SlideShare uma empresa Scribd logo
1 de 17
NPIC




                                        I.   KMniteKal
                                      Basic Concepts

1> esckþIepþIm         Introduction
        ebtugmanersIusþg;xøaMgkñúgkarsgát; b:uEnþmanersIusþg;exSaykñúgkarTaj ¬EdlenAcenøaHBI 8% eTA
12% énersIusþg;sgát;¦. edaysarersIusþg;rgkarTajtUcEbbenH sñameRbHEdlekItBIkarBt;nwgekIt

manenAdMNak;kaldMbUgénkardak;bnÞúk. edIm,Ikat;bnßy b¤karBarmineGaymansñameRbHenH eKRtUv
GnuvtþkMlaMgcMp©it b¤cakp©ittamTisbeNþayrbs;Ggát;eRKOgbgÁúM. dUcenHkMlaMgenH)anbegáInersIusþg;
kñúgkarBt; ersIusþg;kñúgkarkat; nigersIusþg;kñúgkarrmYlrbs;muxkat;. bnÞab;mkmuxkat;GaceFVIkarCa
lkçN³eGLasÞic ehIymuxkat;manersIusþg;rgkarsgát;esÞIrEteBjenAeBlEdlbnÞúkTaMgGs;manGMeBI
mkelIeRKOgbgÁúM.




eKal KMnit                                                                                 1
T.Chhay




        kMlaMgEdleKGnuvtþtamTisbeNþayenHRtUv)aneKeGayeQμaHfa kMlaMgeRbkugRtaMg (prestres-
sing force). kMlaMgeRbkugRtaMgCakMlaMgsgát;tamTisbeNþayrbs;Ggát;EdleFVIeGaymuxkat;rg

kugRtaMgmunnwgGgát;rgbnÞúkefr nigbnÞúkGefr. eKkMNt;RbePTkMlaMgeRbkugRtaMg nigGaMgtg;sIuetrbs;
vaedayQrelIRbePTénsMNg; RbEvgElVg nigPaBrlas; (slenderness). rUbTI 1>1 bgðajBITMrg;rbs;
kMlaMgeRbkugRtaMgBIrRbePT.

    k> eRbobeFobCamYynwgebtugGarem:          Comparison with Reinforced Concrete
         EdkenAkñúgebtugGarem:min)anGnuvtþkMlaMgrbs;vaeTAelIGgát;eT EdlpÞúyBIGMeBIrbs;EdkeRbkug
RtaMg. enAeBlEdlkugRtaMgTajedaykarBt;FMCagersIusþg;Tajrbs;ebtug ebtugeRbkugRtaMgcab;epþIm
eFVIkarCaebtugGarem:.
         edayRKb;RKgbrimaNrbs;kMlaMgeRbkugRtaMg eKGaceFVIrcnasm<½n§Ca flexible b¤ rigid eday
minmanT§iBlelIersIusþg;rbs;vaeT. eKBi)aknwgTTYl)annUvlkçN³ flexible enAkñúgebtugGarem:Nas;
RbsinebIeKcg;TTYl)anlkçN³esdækicx<s;.

    x> lkçN³esdækic©rbs;ebtugeRbkugRtaMg
         Economics of Prestressed Concrete
        Ggát;ebtugeRbkugRtaMgmankMBs;TabCagGgát;ebtugGarem:sMrab;RbEvg niglkçxNÐénkardak;
bnÞúkdUcKña. CaTUeTAkMBs;rbs;Ggát;ebtugeRbkugRtaMgsßitenAcenøaH 65% eTA 80% énkMBs;rbs;ebtug
Garem:. dUcenHvaRtUvkarebtugticCagGgát;ebtugGarem:BI 20% eTA 35% EtkarsnSMsMécbrimaNeb-
tugenHmantulüPaBCamYynwgtMéld¾x<s;rbs;sMPar³EdlmanKuNPaBl¥EdlRtUvkarkñúgkarrgeRbkug-
RtaMg. edaysarragFrNImaRt Ggát;ebtugeRbkugRtaMgmanBum<sμúKsμajCagebtugGarem:.
        eTaHbIvamantMélbEnßmCaeRcInk¾eday EtRbsinebIeKplitvaeRcIntMélrