nig 13.0 / 15.5 erogKña. BIsþaTic viPaK truss enAkñúgrUbTI 4>29 edayTTYl)ankMlaMgGgát;dUcxag
eRkam³
                                            = 211,982lb(942kN ) rgkarTaj
                                       26.5
                 tie 1 − 2 = 123,930 ×
                                       15.5
                                             = 173,235lb(728kN ) rgkarTaj
                                        13
                 tie 2 − 3 = 206,550 ×
                                       15.5
         eRbItMélEdlFMCagkñúgcMeNamtMélTaMgBIredIm,IeRCIserIsEdkkgbiTCitEdlrgkarTaj.
         sakl,gEdkkg #3 Edlman tensile strength kñúgmYykg = φf y Av
                   = 0.90 × 60,000 × 2(0.11) = 11,880lb

         cMnYnEdkkgEdlRtUvkar     =
                                    211,982
                                     11,880
                                              = 17.8




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                              145
T.Chhay




sMrab;EdkkgrgkarTaj a − b − c enAkñúgrUbTI 4>29 eRbIkMlaMg Pu = 173,235lb edIm,Idak;EdkkgbBaÄr
#4 BIxagmux anchorage device. cab;epþImEdkkgTImYyenAcMgay 1 1 in. BIxagcug rigid steel plate
                                                               2

EdlepÞrkMlaMgBI anchorage device eTAebtug.




               cMnYnEdkkg = 0.9 × 60,000 × 2(0.20) = 8.0
                                     173,235


       eRbIEdkkg #4 cMnYn 8 kgEdlmancMgayBIKña 1 14 in. BIG½kSeTAG½kS ¬12.7mm @ 32mm ¦ Edl
manEdkkgTImYycab;epþImenAcMgay 1 12 in. BIxagmux anchorage device.
       eKRtUvkarEdkkgEt 13 CMnYseGay 17.8 Edl)anBIkarKNna edaysarEpñkrbs;tMbn;RtUv)an
Tb;Tl;edayEdkkg #4 . eRbIEdkkg #3 cMnYn 13 EdlmanKMlatBIKña 2 12 in. BIG½kSeTAG½kS ¬12.7mm
@ 57 mm ¦ bnÞab;BIEdkkg #4 EdlmancMgaysrubTaMgGs; 40in.(104cm ) .

       cMNaMfaviFIenHRtUvkar confining tie eRcInCag elastic solution kñúgEpñk (a). rUbTI 4>30
bgðajBI anchorage zone confining reinforcement lMGitEdl)anBI strut-and-tie analysis.

Flexural Design of Prestressed Concrete Elements                                     146
NPIC




6> KNnaFñwmsmasrgkarBt;                       Flexural Design of Composite Beams
        muxkat;smas FmμtaCaeRKOgbgÁúMeRbkugRtaMgcak;Rsab;EdlenABIelIva kMralxNÐRtUv)ancak;enA
kardæan ehIyvaeFVIkarCamYyKña ¬rUbTI 4>31¦. eBlxøH eKTl; prestressed element kñúgGMLúgeBlcak;
nigEfTaM situ-cast top slab. kñúgkrNIEbbenH TMgn;kMralxNÐeFVIGMeBIEtelImuxkat;smas Edlmanm:U
Dulmuxkat;FMCagmuxkat;cak;Rsab;. dUcenH karKNnakugRtaMgebtugRtUv)anykmkKitenAkñúgkarKNna.
karEbgEckkugRtaMgebtugEdlbNþalBIGMeBIsmasRtUv)anbgðajenAkñugrUbTI 4>32.




    k> krNIkMralxNÐminmanTl;                    Unshored Slab Case
         BIsmIkar 4.2a nig b smIkarkugRtaMgsrésebtugxageRkAbMputmuncak;kMralxagelIKW
                             Pe ⎛ ect ⎞ M D + M SD
                    ft =−       ⎜1 − 2 ⎟ −                                        (4.17)
                             Ac ⎝   r ⎠     St


karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                            147
T.Chhay



                        P ⎛ ec ⎞ M + M SD
nig             f b = − e ⎜1 + 2b ⎟ + D
                        Ac ⎝   r ⎠         Sb
                                                                                    (4.18)

Edl S t nig Sb Cam:UDulmuxkat;rbs;muxkat;cak;Rsab;Etb:ueNÑaH ehIy M SD Cam:Um:g;dak;BIelIbEnßm
dUcCaebtugkMral.
        eRkayeBlkMralcak;enAnwgkEnøgkkrwg ehIyvaGaceFVIkarlkçN³smasmk vaGacmanm:UDul
muxkat; Sct nig Scb FMCagmun CamYynwgkarrMkileLIgelIeTArksrésxagelIrbs;ExS cgc. kugRtaMg
srésebtugcUlrYmCamYynwgsmIkar 4.17 nig 4.18 sMrab;srésxagelI nigxageRkamrbs;Epñkcak;
Rsab;rbs;muxkat;smas ¬nIv:U AA enAkñúgrUbTI 4>32(e)¦ KW
                               ⎛ ect ⎞ M D + M SD M CSD + M L
                                Pe
                     ft =−     ⎜1 − 2 ⎟ −        −                                  (4.19a)
                               ⎝Ac  r ⎠      St       Sc t

                            P ⎛ ec ⎞ M + M SD M CSD + M L
nig                  f b = − e ⎜1 + 2t ⎟ + D
                            Ac ⎝   r ⎠       Sb
                                                 +
                                                      S cb
                                                                                 (4.19b)

Edl M CSD CabnÞúkefrsmasdak;BIelIbEnßmeRkayeBldMeLIg dUcCaenAeBleFVIkar. ehIy Sct nig
Scb Cam:UDulmuxkat;rbs;muxkat;smasenAnIv:UénsrésxagelI nigxageRkam erogKña rbs;muxkat;cak;

Rsab;.




       kugRtaMgenAnIv:UsrésxagelI nigxageRkamrbs;kMralcak;enAnwgkEnøg ¬nIv:U BB nig AA rbs;mux
kat; 4>32 (e)¦ KW
                                M CSD + M L
                     f ts = −           t
                                                                                    (4.20a)
                                      S cb


Flexural Design of Prestressed Concrete Elements                                       148
NPIC



                              + ML
nig                      M
                 f bs = − CSD
                           Sbcb
                                                                              (4.20b)

Edl M CSD + M L Cam:Um:g;bEnßmEdlekIneLIgeRkayeBlekItmanskmμPaBsmas ehIy Scb nig Sbcb
                                                                                t


Cam:UDulmuxkat;rbs;muxkat;smassMrab;srésxagelI nigxageRkam AA nig BB erogKña enAkñúgrUbTI
4>32(e).

    x> krNIkMralxNÐTl;eBj                          Fully Shored Slab Case
       kñúgkrNIkMralcak;enAkEnøgRtUv)anRTeBjrhUtdl;ekItmanskmμPaBsmas kugRtaMgsrés
ebtugmuneBlRT nigmuneBlcak;ebtugkMralxagelIEdlkøayBIsmIkar 4.18 nig 4.19KW
                              ⎛ ect ⎞ M D
                             Pe
                    ft =−     ⎜1 − 2 ⎟ − t                                        (4.21a)
                              ⎝
                             Ac   r ⎠ S
                           P ⎛ ec ⎞ M
nig                 f b = − e ⎜1 + 2b ⎟ + D
                           Ac ⎝   r ⎠ Sb
                                                                        (4.21b)

eRkayeBlkMralxagelIcak;rYc ehIyskmμPaBsmasekItmanenAeBlebtugkkrwg smIkar 4.19a nig b
sMrab;FñwmEdlRtUv)anRTeRkayeBldMeLIgnwgkøayeTACa
                              ⎛ ect ⎞ M D M SD + M CSD + M L
                             Pe
                    ft =−     ⎜1 − 2 ⎟ − t −                                      (4.22a)
                              ⎝
                             Ac    r ⎠ S           t
                                                  Sc
                           P ⎛ ecb ⎞ M       M + M CSD + M L
nig                 f b = − e ⎜1 + 2 ⎟ + D + SD
                           Ac ⎝   r ⎠ Sb         S cb
                                                                                    (4.22b)

cMNaMfaeKRtUveFVIkarRtYtBinitüsMrab;kugRtaMgkat;tamTisedkEdlekItmanenARtg;épÞb:HrvagebtugEdl
cak;enAnwgkEnøg CamYynwgFñwmcak;Rsab; ¬nwgbgðajenAkñúgCMBUk 5¦.

    K> TTwgsøabRbsiT§PaB                      Effective Flange Width




karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt;                                         149
T.Chhay




       edIm,IkMNt;skmμPaBsmastamRTwsþIEdlTb;Tl;kugRtaMgBt; eKRtUveFVIkarkMNt;TTwgkMralxNÐ
EdlGaccUlrYmy:agmanRbsiT§PaBenAkñúgekIneLIgPaBrwgRkaj (stiffness) EdlTTYl)anBIskmμPaB
smas.
       rUbTI 4>33 nigtarag 4>6 eGaynUvtMrUvkarrbs; ACI nig AASTHO sMrab;kMNt;TTwgsøabxag
elIRbsiT§PaB (effective top slange width) rbs;muxkat;smas. RbsinebIersIusþg;rbs;ebtugEdlcak;
BIxagelIxusBIersIusþg;rbs;muxkat;cak;eRsc eKRtUvEktMrUvTTwg b edayKitBIm:UDuleGLasÞicxusKñarbs;
ebtugTaMgBIr edIm,IFanafabMErbMrYlrageFobrbs;sMPar³TaMgBIrenARtg;épÞb:HdUcKña. TTwgEksMrYlrbs;
kMralxagelIsMrab;KNnam:Um:g;niclPaBsmas I cc KW
                     bm =
                             Ect
                                 (b ) = ncb                                          (4.23)
                             Ec
Edl            m:UDuleGLasÞicrbs;ebtugEdlcak;BIxagelI
           Ect =

          Ec = m:UDuleGLssÞicrbs;ebtugcak;Rsab;

enAeBlEdlkMNt;TTwgEksMrYl bm rYcehIy eKRtUvBicarNaersIusþg;ebtugrbs;muxkat;smasTaMgmUlCa
ersIusþg;EdlFMCag.




7>      Summary of Step-by-Step Trial-and Adjustment Procedure
       for the Service-Load Design of Prestressed member
          !> eGaynUvGaMgtg;sIuetbnÞúkefrEdldak;BIelIbEnßm WSD / GaMgtg;sIuetbnÞúkGefr WL / RbEvg
             kMNt; nigkMBs;kMNt;/ ersIusþg;sMPar³ f pu / f 'c / RbePTebtug nigeBlxøHRbePTeRbkug
             RtaMg dUcCaTajCamun b¤CaeRkay.
Flexural Design of Prestressed Concrete Elements                                       150
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements

Mais conteúdo relacionado

Mais procurados

Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footingLatif Hyder Wadho
 
Calcular las fuerzas de aceleración o frenado
Calcular las fuerzas de aceleración o frenadoCalcular las fuerzas de aceleración o frenado
Calcular las fuerzas de aceleración o frenadoJeancarlo Medina
 
Plastic analysis
Plastic analysisPlastic analysis
Plastic analysisAdnan. Ali
 
PPT_MoRT&H Section 900 - FINAL.pptx
PPT_MoRT&H Section 900 - FINAL.pptxPPT_MoRT&H Section 900 - FINAL.pptx
PPT_MoRT&H Section 900 - FINAL.pptxgthpmc
 
Clase 11 precipitaciones y caudal de diseño
Clase 11 precipitaciones y caudal de diseñoClase 11 precipitaciones y caudal de diseño
Clase 11 precipitaciones y caudal de diseñoUniversidad Libre
 
Agua potable para_poblaciones_rurales_roger aguero pittman
Agua potable para_poblaciones_rurales_roger aguero pittmanAgua potable para_poblaciones_rurales_roger aguero pittman
Agua potable para_poblaciones_rurales_roger aguero pittmanYANETH YOVANA
 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test pptsayan sarkar
 
Manual de hidrologia mtc
Manual de hidrologia mtcManual de hidrologia mtc
Manual de hidrologia mtcocampo369
 
3. cargas-vehiculares.
3. cargas-vehiculares.3. cargas-vehiculares.
3. cargas-vehiculares.Andy AH
 
La ingeniería civil y los servicios ambientales: el manejo de residuos en Mé...
La ingeniería civil y los servicios ambientales: el manejo de residuos en Mé...La ingeniería civil y los servicios ambientales: el manejo de residuos en Mé...
La ingeniería civil y los servicios ambientales: el manejo de residuos en Mé...Academia de Ingeniería de México
 
PPT Concrete Mix Design ACI 211.1-91.pdf
PPT Concrete Mix Design ACI 211.1-91.pdfPPT Concrete Mix Design ACI 211.1-91.pdf
PPT Concrete Mix Design ACI 211.1-91.pdfAlvionaKaban
 

Mais procurados (20)

Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
 
Trabajo de concreto i cuerpo
Trabajo de concreto i cuerpoTrabajo de concreto i cuerpo
Trabajo de concreto i cuerpo
 
Calcular las fuerzas de aceleración o frenado
Calcular las fuerzas de aceleración o frenadoCalcular las fuerzas de aceleración o frenado
Calcular las fuerzas de aceleración o frenado
 
Plastic analysis
Plastic analysisPlastic analysis
Plastic analysis
 
VIBROFLOTATION - Ground Improvement - Welcome to a New Era...
VIBROFLOTATION - Ground Improvement - Welcome to a New Era...VIBROFLOTATION - Ground Improvement - Welcome to a New Era...
VIBROFLOTATION - Ground Improvement - Welcome to a New Era...
 
espigones
espigonesespigones
espigones
 
Standard penetration test
Standard penetration testStandard penetration test
Standard penetration test
 
PPT_MoRT&H Section 900 - FINAL.pptx
PPT_MoRT&H Section 900 - FINAL.pptxPPT_MoRT&H Section 900 - FINAL.pptx
PPT_MoRT&H Section 900 - FINAL.pptx
 
T beam TYPES
T beam TYPEST beam TYPES
T beam TYPES
 
Clase 11 precipitaciones y caudal de diseño
Clase 11 precipitaciones y caudal de diseñoClase 11 precipitaciones y caudal de diseño
Clase 11 precipitaciones y caudal de diseño
 
aci 211_1_91.pdf
aci 211_1_91.pdfaci 211_1_91.pdf
aci 211_1_91.pdf
 
Agua potable para_poblaciones_rurales_roger aguero pittman
Agua potable para_poblaciones_rurales_roger aguero pittmanAgua potable para_poblaciones_rurales_roger aguero pittman
Agua potable para_poblaciones_rurales_roger aguero pittman
 
Plate load test ppt
Plate load test pptPlate load test ppt
Plate load test ppt
 
Cartografia catastral
Cartografia catastralCartografia catastral
Cartografia catastral
 
Manual de hidrologia mtc
Manual de hidrologia mtcManual de hidrologia mtc
Manual de hidrologia mtc
 
Modulo de resilencia en pavimentos
Modulo de resilencia en pavimentosModulo de resilencia en pavimentos
Modulo de resilencia en pavimentos
 
3. cargas-vehiculares.
3. cargas-vehiculares.3. cargas-vehiculares.
3. cargas-vehiculares.
 
La ingeniería civil y los servicios ambientales: el manejo de residuos en Mé...
La ingeniería civil y los servicios ambientales: el manejo de residuos en Mé...La ingeniería civil y los servicios ambientales: el manejo de residuos en Mé...
La ingeniería civil y los servicios ambientales: el manejo de residuos en Mé...
 
PPT Concrete Mix Design ACI 211.1-91.pdf
PPT Concrete Mix Design ACI 211.1-91.pdfPPT Concrete Mix Design ACI 211.1-91.pdf
PPT Concrete Mix Design ACI 211.1-91.pdf
 
Tablas de Referencia
Tablas de ReferenciaTablas de Referencia
Tablas de Referencia
 

Destaque

Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlChhay Teng
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength designChhay Teng
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeChhay Teng
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete elementChhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsChhay Teng
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofChhay Teng
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force methodChhay Teng
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concreteChhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connectionsChhay Teng
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practiceChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
Construction plan
Construction planConstruction plan
Construction planChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 

Destaque (20)

Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength design
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete element
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
Appendix
AppendixAppendix
Appendix
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systems
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
Construction design drawing practice
Construction design drawing practiceConstruction design drawing practice
Construction design drawing practice
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
Appendix
AppendixAppendix
Appendix
 
Construction plan
Construction planConstruction plan
Construction plan
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Euro upe
Euro upeEuro upe
Euro upe
 

Semelhante a Iv.flexural design of prestressed concrete elements

I. basic concepts
I. basic conceptsI. basic concepts
I. basic conceptsChhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bendingChhay Teng
 
Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and framesChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columnsChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
1.introduction
1.introduction1.introduction
1.introductionChhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural membersChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 

Semelhante a Iv.flexural design of prestressed concrete elements (20)

I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and frames
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
4.compression members
4.compression members4.compression members
4.compression members
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
3.tension members
3.tension members3.tension members
3.tension members
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
1.introduction
1.introduction1.introduction
1.introduction
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
8. deflection
8. deflection8. deflection
8. deflection
 
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍
 

Mais de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Mais de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

Iv.flexural design of prestressed concrete elements

  • 1. T.Chhay IV. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; Flexural Design of Prestressed Concrete Elements 1> esckþIepþIm Introduction kugRtaMgBt;CalT§plénbnÞúkxageRkA nigm:Um:g;Bt;. kñúgkrNICaeRcIn vaCaGñkkMNt;kñúgkar eRCIserIsTMhMFrNImaRtrbs;ebtugeRbkugRtaMgedayminKitfavargkarTajCamun (pretensioned) b¤rg karTajCaeRkay (post-tensioned) eT. dMeNIrkarKNnacab;epþImCamYynwgkareRCIserIsmuxkat; bzm nigedaykarsakl,g nigkarEktMrUveKnwgTTYl)anmuxkat;cugeRkayCamYynwgTMhMlMGitrbs;muxkat; ehIynwgTMhM nigKnøgrbs;EdkeRbkugRtaMg. muxkat;RtUvbMeBjnUvkarkMNt;rbs;kugRtaMgBt;EdlRtUvkar rbs;ebtug nigEdk. bnÞab;BIenH vaRtUv)anviPaK nigbMeBjktþamYycMnYneTotdUcCa lT§PaBrgkarkat; lT§PaBrgkarrmYl PaBdab nigsñameRbH. edaysarTinñn½ysMrab;karviPaKxusKñaBITinñn½yEdlcaM)ac;sMrab;karKNna karKNnaTaMgGs;Ca karviPaK. dMbUgeKsnμt;lkçN³muxkat;FrNImaRtEdlRtUvrgeRbkugRtaMg nigbnÞab;mkeKcab;epþÍmkMNt; faetImuxkat;GacrgkMlaMgeRbkugRtaMg nigkMlaMgGnuvtþn_xageRkA)anedaysuvtßiPaBb¤k¾Gt;. dUcenHeyIg RtUvyl;BIeKalkarN_mUldæanénkarviPaK nigkarKNnamuxkat;EdlmanlkçN³sMrYly:agxøaMgEdl)an ENnaMkñúgemeronenH. dUc)aneXIjBICMBUkTI1 lkçN³emkanicmUldæanrbs;sMPar³ eKalkarN_lMnwgrbs; m:Um:g; couple xagkñúg nigeKalkarN_eGLasÞicéntMrYtpl (superposition) RtUv)aneRbIenARKb;dMNak; kalénkardak;bnÞúk. eKKNnamuxkat;ebtugGarem:rgkugRtaMgBt;EtkñúgsßanPaBkMNt;énkugRtaMgenAeBl)ak;sMrab; muxkat;EdleRCIserIs RbsinebIvabMeBjnUvtMrUvkard¾éTeTotdUcCa serviceability, lT§PaBkñúgkarkat;/ nigPaBs¥itrvagebtug nigEdk. b:uEnþ kñúgkarKNnaGgát;ebtugeRbkugRtaMg eKcaM)ac;RtUveFVIkarRtYtBinitü bEnßmeTotenAeBlepÞrkMlaMg nigsßanPaBkMNt;enAeBlrgbnÞúkeFVIkar k¾dUcCasßanPaBkMNt;enA eBl)ak;. karRtYtBinitüTaMgenHmansar³sMxan;sMrab;Fanafa sñameRbHedaysarbnÞúkeFVIkarGac ecal)an ehIyeKGacRKb;RKg)annUvT§iBlry³eBlyUrrbs;PaBdab nigPaBekag. eKeRbIsBaØadkedIm,IsMKal;kugRtaMgsgát; ehIyeKeRbIsBaØabUkedIm,IsMKal;kugRtaMgTajenAkñúg muxkat;ebtug. ragekag (convex or hogging shape) rbs;Ggát;bgðajm:Um:g;GviC¢man ehIyragpt (concave or sagging) bgðajmU:m:g;viC¢man dUcbgðajenAkñúgrUbTI 4>1. Flexural Design of Prestressed Concrete Elements 90
  • 2. NPIC mindUcKñaniwgkrNIGgát;ebtugGarem: kugRtaMgrbs;ebtugERbRbYleTAtamdMNak;kalepSg²én kardak;bnÞúkefr nigbnÞúkGefr. xageRkamCakarsegçbénkardak;bnÞúkTaMgenH³ eRkayeBlGnuvtþkMlaMgeRbkugRtaMgedIm Pi kMlaMgenHRtUv)anepÞrBIkabeRbkugRtaMgeTAebtug. TMgn;pÞal;TaMgGs; WD manGMeBIeTAelIGgát;rYmCamYynwgkMlaMgeRbkugRtaMgedIm RbsinebIGgát; enaHRTedayTMrsamBaØ ¬vaminmanTMrenAkNþalElVg¦. bnÞúkefrbEnßmTaMgGs; WSD edayrYmTaMg topping sMrab; composite action RtUv)anGnuvtþ eTAelIGgát;. kMhatbg;kMlaMgeRbkugRtaMgry³eBlxøIbMputekItman EdlnaMeGaymankarkat;bnßykMlaMg eRbkugRtaMg Peo . Ggát;rgnUvbnÞúkeFVIkareBjeljCamYynwgkMhatbg;ry³eBlyUrEdlbNþalmkBI creep, shrinkage nig stand relaxation EdlnaMeTAdl; net prestressing force Pe . bnÞúkelIsEdlmanGMeBIelIGgát;ekItmaneRkamlkçxNÐxøHEdlnaMdl;sßanPaBkMNt;enAeBl)ak;. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 91
  • 3. T.Chhay rUbTI 4>2 bgðajBICMhanénkardak;bnÞúk nigkarBRgaykugRtaMgelImuxkat;EdlRtUvnwgkardak; bnÞúktamCMhannImYy². ehIyrUbTI 4>3 bgðajBIdüaRkambnÞúk-kMhUcRTg;RTay ¬ekag b¤pt¦ sMrab; kardMNak;kalénkardak;bnÞúktaMgBIeBlTTYlT§iBlénTMgn;pÞal;rhUtdl;eBl)ak;. 2> kareRCIserIslkçN³FrNImaRténmuxkat; Selection of Geometrical Properties of Section Components k> eKalkarN_ENnaMTUeTA General Guideline eRkamlkçxNÐbnÞúkeFVIkar FñwmRtUv)ansnμt;famanlkçN³esμIsac; (homogenous) nigeGLasÞic. ehIyeKsnμt; ¬edaysarkarrMBwgTuk¦ fakMlaMgsgát;eRbkugRtaMgEdlbBa©ÚneTAebtugesÞIreFVIeGaysrés rgkarTajrbs;FñwmekItmansñameRbH dUcenHeKcat;Tukmuxkat;FñwmCamuxkat;KμansñameRbH (uncracked Flexural Design of Prestressed Concrete Elements 92
  • 4. NPIC section) . karviPaKkugRtaMgrbs;FñwmeRbkugRtaMgeRkamlkçxNÐTaMgenHminxusKñaBIkarviPaKkugRtaMgrbs; FñwmEdk ¬Edlkan;Etc,as;CagenH KW beam column¦. vaEtgEtmankMlaMgtamG½kSEdlbNþalBI kMlaMgeRbkugRtaMgeTaHbICaman b¤Kμanm:Um:g;Bt;EdlbNþalBIbnÞúkpÞal; b¤bnÞúkxageRkAd¾éTeTotk¾eday. dUc)aneXIjenAkñúgCMBUk1 vaCakarRbesIrEdlKnøgrbs;EdkeRbkugRtaMgcakp©itenARtg;muxkat; eRKaHfñak; dUcCamuxkat;kNþalElVgsMrab;FñwmTMrsamBaØ nigmuxkat;elITMrsMrab;FñwmCab;. RbsinebIeK eFVIkareRbobeFobrvagmuxkat;ctuekaN muxkat;EdlmansøabminsIuemRTImanRbsiT§PaBCagedaykareRbI R)as;ebtug nigkarRbmUlpþúMebtugenAkñúgtMbn;sgát;énmuxkat;EdleKRtUvkarCageK. x> m:UDulmuxkat;Gb,brma Minimum Section Modulus edIm,IKNna nigeRCIserIsmuxkat; CadMbUgeKRtUvkMNt;m:UDulmuxkat;EdlRtUvkar Sb nig S t . RbsinebI³ f ci = kugRtaMgsgát;GnuBaØatGtibrmaenAkñúgebtugeRkayeBlepÞrPøam² munnwgmankMhatbg; = 0.60 f 'ci kugRtaMgTajGnuBaØatGtibrmaenAkñúgebtugeRkayeBlepÞrPøam² munnwgmankMhatbg; f ti = = 3 f 'ci psi (0.25 f 'ci MPa ) ¬eKGacbegáIntMélenHdl; 6 f 'ci psi (0.5 f 'ci MPa ) enARtg;TMrsMrab;Ggát;TMrsmBaئ f c = kugRtaMgsgát;GnuBaØatGtibrmaenAkñúgebtugeRkayeBlepÞrenAeBlrgbnÞúkeFVIkar = 0.45 f 'c b¤ 0.60 f 'c enAeBlGnuBaØatedaykUd f t = kugRtaMgTajGnuBaØatGtibrmaenAkñúgebtugeRkayeBlepÞrenAeBlrgbnÞúkeFVIkar = 6 f 'ci psi (0.5 f 'ci MPa ) ¬eKGacbegáIntMélenHdl; 12 f 'ci psi ( f 'ci MPa ) enA kñúgRbB½n§mYyTis RbsinebIeKRtUvkarKNnaPaBdabry³eBlyUr¦. kugRtaMgsrésxageRkACak;EsþgenAkñúgebtugminGacFMCagkugRtaMgGnuBaØatEdl)anerobrab;xag elIeLIy. edayeRbImuxkat;minsIuemRTIGt;eRbH karsegçbénsmIkarkugRtaMgEdl)anBICMBUk 1EpñkTI 3 sM rab;dMNak;kalénkardak;bnÞúkepSg²mandUcxageRkam³ kugRtaMgenAeBlepÞr Stress at Transfer Pi ⎛ ect ⎞ M D ft =− ⎜1 − 2 ⎟ − t ≤ f ti (4.1a) Ac ⎝ r ⎠ S karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 93
  • 5. T.Chhay Pi ⎛ ecb ⎞ M D fb = − ⎜1 + 2 ⎟ + ≤ f ci (4.1b) Ac ⎝ r ⎠ Sb Edl Pi CakMlaMgeRbkugRtaMgedIm. eKKYreRbIbgÁúMkMlaMgedkrbs; Pi edIm,ITTYl)antMélkan;EtsuRkitCag. EtsMrab;karGnuvtþTaMgGs;eKmin)anKitdl;PaBRbesIrenHeT. kugRtaMgRbsiT§PaBeRkaykMhatbg; Effective Stress after Losses ⎛ ect ⎞ M D Pe ft =− ⎜1 − 2 ⎟ − t ≤ f t (4.2a) ⎝ Ac r ⎠ S P ⎛ ec ⎞ M f b = − e ⎜1 + 2b ⎟ + D ≤ f c (4.2b) Ac ⎝ r ⎠ Sb kugRtaMgénbnÞúkeFVIkarcugeRkay Service-load Final Stresses Pe ⎛ ect ⎞ M T ft =− ⎜1 − 2 ⎟ − t ≤ f c (4.3a) Ac ⎝ r ⎠ S P ⎛ ecb ⎞ M f b = − e ⎜1 + 2 ⎟ + T ≤ f t (4.3b) Ac ⎝ r ⎠ Sb Edl M T = M D + M SD + M L Pi = kMlaMgeRbkugRtaMgedIm Pe = kMlaMgeRbkugRtaMgRbsiT§PaBeRkayeBlxatbg;kMlaMgeRbkugRtaMg t bgðajfasrésxagelI nig b bgðajfasrésxageRkam e = cMNakp©itrbs; tendon BITIRbCMuTMgn;rbs;munkat;ebtug cgc (center of gravity of concrete section) q r 2 = kaer:énkaMniclPaB S t / Sb = m:UDulmuxkat;srésxagelI nigxageRkamrbs;muxkat;ebtug dMNak;kalénkacuHfykMlaMgsgát; (decompression) bgðajkarekIneLIgbMErbMrYlrageFob rbs;EdkEdlbNþalBIkarekIneLIgrbs;bnÞúk taMgBIdMNak;kalEdlkMlaMgeRbkugRtaMgRbsiT§PaB Pe eFVIGMeBIEtÉkÉgrhUtdl; dMNak;kalEdlbnÞúkbEnßmeFVIeGaykugRtaMgsgát;rbs;ebtugenARtg;nIv:U cgs kat;bnßydl;sUnü¬emIlrUb TI 4>3¦. enARtg;dMNak;kalenH bMErbMrYlkugRtaMgebtugEdlbNþalBI decompression KW Pe ⎛ e2 ⎞ f decomp = ⎜1 + ⎟ (4.3c) Ac ⎜ r2 ⎟ ⎝ ⎠ Flexural Design of Prestressed Concrete Elements 94
  • 6. NPIC TMnak;TMngenHQrelIkarsnμt;fabMErbMrYlrageFob (strain) rbs;ebtug nigEdkeRbkugRtaMgEdls¥itCab; eTAnwgebtugEk,reFVIeGaykarekIneLIgénkugRtaMgEdkesμInwgkarfycuHénkugRtaMgebtug. 1. FñwmEdlmancMNakp©itEdkeRbkugRtaMgERbRbYl Beam with Variable Tendon Eccentricity FñwmrgnUvkMlaMgeRbkugRtaMgCamYynwg tendon Edl harped b¤ draped. CaTUeTAcMNakp©itGti- brmaEtgEtsßitenARtg;muxkat;kNþalElVgsMrab;krNIFñwmTMrsamBaØ. edaysnμt;fakMlaMgeRbkugRtaMg RbsiT§PaBKW Pe = γPi Edl γ CapleFobkMlaMgeRbkugRtaMgEdlenAsl; (residual prestress ratio) kMhatbg;énkMlaMgeRb kugRtaMgKW Pi − Pe = (1 − γ )Pi (a) RbsinebIkugRtaMgsrésxageRkAbMputrbs;ebtugCak;EsþgsmmUleTAnwgkugRtaMgGnuBaØat BIsmIkar 4.1a nig b eyIgTTYl)anbMErbMrYlkugRtaMgenHeRkayeBlxatbg;kMlaMgeRbkugRtaMgdUcxageRkam³ ⎛ M ⎞ Δf t = (1 − γ )⎜ f ti + tD ⎟ (b) ⎝ S ⎠ ⎛ M ⎞ Δf b = (1 − γ )⎜ − f ci + D ⎟ ⎜ (c) ⎝ Sb ⎟ ⎠ BIrUb 4>4 (a) edaysarm:Um:g;bnÞúkefrbEnßm M SD nigm:Um:g;bnÞúkGefr M L manGMeBIeTAelIFñwm kugRtaMg suT§ (net stress) enAsrésxagelIKW f nt = f ti − Δf t − f c b¤ f nt = γf ti − (1 − γ ) tD − f c M S (d) Net stress enAsrésxageRkamKW f bn = f t − f ci − Δf b b¤ f bn = f t − γf ci − (1 − γ ) D M Sb (e) BIsmIkar (d) nig (e) muxkat;EdlRtUveRCIserIsmanm:UDulmuxkat;dUcxageRkam St ≥ (1 − γ )M D + M SD + M L (4.4a) γf ti − f c ehIy Sc ≥ (1 − γ )M D + M SD + ML (4.4b) f t − γf ci karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 95
  • 7. T.Chhay cMNakp©itEdlRtUvkarrbs;EdkeRbkugRtaMgenARtg;muxkat;eRKaHfñak; dUcCamuxkat;kNþalElVg KW ( )S t MD ec = f ti − f ci + (4.4c) P i Pi Edl f ci CakugRtaMgrbs;ebtugenAeBlepÞrRtg;nIv:UénTIRbCMuTMgn; cgc rbs;muxkat;ebtug ehIy Pi = f ci Ac dUcenH f ci = f ti − ct ( f ti − f ci ) (4.4d) h Flexural Design of Prestressed Concrete Elements 96
  • 8. NPIC 2. FñwmEdlmancMNakp©itEdkeRbkugRtaMgefr Beam with Constant Tendon Eccentricity FñwmEdlmancMNakp©itEdkeRbkugRtaMgefrCaFñwmEdlman tendon Rtg; dUckñúgkrNIFñwmeRbkug RtaMgTMrsamBaØcak;eRscEdlmantMéllμm. edaysar tendon mancMNakp©itFMenARtg;TMr vaeFVIeGay mankugRtaMgTajFMenAsrésxagelIedayminmankarkat;bnßyNamYyedaym:Um:g;bnÞúkbEnßm M D + M SD + M L eT. b¤eKGacniyaymü:ageTotfa sMrab;FñwmEbbenH muxkat;eRKaHfñak;KWsßitenARtg;TMr ehIykarBRgaykugRtaMgenARtg;TMrRtUv)anbgðajenAkñúgrUbTI 4>4 (b). dUcenH Δf t = (1 − γ )( f ti ) (a’) ehIy Δf b = (1 − γ )(− f ci ) (b’) Net stress enAsrésxagelI sMrab;lkçxNÐbnÞúkeFVIkareRkaykMhatbg;KW f nt = f ti − Δf t − f c b¤ f nt = γf ti − f cs (c’) karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 97
  • 9. T.Chhay Edl fcs CakugRtaMgbnÞúkeFVIkarCak;EsþgenAkñúgebtug. Net stress enAsrésxageRkamsMrab;lkçxNÐ bnÞúkeFVIkareRkaykMhatbg;KW f bn = f t − f ci − Δf b b¤ Δf bn = f t − γf ci (d’) BIsmIkar (c’) nig (d’) muxkat;EdlRtUveRCIserIsRtUvmanm:UDulmuxkat;dUcxageRkam³ M D + M SD + M L St ≥ (4.5a) γf ti − f c M + M SD + M L ehIy Sb ≥ D f t − γf ci (4.5b) cMNakp©itEdlRtUvkarenARtg;muxkat;eRKaHfñak; dUcCaRtg;TMrsMrab;muxkat;EdlmanlkçN³RsedogKñanwg GVIEdlRtUvkaredaysmIkar 4.5a nig b KW ( )S t ee = f ti − f ci (4.5c) P i RkaPictMNageGaym:UDulmuxkat;rbs; nominal section RtUv)anbgðajenAkñúg rUbTI 4>5. eKGaceRbIva kñúgkareRCIserIsmuxkat;sakl,gdMbUgkñúgdMeNIrkarKNna. Flexural Design of Prestressed Concrete Elements 98
  • 10. NPIC tarag 4>1 eGaynUvtMélm:UDulmuxkat;énmuxkat;ctuekaNEkg PCI sþg;dar. tarag 4>2 eGaynUvxñatxageRkAénmuxkat;GkSr T rbs; PCI sþg;dar nigmuxkat;GkSr I rbs; AASTHO erogKña k¾dUcCam:UDul muxkat;srésxagelIénmuxkat;TaMgenaHEdlRtUvkarkñúgkareRCIserIsmuxkat;bzmsMrab;kar viPaKeRkamlkçxNÐbnÞúkeFVIkar. tarag 4>4 (a) pþl;nUvxñatlMGiténragFrNImaRt “as built” én PCI sþg;dar nigmuxkat; AASTHO ehIytarag 4>4 (b) pþl;nUvlkçN³muxkat;rbs; girder EdleRbIenA kñúgrdæepSg². lkçN³ bulb section manenAkñúg]bsm<½n§ (appendix) C. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 99
  • 11. T.Chhay Flexural Design of Prestressed Concrete Elements 100
  • 13. T.Chhay Flexural Design of Prestressed Concrete Elements 102
  • 14. NPIC 3> ]TahrN_sMrab;karKNnaeRkamlkçxNÐbnÞúkeFVIkar Service-Load Design Examples k> cMNakp©itrbs;EdkeRbkugRtaMERbRbYl Variable Tendon Eccentricity ]TahrN_ 4>1³ KNnaFñwmeRbkugRtaMgmuxkat;GkSr T Dub sMrab;eFVIcMNtrfynþ. FñwmenHmanRbEvg 60 ft (18.3m ) nwgRtUv)anRTedayTMrsamBaØ. EdkeRbkugRtaMgEdleRbIenAkñúgFñwmenHRtUv)an harped. eKeRbIkugRtaMgGnuBaØatrbs; ACI 318 Building code. FñwmenHRtUvRTbnÞúkeFVIkarbEnßm 1,100 plf (16.1kN / m ) nigbnÞúkefrbEnßm 100 plf (1.5kN / m ) nigminman concrete topping eT. snμt;faeKeFVI FñwmenHedayeRbIebtugTMgn;Fmμta (normal-weight concrete) Edlman f 'c = 5,000 psi (34.5MPa ) ehIykugRtaMgebtugenAeBlepÞr f 'ci esμInwg 75% én f 'c . ehIysnμt;fakMhatbg;GaRs½ynwgeBl rbs;kMlaMgeRbkugRtaMgedImesμInwg 18% énkMlaMgeRbkugRtaMgedIm ehIy ultimate strength rbs;Edk eRbkugRtaMg f pu = 270,000 psi (1,862MPa ) sMrab; stress-relieved tendon nig f 't = 12 f 'c psi ( f 'c MPa ) . dMeNaHRsay³ γ = 100 − 18 = 82% f 'ci = 0.75 × 5,000 = −3,750 psi (25.9MPa ) eRbI f 't = 12 5,000 = 849 psi(5.9MPa ) CakugRtaMgrgkarTajGtibrma ehIysnμt;TMgn;xøÜn Rbhak;RbEhlnwg 1,000 plf (14.6kN / m). kMNt;m:Umg;Edl)anBITMgn;pÞal; wl 2 1,000(60 )2 MD = = × 12 = 5,400,000in. − lb(610kN .m ) 8 8 ehIym:Um:g;Edl)anBIbnÞúkbEnßmKW M SD + M L = (1,100 + 100)(60)2 × 12 = 6,480,000in. − lb(732kN .m ) 8 muxkat;eRKaHfñak;sßitenAEk,rkNþalElVg CakEnøgEdlm:Um:g;Edl)anBIbnÞúkefr nigbnÞúkefr bEnßmmantMélGtibram nigedaysar tendon RtUv)an harped dUcenHkñúgkrNIPaKeRcInmuxkat; eRKaHfñak;RtUv)anykenARtg; 0.40L BITMr Edl L CaElVgFñwm. BIsmIkar 4.4a nig b eyIg)an St ≥ (1 − γ )M D + M SD + M L γf ti − f c ≥ (1 − 0.82)5,400,000 + 6,480,000 = 3,104in3 (50,860cm3 ) 0.82 × 184 + 2,250 karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 103
  • 15. T.Chhay Sb ≥ (1 − γ )M D + M SD + M L f t − γf ci ≥ (1 − 0.82)5,400,000 + 6,480,000 = 2,766in3 45,330cm3 ( ) 849 + (0.82 × 2,250 ) BI eRCIserIs nontopped normal weight concrete double-T 12DT PCI design handbook 34 168-D1 edaysarvamantMélm:UDulmuxkat;srésxageRkamEk,rtMélEdlRtUvkarCageK. lkçN³muxkat;rbs;ebtugmandUcxageRkam³ Ac = 978in.2 ct = 8.23in. I c = 86,072in.4 cb = 25.77in. I r 2 = c = 88.0in.2 e c = 22 . 02 in . Ac S t = 10,458in.3 ee = 12.77in. Sb = 3,340in.3 WD = 1,019 plf V = 2.39in. S KNna strands nigRtYtBinitükugRtaMg BIrUbTI 4>7 TMgn;xøÜnEdlsnμt;mantMélEk,rTMgn;xøÜnCak;Esþg. KNnam:Um:g;Edl)anBITMgn;pÞal;Cak;EsþgBIm:Um:g;Edl)anBITMgn;pÞal;snμt; 1,019 MD = × 5,400,000 = 5,502,600in. − lb 1,000 f pi = 0.70 × 270,000 = 189,000 psi f pe = 0.82 f pi = 0.82 × 189,000 = 154,980 psi Flexural Design of Prestressed Concrete Elements 104
  • 16. NPIC (a) viPaKkugRtaMgenAeBlepÞr BIsmIkar 4.1a Pi ⎛ ect ⎞ M D ft =− ⎜1 − 2 ⎟ − t ≤ f ti = 184 psi Ac ⎝ r ⎠ S P ⎛ 22.02 × 8.23 ⎞ 5,502,600 bnÞab;mk 184 = − i ⎜1 − 978 ⎝ 88.0 ⎟− ⎠ 10,458 Pi = (184 + 526.16) 978 = 655,223lb 1.06 cMnYn tendon EdlRtUvkar = 655,223 189,000 × 0.153 = 22.66 edImtendon EdlmanGgát;p©it 1 / 2in. sakl,g tendon Ggát;p©it 1 / 2in. cMnYn 16 edIm sMrab;muxkat;sþg;dar Aps = 16 × 0.153 = 2.448in.2 ( .3cm 2 ) 15 Pi = 2.448 × 189,000 = 462,672lb(2,058kN ) Pe = 2.448 × 154,980 = 379,391lb(1,688kN ) (b) viPaKkugRtaMgeRkamGMeBIbnÞúkeFVIkarenAkNþalElVg Pe = 379,391lb(1,688kN ) 100(60 )212 M SD = = 540,000in. − lb(61kN .m ) 8 1,100(60 )212 ML = = 5,940,000in.lb(788kN .m ) 8 m:Um:g;srub M T = M D + M SD + M L = 5,502,600 + 6,480,000 = 11,982,600in. − lb(1,354kN .m ) BIsmIkar 4.3a Pe ⎛ ect ⎞ M T ft =− ⎜1 − 2 ⎟ − t Ac ⎝ r ⎠ S 379,391 ⎛ 22.02 × 8.23 ⎞ 11,982,600 =− ⎜1 − ⎟− 978 ⎝ 88.0 ⎠ 10,458 = 411 − 1146 = −735 psi < f c = −2250 psi O.K. (c) viPaKkugRtaMgRtg;muxkat;TMr ee = 12.77in.(324mm ) f ti = 6 f 'ci = 6 3,750 ≅ 367 psi f t = 12 f 'c = 12 5,000 = 849 pis (i) enAeBlepÞr karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 105
  • 17. T.Chhay 462,672 ⎛ 12.77 × 8.23 ⎞ ft =− ⎜1 − ⎟ − 0 = +92 psi (T ) 978 ⎝ 88.0 ⎠ 462,672 ⎛ 12.77 × 25.77 ⎞ fb = − ⎜1 + ⎟ + 0 = −2,240 psi (C ) 978 ⎝ 88.0 ⎠ < f ci = −2,250 psi O.K. RbsinebI fb > fci / eKRtUveFVIkarpøas;bþÚrcMNakp©it. (ii) eRkamGMeBIbnÞúkeFVIkar 379,391 ⎛ 12.77 × 8.23 ⎞ ft =− ⎜1 − ⎟ − 0 = +75 psi (T ) 978 ⎝ 88.0 ⎠ 379,391 ⎛ 12.77 × 25.77 ⎞ fb = − ⎜1 + ⎟ + 0 = −1.840 psi (C ) 978 ⎝ 88.0 ⎠ < f ci = −2,250 psi O.K. TTYlykmuxkat;sMrab;lkçxNÐbnÞúkeFVIkaredayeRbI strand Ggát;p©it 1 / 2in.(12.7mm) cMnYn 16 edImedaymancMNakp©itenAkNþalElVg ec = 22.02in.(560mm) nigcMNakp©itenAcugTMr ee = 12.77in. (324mm ) . x> cMNakp©itrbs;EdkeRbkugRtaMERbRbYledayminmankarkMNt;kMBs; Variable Tendon Eccentricity with No Height Limitation ]TahrN_ 4>2³ KNnamuxkat;GkSr I sMrab;FñwmEdlmanElVg 65 ft (19.8m) Edlmanm:UDulmuxkat;dUc xageRkam. cUreRbInUvkugRtaMgGnuBaØatdUcKñaEdl)aneGayenAkñúg]TahrN_ 4>1. S t EdlRtUvkar = 3,570in.3 (58,535cm3 ) Sb EdlRtUvkar = 3,780in.3 (61,940cm3 ) Flexural Design of Prestressed Concrete Elements 106
  • 18. NPIC dMeNaHRsay³ edaysarm:UDulmuxkat;enAsrésxagelI nigsrésxageRkamesÞIresμIKña eKGaceRCIserIsmux kat;sIuemRTI)an. bnÞab;mk viPaKmuxkat;enAkñúgrUbTI 4>8 EdleRCIserIsedaykarsakl,g nigEktMrUv. viPaKkugRtaMgenAeBlepÞr BIsmIkar 4.4d ct f ci = f ti − ( f ti − f ci ) h = +184 − 21.16 (+ 184 + 2,250) ≅ −1,104 psi(C )(7.6MPa ) 40 Pi = Ac f ci = 377 × 1,104 = 416,208lb(1,851kN ) 393(65)2 MD = × 12 = 2,490,638in. − lb(281kN .m ) 8 BIsmIkar 4.4c cMNakp©itEdlRtUvkarenARtg;muxkat;m:Um:g;GtibrmaenAkNþalElVgKW ( ec = f ti − f ci ) St M D Pi + Pi = (184 + 1,104 ) 3,572 2,490,638 + 416,208 416,208 = 11.05 + 5.98 = 17.04in.(433mm ) edaysar cb = 18.84in. nigedaysnμt;fakMras;ebtugkarBarEdk 3.75in. sakl,g ec = 18.84 − 3.75 ≅ 15.0in.(381mm ) RkLaépÞ tendon EdlRtUvkar P Ap = i = 416,208 f pi 189,000 ( = 2.2in 2 14.2cm 2 ) cMnYn tendon = 02153 = 14.38 edIm . .2 sakl,g tendon Ggát;p©it 1 / 2in.(12.7mm) cMnYn 13 edIm/ Ap = 1.99in.2 (12.8cm2 ) / ehIy kMlaMgeRbkugRtaMgedImCak;Esþg Pi = 189,000 × 1.99 = 376,110lb(1,673kN ) RtYtBinitükugRtaMgsrésxageRkArbs;ebtug BIsmIkar 4.1a Pi ⎛ ect ⎞ M D ft =− ⎜1 − 2 ⎟ − t Ac ⎝ r ⎠ S 376,110 ⎛ 15.0 × 21.16 ⎞ 2,490,638 =− ⎜1 − ⎟− 377 ⎝ 187.5 ⎠ 3,340 karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 107
  • 19. T.Chhay = +691.2 − 745.7 = −55 psi (C ) minmankugRtaMgTajenAeBlepÞr (O.K.) BIsmIkar 4.1b Pi ⎛ ecb ⎞ M D fb = − ⎜1 + 2 ⎟ + Ac ⎝ r ⎠ Sb 376,110 ⎛ 15 × 18.84 ⎞ 2,490,638 =− ⎜1 + ⎟+ 377 ⎝ 187.5 ⎠ 3,750 = −2,501.3 + 664.2 = −1,837 psi (C ) < f ci = 2,250 psi O.K. viPaKkugRtaMgenAeBlrgbnÞúkeFIVkar BIsmIkar 4.3a Pe ⎛ ect ⎞ M T ft =− ⎜1 − 2 ⎟ − t Ac ⎝ r ⎠ S Pe = 13 × 0.153 × 154,980 = 308,255lb(1,371kN ) m:Um:g;srub M T = M D + M SD + M L = 2,490,638 + 7,605,000 = 10,095,638in. − lb(1,141kN .m ) 308,255 ⎛ 15.0 × 21.16 ⎞ 10,095,638 ft =− ⎜1 − ⎟− 377 ⎝ 187.5 ⎠ 3,340 = +566.5 − 3,022.6 = −2,456 psi (C ) > f c = −2,250 psi dUcenH eKRtUvdMeLIgkMBs;rbs;muxkat; b¤eRbIebtugEdlmanersIusþg;FMCag. edayeRbI f 'c = 6,000 psi f c = 0.45 × 6,000 = −2,700 psi O.K. Pe ⎛ ecb ⎞ M T 308,255 ⎛ 15.0 × 18.84 ⎞ 10,095,638 fb = − ⎜1 + 2 ⎟ + =− ⎜1 + ⎟+ Ac ⎝ r ⎠ Sb 377 ⎝ 187.5 ⎠ 3,750 = −2,050 + 2,692.2 = 642 psi (T ) O.K. RtYtBinitümuxkat;Rtg;TMr kugRtaMgGnuBaØati f 'ci = 0.75 × 6,000 = 4,500 psi f ci = 0.60 × 4,500 = 2,700 psi f ti = 3 f 'ci = 201 psi sMrab;kNþalElVg f ti = 6 f 'ci = 402 psi sMrab;elITMr f c = 0.45 f 'c = 2,700 psi f t1 = 6 f 'c = 465 psi f t 2 = 12 f 'c = 930 psi (a) enAeBlepÞr Flexural Design of Prestressed Concrete Elements 108
  • 20. NPIC kugRtaMgsgát;srésxageRkArbs;muxkat;elITMr ⎛ ecb ⎞ pi fb = − ⎜1 + 2 ⎟ + 0 ⎝ Ac r ⎠ 376,110 ⎛ e × 18.84 ⎞ − 2,700 = − ⎜1 + ⎟ 377 ⎝ 187.5 ⎠ dUcenH e = 16.98in. dUcenHsakl,g ee = 12.49in. 376,110 ⎛ 12.49 × 21.16 ⎞ ft =− ⎜1 − ⎟−0 377 ⎝ 187.5 ⎠ = 409 psi (T ) > f ti = 402 psi 376,110 ⎛ 12.49 × 18.84 ⎞ fb = − ⎜1 + ⎟+0 377 ⎝ 187.5 ⎠ = 2,250 psi < f ci = 2,700 psi dUcenHeRbIEdkFmμtaenAsrésxagelIRtg;muxkat;elITMredIm,ITTYlykkugRtaMgTajkñúgebtugTaMg Gs; b¤eRbIebtugEdlmanersIusþg;FMCagsMrab;muxkat;enH b¤k¾kat;bnßycMNakp©it. (b) enAeBlrgbnÞúkeFVIkar 308,255 ⎛ 12.49 × 21.16 ⎞ ft =− ⎜1 − ⎟ − 0 = 335 psi (T ) < 930 psi O.K. 377 ⎝ 187.5 ⎠ 308,255 ⎛ 12.49 × 18.84 ⎞ fb = − ⎜1 + ⎟ + 0 = −1,844 psi (C ) < −2,700 psi O.K. 377 ⎝ 187.5 ⎠ dUcenH eKGacTTYlykFñwmebtugeRbkugRtaMgEdlmanmuxkat;GkSr I kMBs; 40in.(102cm) eRbIebtugTMgn;FmμtaEdlmanersIusþg; 6,000 psi(41.4MPa ) CamYynwg tendon Ggát;p©it 1 / 2in.(12.7 mm ) EdlmancMNakp©itenAkNþalElVg ec = 15.0in.(381mm ) nigcMNakp©itenARtg; muxkat;xagcug ee = 12.5in.(318mm) eKGaceRbIviFImü:ageTotsMrableFVIkaredaHRsay edaybnþeRbI f 'c = 5,000 psi b:uEnþeFVIkarpøas;bþÚrcMnYn EdkeRbkugRtaMg nigcMNakp©it. K> cMNakp©itrbs;EdkeRbkugRtaMefr Constant Tendon Eccentricity ]TahrN_ 4>2³ edaHRsay]TahrN_ 4>2 edaysnμt;fakabeRbkugRtaMgmancMNakp©itefr. eRbIebtug TMgn;FmμtaEdlmanersIusþg; f 'c = 5,000 psi(34.5MPa) ehIykugRtaMgTajGnuBaØatGtibrmarbs;eb tugKW ft = 12 f 'c = 849 psi . karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 109
  • 21. T.Chhay dMeNaHRsay³ edaysar tendon mancMNakp©itefr ehIym:Um:g;edaysarbnÞúkefr m:Um:g;edaysarbnÞúk efrbEnßm nigm:Um:g;edaysarm:Um:g;GefrRtg;muxkat;elITMrrbs;FñwmsamBaØesμIsUnü dUcenHeKRtUvKNna FñwmenHedayeRbImuxkat;Rtg;TMr. m:UDulmuxkat;EdlRtUvkarenARtg;TMrEdl)anBIsmIkar 4.5a KW M D + M SD + M L St ≥ γf ti − f c M + M SD + M L Sb ≥ D f t − γf ci snμt; WD = 425 plf . bnÞab;mk 425(65)2 MD = × 12 = 2,693,438in. − lb(304kN .m ) 8 M SD + M L = 7,605,000in. − lb(859kN .m ) dUcenH m:Um:g;srub M T = 10,298,438in. − lb(1,164kN .m ) ehIyeyIgk¾mankugRtaMgGnuBaØatdUcxageRkam f ci = −2,250 psi f 'ci = −3,750 psi f ti = 6 f 'ci = 367 psi sMrab;muxkat;elITMr f c = −2,250 psi (15.5MPa ) f t = 849 psi γ = 0.82 m:UDulmuxkat;EdlRtUvkar St = 10,298,438 0.82 × 367 + 2,250 ) = 4,035.8in.3 61,947cm3 ( Sb = 10,298,438 849 + 0.82 × 2,250 ) = 3,823.0in.3 62,713cm3 ( sakl,gelIkTI 1³ edaysar S EdlRtUvkar = 4,035.8 psi FMCag S rbs;muxkat;enA t t kñúg]TahrN_ 4>2 dUcenHeRCIserIsmuxkat;GkSr I Edlman h = 44in. dUcbgðajenAkñúgrUbTI 4>9. lkçN³muxkat;rbs;vamandUcxageRkam³ I c = 92,700in.4 r 2 = 228.9in.2 Ac = 405in.2 ct = 23.03in. Flexural Design of Prestressed Concrete Elements 110
  • 22. NPIC S t = 4,303in.3 cb = 20.97in. Sb = 4,420in.3 WD = 422 plf BIsmIkar 4.5c cMNakp©itEdlRtUvkarRtg;muxkat;elITMrEdlCamuxkat;eRKaHfñak;KW ( )S t ee = f ti − f ci P i Edl f ci = f ti − t ( f ti − f ci ) c h = 367 − 23.03 (367 + 2,250) = −1,002 psi(6.9MPa ) 44 nig Pi = Ac f ci = 405 × 1,002 = 405,810lb(1,805kN ) dUcenH ee = (367 + 1,002) 405030 = 13.60in.(346mm) 4, ,810 RkLaépÞEdkeRbkugRtaMgEdlRtUvkarKW = 2.15in.2 ( .4cm 2 ) P 405,810 Ap = i = 14 f 189,000 pi dUcenHeyIgsakl,geRbIEdkeRbkugRtaMgEdlmanGgát;p©it 1 / 2in. . cMnYn tendon EdlRtUvkarKW karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 111
  • 23. T.Chhay 2.15 / 0.153 = 14.05 dUcenHeRbI tendon Ggát;p©it 1 / 2in.(12.7mm) cMnYn 14 edIm. CalT§pl Pi = 14 × 0.153 × 189,000 = 404,838lb(1,801kN ) (a) viPaKkugRtaMgenAeBlepÞrenARtg;muxkat;xagcug BIsmIkar 4.1a pi ⎛ ect ⎞ M D 404,838 ⎛ 13.60 × 23.03 ⎞ ft =− ⎜1 − 2 ⎟ − t = − ⎜1 − ⎟−0 Ac ⎝ r ⎠ S 405 ⎝ 228.9 ⎠ = +368.2 psi (T ) ≅ f ti = 367 O.K. BIsmIkar 4.2b Pi ⎛ ecb ⎞ M D 404,838 ⎛ 13.6 × 20.97 ⎞ fb = − ⎜1 + 2 ⎟ + =− ⎜1 + ⎟+0 Ac ⎝ r ⎠ Sb 405 ⎝ 228.9 ⎠ = −2,245 psi (C ) ≅ f ci = −2,250 O.K. eKk¾GaceRbIvatMélTaMgenHsMrab;muxkat;kNþalElVgpgEdr edaysarcMNakp©it e efr. (b) viPaKkugRtaMgenAeBlrgbnÞúkeFVIkarcugeRkayenARtg;TMr Pe = 14 × 0.153 × 154,980 = 331,967lb(1,477kN ) m:Um:g;srub M T = M D + M SD + M L = 0 BIsmIkar 4.3a Pe⎛ ect ⎞ M T ft =− ⎜1 − 2 ⎟ − t Ac⎝ r ⎠ S 331,967 ⎛ 13.60 × 23.03 ⎞ =− ⎜1 − ⎟ − 0 = 302 psi (T ) < f t = 849 psi O.K. 405 ⎝ 228.9 ⎠ BIsmIkar 4.3b Pe ⎛ ecb ⎞ M T 331,967 ⎛ 13.6 × 20.97 ⎞ fb = − ⎜1 + 2 ⎟ + =− ⎜1 + ⎟+0 Ac ⎝ r ⎠ Sb 405 ⎝ 228.9 ⎠ = −1,841 psi (12.2MPa )(C ) < f c = −2,250 psi O.K. (c) viPaKkugRtaMgenAeBlrgbnÞúkeFVIkarcugeRkayenAkNþalElVg m:Um:g;srub M T = M D + M SD + M L = 10,298,438in. − lb dUcenHkugRtaMgsrésxageRkArbs;ebtugEdlbNþalBI M T KW = −2,555 psi (C )(17.6MPa ) MT 10,298,438 f1t = t =− S 4,030 = +2,330 psi (T )(16.1MPa ) M 10,298,438 f1b = T = Sb 4,030 dUcenH kugRtaMgsrésxageRkArbs;ebtugcugeRkayKW Flexural Design of Prestressed Concrete Elements 112
  • 24. NPIC f t = +302 − 2,555 = −2,253 psi (C ) ≅ f c = −2,250 psi TTYlyk)an f b = −1,841 + 2,330 = +489 psi (T ) < f t = 849 psi O.K. dUcenH TTYlykmuxkat;sakl,gEdlmancMNakp©itefr e = 13.6in.(345mm) sMrab; tendon Ggát;p©it 1 / 2in.(12.7mm) cMnYn 14 srés. 4> kareRCIserIsmuxkat; niglkçN³rbs;Fñwmd¾RtwmRtUv Proper Selection of Beam Sections and Properties k> eKalkarN_ENnaMTUeTA General Guidelines muxkat;ebtugeRbkugRtaMgmindUc steel-rolled section eT eRBaHvaminTan;manlkçN³sþg;dar eBjeljenAeLIy. kñúgkrNICaeRcIn visVkrKNnaeRKOgbgÁúMRtUvEteRCIserIsRbePTmuxkat;edIm,IeRbI R)as;enAkñúgKMeragenaH. enAkñúgkarKNnaFñwmTMrsamBaØPaKeRcIn cMgayBI cgc nigExS cgs EdleKsÁal; CacMNakp©it e smamaRteTAnwgkMlaMgeRbkugRtaMgEdlRtUvkar. CaTUeTA edaysarEteKKNnaeRcIneRbIm:Um:g;kNþalElVg eRBaHvamantMélFMCageK. cMNakp©it enAkNþalElVgkan;EtFM kMlaMgeRbkugRtaMgEdlRtUvkarkan;EttUc ehIyvapþl;nUvlkçNesdækic©kan;Et xøaMgkñúgkarKNna. sMrab;cMNakp©itFM eKRtUvkarRkLaépÞebtugenAsrésxagelIFMEdr. dUcenH muxkat; GkSr T nigmuxkat;GkSr I EdlmansøabFMCamuxkat;Edlsaksm. CaTUeTA muxkat;xagcugEtgCamux kat;tan;edIm,IeCosevogcMNakp©itFMenAelIbøg;m:Um:g;sUnü ehIyk¾edIm,IbegáInlT§PaBTb;kMlaMgkat;énmux kat;elITMr nigkarBar anchorage zone failure. muxkat;epSgeTotEdleKeRbIPaKeRcInEdrKW muxkat;GkSr T Dub. muxkat;enHbEnßmGtßRbeyaCn_ eTAmuxkat;GkSr T eTaledIm,IPaBgayRsYl nigesßrPaBkñúgkarelIkdak; nigdMeLIg. rUbTI 4>10 bgðaj BIRbePTmuxkat;EdleKeRcIneRbICaTUeTA. muxkat;d¾éTeTotdUcCakMralRbehagkñúg (hollow-core slab) muxkat;Gt;sIuemRTI k¾RtUv)aneRbICaTUeTApgEdr. cMNaMfa eKeRbImuxkat;mansøabCMnYseGaymuxkat; ctu- ekaNtan;EdlmankMBs;dUcKñaedayminman)at;bg;ersIusþg;rgkarBt;eT. b:uEnþ eKeRbImuxkat;ctuekaNCa girder EdlmanElVgxøI. eKeRbImuxkat;GkSr I CaRbePTFñwmkMralEdlmankMralxNÐsmascak;BIelIsMrab;eeRKOgbgÁMúcMNt rfynþEdlmanElVgEvg. CaTUeTA eKeRcIneRbImuxkat;GkSr T EdlmansøabxageRkamF¶n;dUcbgðajenA kñúgrUbTI 4>10 (d) enAkñúgeRKOgbgÁúMs<an. eKeRbImuxkat; T Duby:agTUlMTUlayenAkñúgRbB½n§kMralxNÐ karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 113
  • 25. T.Chhay rbs;GKar k¾dUcCageRKOgbgÁúMcMNtrfynþ edaysarRbeyaCn_énskmμPaBsmasrbs;søabFMxagelI EdlmanTTwgBI 10 ft eTA 15 ft . kMralRbehagkñúgCacMerokFñwmmYyTisRbehagkñúgEdlGacdMeLIgCakMralxNÐ)any:aggayRsYl. eKGaceRbIr:tRbehagragRbGb;Car:tFñwmsMrab;ElVgEvg EdleKsÁal;vaCaRbB½n§kMralkMNat;s<an (segmental bridge deck system). kMNat;r:t (segmental girder) enHmanlT§PaBTb;karrmYlFM ehIypleFoblT§PaBTb;karBt;elITMgn;xøÜnrbs;vaFMCagRbePTmuxkat;RbB½n§eRbkugRtaMgd¾éTeTot. x> RkLaépÞTaMgmUl muxkat;bMElg nigvtþmanrbs;bMBg; Gross Area, the Transformed Section, and the Presence of Ducts CaTUeTA RkLaépÞrbs;muxkat;TaMgmUlrbs;muxkat;ebtug (gross cross sectional area ) KWRKb; RKan;sMrab;eRbIenAkñúgkarKNna muxkat;ebtugeRbkugRtMgeRkamlkçxNÐbnÞúkeFVIkar. kñúgxN³EdlGñk KNnaxøHeBjcitþnwgkarKNna EdlmanlkçN³suRkitCagtamry³kareRbImuxkat;bMElg. PaBsuRkit Edl)anBIkarKitbBa©ÚlkarcUlrYm énmuxkat;rbs;EdkeTAkñúgPaBrwgRkaj (stiffness) rbs;ebtugmin Flexural Design of Prestressed Concrete Elements 114
  • 26. NPIC RtUv)anKitfaCakarcaM)ac;enaHeT. enA kúñgFñwmrgeRbkugRtaMgCaeRkay (post-tensioned beam) Edl bMBg;RtUv)ankMe)arebtug (grout), gross cross section enAEtRKb;RKan;sMrab;RKab;KNnaTaMgenH. man EtkñúgkrNIs<anElVgEvg nigFñwmeRbkugRtaMgEdlplitCalkçN³]sShkmμEdlmanRkLaépÞEdkeRbkug RtaMgFMeT EdleKRtUveRbImuxkat;bMElg b¤muxkat;ebtugsuT§ (net concrete area) EdlminKitbMBg;. K> Envelope sMrab;kardak;kabeRbkugRtaMg Envelopes for Tendon Placement kugRtaMgTajenAsrésxageRkAbMputrbs;ebtugeRkamlkçxNÐbnÞúkeFVIkarminGacFMCagkugRtaMg GnuBaØatEdleGayeday code dUcCa ACI, PCI, AASTHO b¤ CEB-FIP eT. dUcenH eKcaM)ac;RtUv begáItnUvtMbn;kMNt;mYyenAkññúgmuxkat;ebtugEdlCa envelope EdleKGacGnuvtþkMlaMgeRbkugRtaMgeday mineFVIeGaymankugRtaMgTajenAsrésxageRkAbMputrbs;ebtug. BIsmIkar 4.1a eyIgman Pi ⎛ ect ⎞ ft = 0 = − ⎜1 − 2 ⎟ Ac ⎝ r ⎠ 2 eK)an e= r ct dUcenH cMnucsñÚlxageRkam (lower kern point) r2 Kb = ct dUcKña BIsmIkar 4.1b RbsinebI fb = 0 enaHeK)an − e = r 2 / cb EdlsBaØadktMNageGaytMNag eGaykarvas;eLIgelIBIG½kSNWt ÉcMNakp©itviC¢manCakarvas;cuHeRkam. dUcenH upper kern point KW r2 Kt = cb BIkarkMNt;cMnucsñÚlxagelI nigxageRkammk eyIgeXIjy:agc,as;fa³ (a) RbsinebIkMlaMgeRbkugRtaMgmanGMeBIenAxageRkam lower kern point vanwgekItmankugRtaMgTaj enAsrésxagelIrbs;muxkat;ebtug. (b) RbsinebIkMlaMgeRbkugRtaMgmanGMeBIenAxagelI upper kern point vanwgekItmankugRtaMgTaj enAsrésxageRkamrbs;muxkat;ebtug. eKGackMNt;cMnucsñÚlxagsþaM nigxageqVgénExSsIuemRTIbBaÄrrbs;muxkat;tamlkçN³dUcKña dUc enHeKnwgTTYl)anépÞsñÚlsMrab;GnuvtþkMlaMgeRbkugRtaMgeTAelIEdkeRbkugRtaMg. rUbTI 4>11 bgðajBI sñÚlsMrab;muxkat;ctuekaN. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 115
  • 27. T.Chhay X> plRbeyaCn_énkardak;kabeRbkugRtaMgCa curved b¤ harped Advantages of Curved or Harped Tendons eTaHbICaeKeRbIEdkeRbkugRtaMgRtg;y:agTUlMTUlayenAkñúgFñwmRbEvglμmEdlcak;eRsck¾eday k¾CaTUeTAeKeRbIkabeRbkugRtaMgEdlmanTMrg;ekagenAkñúgGgát;rgkarTajCaeRkay (post-tensioned element) Edlcak;enAnwgkEnøgEdr. eKEck tendon EdlminRtg;CaBIrRbePT³ (a) Draped: manTMrg;ekagdUc)a:ra:bUl RtUv)aneKeRbIenAkñúgFñwmEdlrgbnÞúkxageRkABRgayesμICa bzm. (b) Harped: tendon eRTtEdlminCab; ¬tamn½yKNitviTüa¦ enARtg;bøg;rgbnÞúkcMcMnuc RtUv)aneK eRbIenAkñúgFñwmEdlrgbnÞúkcMcMnucTTwgG½kSCabzm. rUbTI 4>12/ 4>13 nig 4>14 bgðajBI alignment, m:m:g;Bt; nigkarBRgaykugRtaMgsMrab;Fñwm EdlrgkMlaMgeRbkugRtaMgedaykabeRbkugRtaMgRtg;/ draped/ nig harped erogKña. düaRkamTaMgenHcg; bgðajBIplcMeNjEpñkesdækic©rbs; draped nig harped tendon elIEdkeRbkugRtaMgRtg;. enAkñúgrUbTI 4>12 Rtg;muxkat; 1-1 kugRtaMgTajrbs;ebtugEdleKminR)afñacg;)an)anbgðajenAsrésxagelI. muxkat; 1-1 enAkñúgrUbTI 4>13 nig 4>14 bgðajfakugRtaMgsgát;rayesμIRbsinebI tendon eFVIGMeBIenA Rtg; cgc énmuxkat;enARtg;TMr. plRbeyaCn_epSgeTotrbs; draped nig harped tendon KWvaGnuBaØat eGayFñwmeRbkugRtaMgRTbnÞúkF¶n; edaysarT§iBllMnwgrbs;bgÁúMkMlaMgbBaÄrrbs;kabeRbkugRtaMgmin Rtg;. niyaymü:ageTot kMlaMgeRbkugRtaMgEdlRtUvkar Pp sMrab; parabolic tendon enAkñúgrUbTI 4>13 nig Ph sMrab; harped tendon enAkñúgrUbTI 4>14 mantMéltUcCagkMlaMgEdlRtUvkarenAkñúg straight Flexural Design of Prestressed Concrete Elements 116
  • 28. NPIC tendon enAkñúgrUbTI 4>14. dUcenH sMrab;kMritkugRtaMgdUcKña eKRtUvkarcMnYn strand ticCagsMrab;krNI draped b¤ harped tendon nigeBlxøHeKGaceRbImuxkat;ebtugtUcCagkñúgkarKNnaedayTTYl)annUv lT§plRbkbedayRbsiT§PaB ¬eRbobeFob]TahrN_ 4>2 nig 4>3 mþgeTot¦. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 117
  • 29. T.Chhay Flexural Design of Prestressed Concrete Elements 118
  • 31. T.Chhay g> Limiting-Eccentricity Envelopes eKcg;)ancMNakp©itKNnarbs; tendon tambeNþayElVgEdleFVIy:agNaminbegáItkugRtaMg TajenAsrésxageRkAbMputrbs;muxkat;FñwmEdleRKaHfñak;. RbsinebIeKmincg;)ankugRtaMgTajtam beNþayElVgrbs;FñwmenAkñúgrUbTI 4>15 EdleRbI draped tendon eKRtUvkMNt;cMNakp©itRtg;muxkat; tambeNþayFñwm. RbsinebI M D Cam:Um:g;TMgn;pÞal; ehIy M T Cam:Um:g;srubEdlekItBIbnÞúkTTwgG½kS TaMgGs; enaHédXñas;rbs;m:Um:g; couple EdlbegáIteday center-of-pressure line (C-line) nigG½kSTI RbCMuTMgn;rbs;EdkeRbkugRtaMg (cgs line) EdlekItBI M D nig M T KW amin nig amax erogKña dUc bgðajkñúgrUbTI 4>15. Lower cgs Envelop édXñas;Gb,brmarbs; tendon couple KW MD amin = (4.7a) Pi smIkarenHkMNt;cMgayGtibrmaenABIxageRkam bottom kern EdlCaTItaMgrbs;ExS cgs dUcenH C-line minFøak;enABIxageRkamExS bottom kern )aneT GBa©wgehIyvaGackarBarmineGaymankugRtaMgTajenA srésxagelIbMput)an. Flexural Design of Prestressed Concrete Elements 120
  • 32. NPIC dUcenH limiting bottom eccentricity KW eb = (amin + kb ) (4.7b) Upper cgs Envelop édXñas;Gtibrmarbs; tendon couple KW MT amax = (4.7c) Pe smIkarenHkMNt;cMgayGb,brmaenABIxageRkam top kern EdlCaTItaMgrbs;ExS cgs dUcenH C-line minsßitenABIxagelIExS top kern )aneT GBa©wgehIyvaGackarBarmineGaymankugRtaMgTajenAsrés xageRkambMput)an. dUcenH limiting top eccentricity KW et = (amax − kt ) (4.7d) kUdxøHGnuBaØateGayeRbIkugRtaMgTajkMNt;sMrab;enAeBlepÞr nigenAeBlrgbnÞúkeFVIkar. enAkñúgkrNI EbbenH eKGacGnuBaØateGayExS cgs GacsßitenAxageRkA limiting cgs envelop Edl)anbgðajenA kñúgsmIkar 4.7a nig c bnþicbnþÜc. RbsineKbEnßmcMNakp©itbEnßmenAelI cgs-line envelop enaHvanwgeFVIeGaymankugRtaMgTaj kMNt;enAelIsrésxagelI nigxageRkamrbs;ebtug. kugRtaMgxagelI nigxageRkambEnßmKW f (t ) = Pi e'b ct (4.8a) Ic nig P e' c f (b ) = e t b Ic (4.8b) Edl t nig b tMNageGaysrésxagelI nigxageRkam erogKña. BIsmIkar 4.6 cMNakp©itbEnßmEdl RtUvbEnßmeTAelIsmIkar 4.7b nig d KW f (t ) Ac kb e'b = (4.9a) Pi f (b ) Ac kt nig e't = Pe (4.9b) EnvelopEdlGnuBaØatkugRtaMgkMNt;RtUv)anbgðajenAkñúgrUbTI 4>16. eKKYrcMNaMfa enAeBl upper envelop enAxageRkAmuxkat; ehIykugRtaMgenAmantMélkMNt;GnuBaØat enaHbgðajfamuxkat;Kμan lkçN³esdækic©eT. bMErbMrYlcMNakp©it b¤kMlaMgeRbkugRtaMgeFIVeGaykarKNnakan;EtRbesI. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 121
  • 33. T.Chhay c> Envelopes EdkeRbkugRtaMg Prestressing Tendon Envelopes ]TahrN_ 4>4³ ]bmafaFñwmenAkñúg]TahrN_ 4>2 Ca post-tensioned bonded beam ehIyEdkeRbkug RtaMgmanrag)a:ra:bUl. kMNt; limiting envelop sMrab;TItaMgrbs; tendon EdlkMritkugRtaMgsrésrbs; ebtugminFMCagkugRtaMgGnuBaØat. Kitfamuxkat;Rtg;cMnuckNþalElVg mYyPaKbYnénElVg nigcugFñwmCa muxkat;EdlRtUvKNna. snμt;fatMélrbs;kMhatbg;eRbkugRtaMgdUcKñaenAkñúg]TahrN_ 4>2 b:uEnþ Pi = 549,423lb / Pe = 450,526lb / f 'c = 6,000 psi / ec = 13in nig ee = 6in . dMeNaHRsay³ BI]TahrN+_ 4>2 eyIgGacsegçbm:Um:g;KNnarbs;FñwmGkSr I niglkçN³muxkat;Edl RtUvkardUcxageRkam³ Pi = 549,423lb(2,431kN ) Pe = 450,526lb(2,004kN ) M D = 2,490,638in. − lb(281kN .m ) M SD + M L = 7,605,000in. − lb(859kN .m ) M T = M D + M SD + M L = 10,095,638in. − lb(1,141kN .m ) ( Ac = 377in.2 2,536cm 2 ) f 'c = 6,000 psi ( r 2 = 187.5in.2 1,210cm 2 ) ct = 21.16in.(537mm ) cb = 18.84in.(479mm ) Flexural Design of Prestressed Concrete Elements 122
  • 34. NPIC edaysarEtm:Um:g;Bt;enAkñúg]TahrN_enH)anmkBIbnÞúkBRgayesμI TMrg;rbs;düaRkamm:Um:g;man ragCa)a:ra:bUl CamYynwgm:Um:g;EdlmantMélsUnüenARtg;cugTMrrbs;FñwmsamBaØ. dUcenH m:Um:g;enARtg; mYyPaKbYnénRbEvgElVgKW M D = 0.75 × 2,490,638 = 1,867,979in. − lb(211kN .m ) M T = 0.75 × 10,095,638 = 7,571,729in. − lb(856kN .m ) BIsmIkar 4.6a nig b, kern point limit KW r 2 187.5 kt = = = 9.95in.(253mm ) cb 18.84 r 2 187.5 kb = = = 8.86in.(225mm ) ct 21.16 Lower envelop BIsmIkar 4.7a cMgayGtibrmaEdlExS cgs RtUv)andak;BIeRkam bottom kern edIm,IkarBarkug RtaMgTajenAsrésxagelIbMputRtUv)ankMNt;dUcxageRkam (i) kNþalElVg = 4.53in.(115mm ) M D 2,490,638 amin = = Pi 549,423 eyIgTTYl)an e1 = kb + amin = 8.86 + 4.53 = 13.39in.(340mm) (ii) mYyPaKbYnénElVg = 3.40in.(340mm ) 1,867,979 amin = 549,423 eyIgTTYl)an e2 = 8.86 + 3.40 = 12.26in.(311mm ) (iii) elITMr amin = 0 eyIgTTYl)an e3 = 8.86 + 0 = 8.86in.(225mm ) Upper envelop BIsmIkar 4.7b cMgayGtibrmaEdlExS cgs RtUv)andak;BIeRkam top kern edIm,IkarBarkugRtaMg TajenAsrésxageRkambMputRtUv)ankMNt;dUcxageRkam (i) kNþalElVg = 22.41in.(569mm ) M T 10,095,638 amin = = Pe 450,526 karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 123
  • 35. T.Chhay eyIgTTYl)an e1 = amax − kt = 22.41 − 9.95 = 12.46in.(316mm) kMras;ebtugkarBarEdk = 3.0in. cMNaMfa e1 minGacFMCag cb ebImindUecñaHeT tendon nwgenAxageRkAmuxkat;. (ii) mYyPaKbYnénElVg = 16.80in.(427mm ) 7,571,729 amin = 450,526 eyIgTTYl)an e2 = 16.80 − 9.95 = 6.85in.(174mm ) (iii) elITMr amin = 0 eyIgTTYl)an e3 = 0 − 9.95 = 9.95in.(− 253mm) ¬9.95in. sßitenABIelIExS cgs¦ sMrab;kargarGnuvtþn_ snμt;fakugRtaMgsrésTajGtibrmaeRkamlkçxNÐbnÞúkeFVIkarsMrab;kargarbegáIt cgs envelope minRtUvFMCag f t = 6 f 'c = 465 psi sMrab;srésxagelI nigxageRkam. BIsmIkar 4.9a cMNakp©itbEnßmEdlRtUvbEnßmeTAelI lower cgs envelope edIm,IGnuBaØateGaymankugRtaMgTajkMNt; enAsrésxagelIKW f (t ) Ac kb 465 × 377 × 8.86 e'b = = = 2.83in.(72mm ) Pi 549,423 dUcKña BIsmIkar 4.9b cMNakp©itEdlRtUvbEnßmeTAelI upper cgs envelop edIm,IGnuBaØateGayman kugRtagTajkMNt;enAsrésxageRkamKW f (b ) Ac kt 465 × 377 × 9.95 e't = = = 3.87in.(98mm ) Pe 450,526 dUcenH eyIgmantaragsegçbBI cgs envelope cMNkp©itdUcxageRkam³ Flexural Design of Prestressed Concrete Elements 124
  • 36. NPIC rUbTI 4>17 bgðajBI cgs envelope sMrab;kugRtaMgTajesμIsUnü nigkugRtaMgTajkMNt;enAkñúg ebtug. q> karkat;bnßykMlaMgeRbkugRtaMgenAEk,rTMr Reduction of Prestress Force near Support dUc)aneXIjBI]TahrN_ 4>3 nigEpñk K nig g xagelI straight tendon enAkñúg pretensioned member GacbNþaleGaymankugRtaMgTajFMenAsrésxageRkArbs;ebtugenARtg;TMr edaysarGvtþ- mankugRtaMgm:Um:g;Bt;Edl)anBITMgn;pÞal; nigbnÞúkbEnßm. eKmanviFIFmμtaBIrkñúgkarkat;bnßykugRtaMg enARtg;muxkat;TMrEdlbNþalmkBIkMlaMgeRbkugRtaMg. viFITaMgBIrenaHKW³ - pøas;bþÚrcMNakp©itrbs;kabxøHedayelIkBYkvaeLIgeTAkan;tMbn;TMrdUcbgðajenAkñúgrUbTI 4>18 (a). viFIenHkat;bnßytMélm:Um:g;. - eRsabkabxøHedaybMBg;)aøsÞiceTAkan;tMbn;TMr dUcbegðIjenAkñúgrUbTI 4>18(b). viFIenHkat;bnßy EpñkénkugRtaMgepÞrrbs;kabenAcMgayxøHBImuxkat;TMrénFñwmeRbkugRtaMgTMrsamBaØ. cMNaMfakabEdlelIkeLIgk¾RtUv)aneRbIenAkñúgFñwmeRbkugRtaMgElVgEvgEdlrgeRbkugRtaMgCa eRkaypgEdr. eKminRtUvkarEpñkminCab;rbs; tendon edaylkçN³RTwsþI edayelIkvaeLIgelI. kMhat bg;edaysarkMlaMgkkitbEnßmedaysarExSekagbBa©ÚleTAkñúgkarKNna b¤karviPaKmuxkat;. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 125
  • 37. T.Chhay 5> End Block at Support Anchorage Zones k> karEbgEckkugRtaMg Stress Distribution kugRtaMgsgát;cMcMnucd¾FMenAkñúgG½kSbeNþayekItmanenARtg;muxkat;TMrenAelIkMNat;d¾tUcénépÞ rbs;cugFñwm ¬TaMgenAkñúg pretensioned beam nig post-tensioned beam¦ EdlbNþalmkBIkMlaMg eRbkugRtaMgd¾FM. enAkñúg pretensioned beam bnÞúkepÞrcMcMnucrbs;kMlaMgeRbkugRtaMgeTAelIebtugEdl B½T§CMuvijekIteLIgbnþicmþg²rhUtdl;vakøayeTACamanlkçN³BRgayesμIelIRbEvg lt BIépÞénmuxkat;TMr. enAkñúg post-tensioned beam karEbgEck nigkarepÞrkMlaMgbnþicmþg²tamrebobenHminGaceFVI eTA)aneT edaysarkMlaMgmanGMeBIedaypÞal;eTAelIépÞrbs;cugFñwmtamry³ bearing plate nig anchors. ehIy tendon xøH b¤k¾TaMgGs;enAkñúg post-tensioned beam RtUv)anelIkeLIg b¤ draped eTAkan;srés xagelItamry³EpñkénRTnugrbs;muxkat;ebtug. edaysarkarpøas;bþÚrkugRtaMgsgát;tamG½kSBIcMcMnuceTABRgayesμIminsnSwm² vabegáIteGayman kugRtaMgTajTTwg (transverse tensile stress) FMkñúgTisbBaÄr dUcenHehIy longitudinal bursting cracks k¾ekItmanenA anchorage zone. enAeBlEdlkugRtaMgFMCagm:UDulkat;rbs;ebtug end block Flexural Design of Prestressed Concrete Elements 126
  • 38. NPIC nwgeRbHtambeNþay elIkElgEteKdak;EdkbBaÄrsmRsb. TItaMgrbs; concrete-bursting stress nig resulting bursting crack k¾dUcCa surface-spalling crack KWGaRs½ynwgTItaMg nigkarEbgEckkMlaMg cMcMnuctamTisedkEdlGnuvtþedayEdkeRbkugRtaMgeTAelI end bearing plate. eBlxøHeKcaM)ac;begáInRkLaépÞrbs;muxkat;eTArkTMredayeFVIkarBRgIkRTnugbnþicmþg²eGayesμI TTwgrbs;søabenARtg;TMr kñúgeKalbMNgedIm,IeFVIkarelIk tendon eLIgelI ¬emIlrUbTI 4>19(a)¦. b:uEnþ karekIneLIgRkLaépÞmuxkat;EbbenHmin)ancUlrYmkarBar bursting b¤ spalling crack eT ehIyvak¾min manT§iBlkñúgkarkat;bnßykMlaMgTajtamTTwgenAkñúgebtugEdr. tamBit TaMglT§plénkarBiesaF nigkarviPaKedayRTwsþIén three-dimension stress problem bgðajfakugRtaMgTajGacekIneLIg. dUcenH eKRtUvkardak; anchorage reinforcement caM)ac;enAkñúgtMbn;epÞrkMlaMgkñúgTMrg;Edkkg biTCit (closed ties b¤ stirrup) b¤]bkrN_ anchorage edaydak;B½T§CMuvijEdkeRbkugRtaMgemTaMgGs; nig EdkBRgwgFmμtatambeNþay. rUbTI 4>20 bgðajBIKnøgkugRtaMgTaj nigKnøgkugRtaMgsgát;. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 127
  • 39. T.Chhay x> RbEvgbgáb; nigRbEvgepÞrenAkñúgGgát;rgeRbkugRtaMgCamun nigkarKNna Anchorage Reinforcement Development and Transfer Length in Pretensioned Members and Design of Their Anchorage Reinforcement edaysarkMlaMgTaj (jacking force) RtUv)anRbElgeTAelIGgát;rgeRbkugRtaMgCamun enaH kMlaMgeRbkugRtaMgRtUv)anepÞredaylkçN³DINamictamry³épÞb:HrvagEdkeRbkugRtaMg nigebtugeTAeb tugEdlB½T§CMuvijEdkeRbkugRtaMg. PaBs¥itrvagEdkeRbkugRtaMg nigebtugelIRbEvgkMNt;rbs;Edk eRbkugRtaMgepÞrkMlaMgeRbkugRtaMgcMcMnucsnSwm²eTAmuxkat;TaMgmUlrbs;ebtugRtg;bøg;EdlecjBI end block eTAkan;kNþalElVg. RbEvgbgáb;kMNt;TMhMkMlaMgeRbkugRtaMgEdlGacekItmantambeNþayElVg. RbEvgbgáb;kan;EtEvg kMlaMgeRbkugRtaMgkan;EtFM. Ca]TahrN_ sMrab; 7-wire strand Ggát;p©it 1 / 2in. EdlmanRbEvgbgáb; 40in.(102cm) begáIt kugRtaMg 180,000 psi(1,241MPa ) b:uEnþCamYynwgRbEvgbgáb; 70in.(178cm) begáItkugRtaMg 206,000 psi (1,420MPa ) . BIrUbTI 4>21 vabgðajy:agc,as;faRbEvgbgáb; ld EdlbegáItkugRtaMgeBjeljCabnSM rvagRbEvgepÞr (transfer length) lt nigRbEvgs¥itedaykarBt; (flexural bond length) l f . 1 ⎛ f pe ⎞ lt = ⎜ ⎟d b (xñat US) (4.10a) 1,000 ⎜ 3 ⎟ ⎝ ⎠ Flexural Design of Prestressed Concrete Elements 128
  • 40. NPIC ⎛ f pe ⎞ lt = ⎜ ⎜ 20.7 ⎟d b ⎟ ( xñat SI) ⎝ ⎠ f pe b¤ lt = 3000 db (4.10b) nig lf = 1 1,000 ( f ps − f pe d b ) ( xñat US) (4.10c) lf = 1 6.9 ( f ps − f pe d b ) ( xñat SI) Edl kugRtaMgenAkñμúgEdkeRbkugRtaMgenAeBl nominal strength f ps = f pe = eRbkugRtaMgRbsiT§PaBeRkayeBlxatbg; d b = nominal diameter rbs;EdkeRbkugRtaMg edaybBa¢ÚlsmIkar 4.10b nig 4.10c eyIg)an 1 ⎛ ⎞ (xñat US) 2 ld min = ⎜ f ps − f pe ⎟d b (4.10d) 1,000 ⎝ 3 ⎠ 1 ⎛ ⎞ ld min = 6.9 ⎝ 2 ⎜ f ps − f pe ⎟d b 3 ⎠ ( xñat SI) karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 129
  • 41. T.Chhay smIkar 4.10d eGaynUvRbEvgbgáb;caM)ac;Gb,brmasMrab;EdkeRbkugRtaMg. RbsinebIeKeRsab EdkeRbkugRtaMgxøHeq<aHeTAkan;cugFñwmedIm,Ikat;bnßykugRtaMgs¥itenAEk,rxagcug enaHkugRtaMgepÞrenAkñúg tMbn;enaHRtUv)ankat;bnßy ehIyeKcaM)ac;RtUveFVIkarEksMrYledaybegáInRbEvgbgáb; ld . !> KNnaEdktMbn;epÞrenAkñúgFñwmrgeRbkugRtaMgCamun Design of Transfer Zone Reinforcement in Pretensioned Beams tamkarBiesaF Mattock et al. )anbegáItsmIkarEdl)anBIkarBiesaFsMrab;rkkMlaMgEdkkg srub F dUcxageRkam³ Pi h F = 0.0106 (4.11) lt Edl h CakMBs;rbs;FñwmrgeRbkugRtaMgCamun ehIy lt Ca transfer length. RbsinebIeKykkugRtaMg mFümenAkñúgEdkkgRtwmBak;kNþalkugRtaMgGnuBaØatGtibrma f s rbs;Edk enaH F = 1 / 2( At f s ) . edayCMnYsvacUleTAkñúgsmIkar 4.11 eyIgTTYl)an³ Ph At = 0.021 i f l ¬xñat Us¦ (4.12) s t At = 21,000 ¬xñat IS¦ Pi h f s lt Edl At CaRkLaépÞsrubrbs;Edkkg ehIy f s ≤ 20,000 psi(138MPa) sMrab;karRKb;RKgsñameRbH. @> kareRCIserIsEdkenAkñúgFñwmrgeRbkugRtaMgCamun Reinforcement Selection in Pretensioned Beams ]TahrN_ 4>5³ KNna anchorage reinforcement EdlRtUvkaredIm,IkarBar bursting crack b¤ spalling crack EdlekItmanenAkñúgFñwmén]TahrN_ 4>2. dMeNaHRsay³ Pi = 376,110lb(1,673kN ) BIsmIkar 4.12 At = 0.021 Pi lh fs t BIsmIkar 4.10b RbEvgepÞrKW lt = ( f pe / 3,000)db . dUcenH edaysar f pe = 154,980 psi nig d b = 1 / 2in. eyIgman × 0.5 = 25.83in.(66cm ) 154,980 lt = 3,000 dUcenH Ph At = 0.021 i f s lt Flexural Design of Prestressed Concrete Elements 130
  • 42. NPIC edaysar f s ≤ 20,000 psi / eyIgTTYl)an 376,110 × 40 At = 0.021 20,000 × 25.83 ( = 0.61in.2 3.9cm 2 ) sakl,gEdkkgbiTCit #3 2 × 0.11 = 0.22in.2 ¬Ggát;p©it 9.5mm ¦ cMnYnEdkkgGb,brma = 0..22 = 2.78 0 61 eRbIEdkkg #3 cMnYnbIkgedIm,Ih‘MuB½T§EdkembeNþay. cgh‘uMB½T§EdkeRbkugRtaMgCamYy helical steel wire elIRbEvgepÞr lt edIm,ITTYl)ankarepÞrEdlmanRbsiT§PaBl¥. K> Post-tensioned Anchorage Zones: Linear Elastic and Strut-and-Tie Theories eKGacKit anchorage zone CamaDebtugEdlkMlaMgeRbkugRtaMgcMcMnucenARtg; anchorage device BRgayCalkçN³smamaRttamTisTTwgeBjépÞTaMgmUlrbs;muxkat;ebtugtambeNþayElVg. RbEvgrbs;tMbn;enHGnuvtþtameKalkarN_ St. Venant EdlkugRtaMgkøayCaBRgayesμIenAcMgayRbhak; RbEhlmYyBImux anchorage device esμInwgkMBs; h rbs;muxkat;. RBIsTaMgmUlEdlman RbEvgepÞr h Ca anchorage zone srub. dUcenHtMbn;enHpSMeLIgedayBIrEpñk³ - General Zone: karraldalTUeTAéntMbn;enHRsedogKñanwg anchorage zone srub. dUcenH RbEvglatsn§wgtambeNþayFñwmesμInwgkMBs;muxkat; h enAkñúgkrNIsþg;dar. - Local Zone: tMbn;enHCaRBIsbEnßménebtugEdlB½T§CMuvij nigenABIxagmux anchorage device Pøam² nigBI confining reinforcement. emIlépÞqUtenAkñúgrUbTI 4>22 (c) nigTMhMrbs;vaenA kñúgrUbTI 4>22 (a). rUbenHbgðajBIkarEbgEckkugRtaMgTaj nigkugRtaMgsgát;enAkñúg local zone nig stress contour rbs;vaEdlTTYl)anBI finite element analysis rbs; Rutgers test. RbEvgrbs; tMbn;enHCatMélFMCageKkñúgcMeNamTTwgGtibrma b¤RbEvgrbs; anchorage device. eKeRCIserIs confining reinforcement eBj anchorage zone edIm,IkarBar bursting nig splitting EdlekItBIkMlaMgsgát;cMcMnucFMEdlbBa¢Úntamry³ anchorage device. elIsBIenH eKRtUvRtYt karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 131
  • 43. T.Chhay Binitü bearing stress enAelIebtugkñúg local zone EdlbNþalmkBIkMlaMgsgát;d¾FMenH edIm,IFana favaminFMCag allowable compressive bearing stress rbs;ebtug. Flexural Design of Prestressed Concrete Elements 132
  • 44. NPIC !> viFIKNnasMrab; General Zone Design Method for General Zone eKmanviFIbIEdlGacKNna anchorage zone - Linear Elastic Stress analysis approach Including Use of Finite Element: viFIenH Bak;B½n§nwgkarKNnasßanPaBlMGitrbs;kugRtaMgdUcCa linearly elastic. karGnuvtþén finite element method manPaBlM)akxøHkñúgkarbegáItKMrUrEdlmansñameRbHd¾RtwmRtUvenAkñúgebtug. Et CamYynwgkarsnμt;d¾smRsbmYyeKGacTTYl)annUvlT§plEdlGacTTYlyk)anmYy. - Equilibrium-Based Plasticity Approach dUcCa Strut-and Tie Method: viFI strut-and-tie pþl;nUvKnøgd¾l¥rbs;kMlaMgeRbkugRtaMgEdlmanTMrg;dUcCaeRKOgbgÁúM truss EdlkMlaMgkñúgrbs;va eKarBeTAtameKalkarN_lMnwgTUeTA. Ultimate load EdlBüakrN_edayviFIenHTTYlykBI kar)ak;énbgÁúM strut b¤ tie NamYy. viFIenHEtgEtpþl;nUvlT§plEdlmansuvtßiPaBsMrab;kargar Gnuvtþn_. - Approach Method: viFIenHGnuvtþsMrab;muxkat;ctuekaNEdlmindac;. @> viFIviPaK Linear Elastic sMrab;kMNt; Confining Reinforcement Linear Elastic Analysis Method for Confining Reinforcement Determination Anchorage zone rgnUvkugRtaMgbIkMritdUcbgðajenAkñúgrUbTI 4>22 (a) nig stress contour zone: - High bearing stress BImux anchorage device. eKRtUvkarebtugEdlmankarRtYtBinitüd¾Rtwm RtUvedIm,IkarBarkar)ak;edaykugRtaMgsgát;énkMNat;rgkarsgÁt;dUcbgðajenAkñúgRkLaépÞqñÚtén rUbTI 4>22(a) nig 4>22(c). - Extensive tensile-bursting stress enAkñúg tensile contour areas EdlEkgeTAnwgG½kSrbs; tendon dUcbgðajenAkñúgrUbTI 4>22(a) nig (b) nig enAkñúgrUbTI 4>23(b). - kugRtaMgsgát;FMenAkñúgEdnkugRtaMg (stress field) RkLaépÞ D nig E enAkñúgrUbTI 4>22(a). eKGaceRbI linear elastic stress analysis edIm,ITay)annUvTItaMgrbs;sñameRbH nigpþl;nUv kar)a:n;sμan Rbhak;RbEhlmYyEdlGacTTYlyk)anBIrMhUrkugRtaMgeRkayeBleRbH. RkLaépÞEdk TajRtUv)ankMNt;edIm,ITb;Tl;kMlaMgTajsrubEdlTTYl)anBIkarRbmUlpþMúkugRtaMgTajenAkñúgebtug. eKRtUvbEnßmEdkrgkarsgát;enAkñúgtMbn;sgát; RbsinebIkMlaMgsgát;FM. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 133
  • 45. T.Chhay EdlbgðajenAkñúgrUbTI 4>22 pþl;nUvkarKNnasßan Linearly elastic finite element analysis PaBrbs;kugRtaMgenAkñúg anchorage zone suRkitCag. b:uEnþ CMhanénkarKNnaRtUvkarefr³evlaeRcIn Cag nigcMNayeRcInCag. lT§plRtUv)ankMNt;edaysarPaBBi)akkñúgkarbegáItKMrUEdlmansñameRbH enAkñúgebtugd¾RtwmRtUv. eKGaceRbI nonlinear finite element analysis edIm,ITaynUv post-cracking response. Flexural Design of Prestressed Concrete Elements 134
  • 46. NPIC rUbTI 4>23 bgðajBI linearly elastic end block forces. vabgðajBIkMlaMg end-block nigkugRtaMgsrésEdlbNþalBIkMlaMgeRbkugRtaMg Pi k¾dUcCatMélm:Um:g;Bt;sMrab;kMBs;eRbH y EdlGac ekItmannImYy² BIelI)atFñwm CD . tMélm:Um:g;Gtibrma M max kMNt;TItaMgén horizontal bursting crack. m:Um:g;enHRtUv)anTb;Tl;edaym:Um:g; couple EdlekItBIkMlaMgTaj T én vertical anchorage zone reinforcement nigkMlaMgsgát; C Edlpþl;eday end-block concrete xN³EdlkMlaMgkat;tam Tisedk V enARtg; crack spite surface RtUv)anTb;Tl;eday aggregate interlock force. tamkarGegát Edkkg vertical anchorage zone Edlpþl;kMlaMg T RtUv)anEbgEckelItMbn;Edlman TTwg h / 2 BIépÞxagcugrbs;Fñwm EdldUcCa X enAkñúgrUbTI 4>23 GacERbRbYlBI h / 5 eTA h / 4 . BIsmIkarlMnwgrbs;m:Um:g; M max T= (4.13) h−x ehIyRkLaépÞrbs;EdkbBaÄrEdlRtUvkarsrubkøayCa T At = (4.14) fs EdlkugRtaMgEdk f s EdlRtUv)aneRbIenAkñúgkarKNnaenHminRtUvFMCag 20,000 psi(138.5MPa ) sMrab; karRKb;RKgTTwgsñameRbH. Casegçb nigCMnYseGay linear elastic finite element analysis eKGacTTYldMeNIrkar Edl)anENnaM eTaHbICaminminsUvsuRkitdUckarKNna anchorage y:aglMGitEdlnwgpþl;eGayenA kñúg]TahrN_ 4>6 Epñk (a) k¾eday. #> Strut-and-Tie Method for Confining End-Block Reinforcement Strut-and-tie concept KWQrelI plasticity approach Edl)a:n;RbmaNkMlaMgenAkñúg anchorage zone edayes‘rIén strut sgát;Rtg; nig tie TajRtg;EdlP¢ab;KñaRtg;cMnucmYyEdleKehAfa node edIm,IkøayeTACa truss Éktþa. kMlaMgsgát;RtUv)anTb;Tl;eday plastic compressive strut ehIykMlaMgTajRtUv)anTb;Tl;edayEdkminEmneRbkugRtaMg b¤edayEdkeRbkugRtaMg. Yield strength rbs; anchorage confining reinforcement RtUv)aneRbIedIm,IkMNt;RkLaépÞsrubrbs;EdkEdlcaM)ac; eRbIenAkñúg anchorage block. rUbTI 4>24 bgðajBIkMlaMgeRbkugRtaMgcMp©it nigcakp©it P BImuxcMnucén karGnuvtþkMlaMgTaMgenHtamry³ anchorage device eTAkan;cugén general zone EdlkugRtaMgkøayCa rayesμItameKalkarN_ St. Venatn. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 135
  • 47. T.Chhay Flexural Design of Prestressed Concrete Elements 136
  • 49. T.Chhay Flexural Design of Prestressed Concrete Elements 138
  • 50. NPIC eRkayBIekItmansñameRbHKYreGaycab;GarmμN_mk KnøgkugRtaMgsgát;enAkñúgebtug)anRbmUlpþúM KñaeTACaExSRtg;EdlGacKitdUcCa straight compressive strut rgkMlaMgsgát;tamG½kSmYy. Srut TaMg enHnwgkøayCacMENkrbs; truss ÉktþaEdkkugRtaMgTajemRtUv)anKitCa tension tie enAkñúg truss Éktþa EdlmanTItaMgrbs; node RtUv)ankMNt;edayTisedArbs; compression strut. rUbTI 4>25 (a) bgðajBI karbegáIt strut nigrUbTI 4>25(b) bgðajBI truss EdlekItBI strut-and-tie sMrab; multiple anchorage enAkñúgmuxkat;GkSr T. rUbTI 2>26 segçbBIKMnitén strut nig tie enAkñúg anchorage zone. rUbTI 2>27 bgðajBI standard strut-and-tie truss sMrab;krNIcMp©it nigcakp©iténmuxkat;tan; nigmuxkat;man søabEdleGayeday ACI 318-99 Code. eKsnμt; tension tie enAkñúg truss sib,nimitþmancMgay h / 2 BI anchorage device. karsnμt; enHGacGnuvtþeTA)anCamYynwgTItaMgrbs;kMlaMgTaj T enAkñúgrUbTI 4>23 én elastic stress-analysis karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 139
  • 51. T.Chhay approach. Epñk (b) én]TahrN_ 4>6 bgðajBIKnøgEdlsnμt;sMrab; anchorage zone enAkñúg I-beam EdleKBicarNa. ⎛ a⎞ Tburst = 0.25 ∑ Psu ⎜1 − ⎟ (4.15a) ⎝ h⎠ d burst = 0.5(h − 2e ) (4.15b) Edl ∑ Psu =plbUkénkMlaMg tendon emKuNsrub a = kMBs;rbs; anchorage device b¤RkumeTalén closely-spaced device e = cMNakp©itén anchorage device b¤Rkumén closely-spaced device BITIRbCMuTMgn;rbs;mux kat;Fñwm h = kMBs;rbs;muxkat; eKeRbI anchorage device Ca closely-spaced device RbsinebIKMlatBIG½kSeTAG½kSrbs;vamin FMCag 1.5 dgénTTwgrbs; anchorage device. 4. Allowable Bearing Stresses GnuBaØatGtibrmaenARtg; anchorage device seating minRtUvFMCagtMél Bearing stress RsedogKñaBIrEdlTTYl)anBIsmIkar 4.16a nig 4.16b dUcxageRkam³ f b ≤ 0.7φf 'ci A / Ag (4.16a) f b ≤ 2.25φf 'ci (4.16b) Edl kMlaMg tendon emKuNGtibrma Pu EckCamYynwg effective bearing area Ab fb = f 'ci = ersIusþg;sgát;rbs;ebtugenAeBlrgkugRtaMg A = RkLaépÞGtibrmaéncMENkrbs;épÞEdlRTEdlmanragFrNImaRtRsedogKñanwgRkLaépÞrg bnÞúk ehIyRtYtsIuKña. Ag = gross area rbs; bearing plate Ab = effective net area rbs; bearing plate EdlRtUv)anKNnaedaydkRkLaépÞ As BIRkLa épÞRbehagenAelI bearing plate. smIkar 4.16a nig 4.16b mann½yEtRbsinebIeKdak; general zone reinforcement nigRbsinebIRbEvg énkarlatsn§wgrbs;ebtugtambeNþayG½kSrbs; tendon BImux anchorage device esμIBIrdgRbEvgén local zone y:agtic. Flexural Design of Prestressed Concrete Elements 140
  • 52. NPIC X> KNnaEdk End Anchorage sMrab;FñwmeRbkugRtaMgrgkarTajCaeRkay Design of End Anchorage Reinforcement for Post-tensioned Beams ]TahrN_ 4>6³ KNna end anchorage reinforcement sMrab; post-tensioned beam enAkñúg]TahrN_ 4>2 EdleGayTMhM RbePT nigkarBRgayEdk. eRbIebtugTMgn;Fmμta f 'c = 5,000 psi(34.5MPa) . snμt;facugFñwmCabøúkctuekaNEdllUtcUleTAkñúgElVg 40in.(104cm) BIeRkay anchorage device bnÞab;mkkat;bnßykMras;RTnug 6in. . edaHRsaybBaðaedayeRbI (a) linear elastic stress analysis method, (b) plastic strut-and-tie method. KUrKMrU truss Edl)ankMNt;. dMeNaHRsay³ (a) edaHRsayeday linear elastic stress method³ !> begáItKMrUén tendon edaymancMNakp©it ee = 12.49in.(317mm) BI]TahrN_ 4>2. cb = 18.84in. dUcenHcMgayBIsrésxageRkamrbs;Fñwm = cb − ee = 6.35in.(161mm) sMrab;cMgayTIRbCMuTMgn;rbs; tendon Ggát;p©it 1 / 2in. cMnYn 13 edIm = 6.35in. BIsrésxageRkamFñwm sakl,gkartMerobCaCYredkdUcxageRkam CYredkTI 1³ 5 tendon enAcMgay 2.5in CYredkTI 2³ 5 tendon enAcMgay 7.0in. CYredkTI 3³ 3 tendon enAcMgay 11.5in. cMgayénTIRbCMuTMgn;rbs; tendon = 5 × 2.5 + 5 ×13.0 + 3 × 11.5 ≅ 6.35in. 7 O.K. @> Ultimate forces enAkñúgCYredkén tendon nig bearing capacity rbs;ebtug kMlaMg Pu1 CYredkTI 1³ 5 × 0.153 × 270,000 = 206,550lb(919kN ) kMlaMg Pu 2 CYredkTI 2³ 5 × 0.153 × 270,000 = 206,550lb(919kN ) kMlaMg Pu3 CYredkTI 3³ 3 × 0.153 × 270,000 = 123,930lb(551kN ) #> Elastic analysis énkMlaMg EckkMBs;FñwmCacMerokEdlmankMBs; 4in. dUcbgðajenAkñúgrUbTI 4>28(a) nigsnμt;fakugRtaMg ebtugrbs;cMeroknImYy²esμInwgkugRtaMgenARtg;G½kSrbs;cMerokenaH. bnÞab;mkKNnakMeNInm:Um:g;Edl bNþalBIkugRtaMgxagkñúg nigkMlaMgeRbkugRtaMgxageRkA Pi eFobnwgbøg;edknImYy²edIm,IkMNt; net moment enAelImuxkat;. Net moment GtibrmanwgkMNt;TItaMgrbs; potential horizontal bursting crack nigEdkEdlRtUvdak;edIm,IkarBarsñameRbHEdlnwgekItmanenaH. edayeRbIsBaØabUk (+) sMrab; karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 141
  • 53. T.Chhay m:Um:g;vilRsbRTnicnaLika. BI]TahrN_ 4>2 kMlaMgeRbkugRtaMgedImmuneBlxatbg;KW Pi = 376,110lb (1,673kN ) . BIrUbTI 4>28 m:Um:g;xagkñúgebtugenARtg;bøg; 4in. BIsrésxageRkamKW M c 4 = 2,117 × 4 × 18 × (2in.) = 304,848in. − lb = 0.3 ⋅ 10 6 in. − lb(34.4kN .m ) nigenARtg;bøg; 8in. BIsrésxageRkamKW 18 + 10 M c8 = 2,117 × 4 × 18 × (6in.) + 1,851 × 4 × × (2in.) 2 = 1,121,856in. − lb = 1.12 ⋅ 10 6 in. − lb(127 kN .m ) m:Um:g;kMlaMgeRbkugRtaMgenARtg;bøg; 8in. BIsrésxageRkamKW M c8 = 376,110 × (8 − 6.35) = −620,582in. − lb = −0.62 ⋅ 10 6 in. − lb(70.1kN .m ) Net moment KW = 1.12 ⋅106 − 0.62 ⋅106 = 0.50 ⋅106 in. − lb(56.6kN .m) tamrebobdUcKña eyIgGacrk net moment sMrab;cMerokd¾éTeTot ehIytMélrbs;vaRtUv)anerobdak;enA kñúgtarag 4>5. BItaragenH net moment GtibrmaKW + M max = +0.75 ⋅106 in. − lb(84.6kN .m) enARtg;bøg;edk 6.35in. BIsrésxageRkamrbs;Fñwm (bursting potential crack effect) ehIy Flexural Design of Prestressed Concrete Elements 142
  • 54. NPIC − M max = −0.20 ⋅ 106 in. − lb enARtg;bøg; 24in.(64cm) BIxagelIsrésxageRkamrbs;Fñwm (spalling potential crack effect) . $> KNna anchorage reinforcement BIsmIkar 4>11 nigedaysnμt;vaG½kSrbs;kMlaMgTajbBaÄr T KWenARtg;cMgay x ≈ 15in. eyIgTTYl)an M max 0.75 ⋅ 106 T= = = 30,000lb(133kN ) h−x 40 − 15 edayGnuBaØatkugRtaMgEdkGtibrma f s = 20,000 psi ¬kUdGnuBaØat 0.60 f y = 36,000 psi ¦ Bursting zone reinforcement KW At = Tb 30,000 = f s 20,000 ( = 1.50in 2 968mm 2 ) dUcenH sakl,gEdkkgbiTCit #3 ³ (As = 2 × 0.11 = 0.22in.2 ) cMnYnEdkkgEdlRtUvkar = 1..50 = 6.82 kg 0 22 eRbIEdkkg #3 cMnYn 6 kg bEnßmBIelIEdkkgsMrab;Tb;nwgkMlaMgkat;. karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 143
  • 55. T.Chhay Spalling zone force − 0.2 × 106 Ts = = 8,000lb 40 − 15 dUcenH T As = s = 8,000 f s 20,000 ( ) = 0.40in.2 250mm 2 dUcenH eyIgman cMnYnEdkkg #3 EdlRtUvkar = 0..40 = 1.82 kg 0 22 eRbIEdkkg #3 cMnYnBIrkgbEnßmeTot. dUcenH cMnYnEdkkgsrub = 6.82 + 1.82 + 4 = 12.64 kg eRbIEdkkgbiTCit #3 cMnYn 12 kg. dak;EdkkgbBa©ÚleTAkñúgtMbn;sgát;enAkñúgrUbTI 4>23. dak;Edkkg #3 KMlatBIKña 3in. edayKitBIG½kSeTAG½kS edayEdkkgTImYycab;epþImCamYynwgKM lat 3in. BIcugFñwm. ehIy dak;Edk #3 RbEvg 10in. cMnYn 4 edImEdlmanKMlatBIKña 3in. KitBIG½kSeTA G½kS nigmanKMlat 2in. BIépÞxagcugRtg;TItaMg anchorage edaysarsñameRbHGacekItmantamTis bBaÄr nigTisedk. RbsinebImantMrUvkarrbs;plitkr eKRtUvbEnßm spiral reinforcement BIxageRkam anchor. (b) edaHRsayeday plastic Strut-and-tie method³ !> begáItKMrUén tendon EdlmancMNakp©it ee = 12.49in.(317mm) BI]TahrN_ 4>2 cb = 18.84in. dUcenHcMgayBIsrésrbs;Fñwm = cb − ee = 6.35in.(161mm) sMrab;cMgayTIRbCMuTMgn;rbs; strand Ggát;p©it 1 / 2in. cMnYn 13 edImEdlesμInwg 6.35in BIsrés xageRkamrbs;Fñwm sakl,gkartMerob tendon CaCYredkEdlmancMgayBIsrésxageRkamdUcteTA³ CYredkTI 1³ 5 tendon enARt;g 2.5in. CYredkTI 2³ 5 tendon enARt;g 7.0in. CYredkTI 3³ 3 tendon enARt;g 11.5in. cMgayénTIRbCMuTMgn;rbs; tendon = 5 × 2.5 + 5 ×13.0 + 3 ×11.5 ≅ 6.35in. O.K. 7 @> Ultimate force enAkñúgCYredkrbs; tendon nig bearing capacity rbs;ebtug kMlaMg Pu1 CYredkTI 1³ 5 × 0.153 × 270,000 = 206,550lb(919kN ) kMlaMg Pu 2 CYredkTI 2³ 5 × 0.153 × 270,000 = 206,550lb(919kN ) kMlaMg Pu3 CYredkTI 3³ 3 × 0.153 × 270,000 = 123,930lb(551kN ) Flexural Design of Prestressed Concrete Elements 144
  • 56. NPIC kMlaMgsgát; ultimate srub = 206,550 + 206,550 + 123,930 = 537,830lb(2,389kN ) RkLaépÞsrubrbs; rigid bearing plate EdlRT Supreme 13-chucks anchorage device = 14 × 11 + 6 × 4 = 178in.2 ( cm 2 ) 113 Bearing stress Cak;Esþg f b = = 3020 psi(20.8MPa ) 537,380 178 BIsmIkar 4.16(a) nig (b), bearing pressure GnuBaØatGtibrmaenAelIebtugKW f b ≤ 0.7φf 'ci A / Ag f b ≤ 2.25φf 'ci snμt;fa ersIusþg;ebtugdMbUgenAeBlEdlrgkugRtaMgKW f 'ci = 0.75 f 'c = 0.75 × 5,000 = 7,750 psi RkLaépÞcMp©it A rbs;ebtugEdlman bearing plate ≅ 18 ×14 + 10 × 7 = 322in.2 Bearing stress GnuBaØat f b = 0.70 × 0.90 × 3,750 322 = 3,178 psi > 3,020 psi O.K. 178 Bearing stress BIsmIkar 4.14(b) Gt;lub. #> KUr strut-and-tie model RbEvgcMgaysrub a enAkñúgrUbTI 4>25 rvagkMlaMg Pu1 nig Pu3 = 11.5 − 2.5 = 9.0in. dUcenHcMgay a / 2 BImux anchorage = 9.0 / 2 = 4.5in. sg; strut-and-tie edaysnμt;vadUcbgðajenAkñúgrUbTI 4>29. TMhMFrNImaRtsMrab;rkbgÁúMkMlaMgedkBI tie 1 − 2 nig 2 − 3 EdlmantMélkUtg;sg; 26.5 / 15.5 nig 13.0 / 15.5 erogKña. BIsþaTic viPaK truss enAkñúgrUbTI 4>29 edayTTYl)ankMlaMgGgát;dUcxag eRkam³ = 211,982lb(942kN ) rgkarTaj 26.5 tie 1 − 2 = 123,930 × 15.5 = 173,235lb(728kN ) rgkarTaj 13 tie 2 − 3 = 206,550 × 15.5 eRbItMélEdlFMCagkñúgcMeNamtMélTaMgBIredIm,IeRCIserIsEdkkgbiTCitEdlrgkarTaj. sakl,gEdkkg #3 Edlman tensile strength kñúgmYykg = φf y Av = 0.90 × 60,000 × 2(0.11) = 11,880lb cMnYnEdkkgEdlRtUvkar = 211,982 11,880 = 17.8 karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 145
  • 57. T.Chhay sMrab;EdkkgrgkarTaj a − b − c enAkñúgrUbTI 4>29 eRbIkMlaMg Pu = 173,235lb edIm,Idak;EdkkgbBaÄr #4 BIxagmux anchorage device. cab;epþImEdkkgTImYyenAcMgay 1 1 in. BIxagcug rigid steel plate 2 EdlepÞrkMlaMgBI anchorage device eTAebtug. cMnYnEdkkg = 0.9 × 60,000 × 2(0.20) = 8.0 173,235 eRbIEdkkg #4 cMnYn 8 kgEdlmancMgayBIKña 1 14 in. BIG½kSeTAG½kS ¬12.7mm @ 32mm ¦ Edl manEdkkgTImYycab;epþImenAcMgay 1 12 in. BIxagmux anchorage device. eKRtUvkarEdkkgEt 13 CMnYseGay 17.8 Edl)anBIkarKNna edaysarEpñkrbs;tMbn;RtUv)an Tb;Tl;edayEdkkg #4 . eRbIEdkkg #3 cMnYn 13 EdlmanKMlatBIKña 2 12 in. BIG½kSeTAG½kS ¬12.7mm @ 57 mm ¦ bnÞab;BIEdkkg #4 EdlmancMgaysrubTaMgGs; 40in.(104cm ) . cMNaMfaviFIenHRtUvkar confining tie eRcInCag elastic solution kñúgEpñk (a). rUbTI 4>30 bgðajBI anchorage zone confining reinforcement lMGitEdl)anBI strut-and-tie analysis. Flexural Design of Prestressed Concrete Elements 146
  • 58. NPIC 6> KNnaFñwmsmasrgkarBt; Flexural Design of Composite Beams muxkat;smas FmμtaCaeRKOgbgÁúMeRbkugRtaMgcak;Rsab;EdlenABIelIva kMralxNÐRtUv)ancak;enA kardæan ehIyvaeFVIkarCamYyKña ¬rUbTI 4>31¦. eBlxøH eKTl; prestressed element kñúgGMLúgeBlcak; nigEfTaM situ-cast top slab. kñúgkrNIEbbenH TMgn;kMralxNÐeFVIGMeBIEtelImuxkat;smas Edlmanm:U Dulmuxkat;FMCagmuxkat;cak;Rsab;. dUcenH karKNnakugRtaMgebtugRtUv)anykmkKitenAkñúgkarKNna. karEbgEckkugRtaMgebtugEdlbNþalBIGMeBIsmasRtUv)anbgðajenAkñugrUbTI 4>32. k> krNIkMralxNÐminmanTl; Unshored Slab Case BIsmIkar 4.2a nig b smIkarkugRtaMgsrésebtugxageRkAbMputmuncak;kMralxagelIKW Pe ⎛ ect ⎞ M D + M SD ft =− ⎜1 − 2 ⎟ − (4.17) Ac ⎝ r ⎠ St karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 147
  • 59. T.Chhay P ⎛ ec ⎞ M + M SD nig f b = − e ⎜1 + 2b ⎟ + D Ac ⎝ r ⎠ Sb (4.18) Edl S t nig Sb Cam:UDulmuxkat;rbs;muxkat;cak;Rsab;Etb:ueNÑaH ehIy M SD Cam:Um:g;dak;BIelIbEnßm dUcCaebtugkMral. eRkayeBlkMralcak;enAnwgkEnøgkkrwg ehIyvaGaceFVIkarlkçN³smasmk vaGacmanm:UDul muxkat; Sct nig Scb FMCagmun CamYynwgkarrMkileLIgelIeTArksrésxagelIrbs;ExS cgc. kugRtaMg srésebtugcUlrYmCamYynwgsmIkar 4.17 nig 4.18 sMrab;srésxagelI nigxageRkamrbs;Epñkcak; Rsab;rbs;muxkat;smas ¬nIv:U AA enAkñúgrUbTI 4>32(e)¦ KW ⎛ ect ⎞ M D + M SD M CSD + M L Pe ft =− ⎜1 − 2 ⎟ − − (4.19a) ⎝Ac r ⎠ St Sc t P ⎛ ec ⎞ M + M SD M CSD + M L nig f b = − e ⎜1 + 2t ⎟ + D Ac ⎝ r ⎠ Sb + S cb (4.19b) Edl M CSD CabnÞúkefrsmasdak;BIelIbEnßmeRkayeBldMeLIg dUcCaenAeBleFVIkar. ehIy Sct nig Scb Cam:UDulmuxkat;rbs;muxkat;smasenAnIv:UénsrésxagelI nigxageRkam erogKña rbs;muxkat;cak; Rsab;. kugRtaMgenAnIv:UsrésxagelI nigxageRkamrbs;kMralcak;enAnwgkEnøg ¬nIv:U BB nig AA rbs;mux kat; 4>32 (e)¦ KW M CSD + M L f ts = − t (4.20a) S cb Flexural Design of Prestressed Concrete Elements 148
  • 60. NPIC + ML nig M f bs = − CSD Sbcb (4.20b) Edl M CSD + M L Cam:Um:g;bEnßmEdlekIneLIgeRkayeBlekItmanskmμPaBsmas ehIy Scb nig Sbcb t Cam:UDulmuxkat;rbs;muxkat;smassMrab;srésxagelI nigxageRkam AA nig BB erogKña enAkñúgrUbTI 4>32(e). x> krNIkMralxNÐTl;eBj Fully Shored Slab Case kñúgkrNIkMralcak;enAkEnøgRtUv)anRTeBjrhUtdl;ekItmanskmμPaBsmas kugRtaMgsrés ebtugmuneBlRT nigmuneBlcak;ebtugkMralxagelIEdlkøayBIsmIkar 4.18 nig 4.19KW ⎛ ect ⎞ M D Pe ft =− ⎜1 − 2 ⎟ − t (4.21a) ⎝ Ac r ⎠ S P ⎛ ec ⎞ M nig f b = − e ⎜1 + 2b ⎟ + D Ac ⎝ r ⎠ Sb (4.21b) eRkayeBlkMralxagelIcak;rYc ehIyskmμPaBsmasekItmanenAeBlebtugkkrwg smIkar 4.19a nig b sMrab;FñwmEdlRtUv)anRTeRkayeBldMeLIgnwgkøayeTACa ⎛ ect ⎞ M D M SD + M CSD + M L Pe ft =− ⎜1 − 2 ⎟ − t − (4.22a) ⎝ Ac r ⎠ S t Sc P ⎛ ecb ⎞ M M + M CSD + M L nig f b = − e ⎜1 + 2 ⎟ + D + SD Ac ⎝ r ⎠ Sb S cb (4.22b) cMNaMfaeKRtUveFVIkarRtYtBinitüsMrab;kugRtaMgkat;tamTisedkEdlekItmanenARtg;épÞb:HrvagebtugEdl cak;enAnwgkEnøg CamYynwgFñwmcak;Rsab; ¬nwgbgðajenAkñúgCMBUk 5¦. K> TTwgsøabRbsiT§PaB Effective Flange Width karKNnamuxkat;Ggát;ebtugeRbkugRtaMgrgkarBt; 149
  • 61. T.Chhay edIm,IkMNt;skmμPaBsmastamRTwsþIEdlTb;Tl;kugRtaMgBt; eKRtUveFVIkarkMNt;TTwgkMralxNÐ EdlGaccUlrYmy:agmanRbsiT§PaBenAkñúgekIneLIgPaBrwgRkaj (stiffness) EdlTTYl)anBIskmμPaB smas. rUbTI 4>33 nigtarag 4>6 eGaynUvtMrUvkarrbs; ACI nig AASTHO sMrab;kMNt;TTwgsøabxag elIRbsiT§PaB (effective top slange width) rbs;muxkat;smas. RbsinebIersIusþg;rbs;ebtugEdlcak; BIxagelIxusBIersIusþg;rbs;muxkat;cak;eRsc eKRtUvEktMrUvTTwg b edayKitBIm:UDuleGLasÞicxusKñarbs; ebtugTaMgBIr edIm,IFanafabMErbMrYlrageFobrbs;sMPar³TaMgBIrenARtg;épÞb:HdUcKña. TTwgEksMrYlrbs; kMralxagelIsMrab;KNnam:Um:g;niclPaBsmas I cc KW bm = Ect (b ) = ncb (4.23) Ec Edl m:UDuleGLasÞicrbs;ebtugEdlcak;BIxagelI Ect = Ec = m:UDuleGLssÞicrbs;ebtugcak;Rsab; enAeBlEdlkMNt;TTwgEksMrYl bm rYcehIy eKRtUvBicarNaersIusþg;ebtugrbs;muxkat;smasTaMgmUlCa ersIusþg;EdlFMCag. 7> Summary of Step-by-Step Trial-and Adjustment Procedure for the Service-Load Design of Prestressed member !> eGaynUvGaMgtg;sIuetbnÞúkefrEdldak;BIelIbEnßm WSD / GaMgtg;sIuetbnÞúkGefr WL / RbEvg kMNt; nigkMBs;kMNt;/ ersIusþg;sMPar³ f pu / f 'c / RbePTebtug nigeBlxøHRbePTeRbkug RtaMg dUcCaTajCamun b¤CaeRkay. Flexural Design of Prestressed Concrete Elements 150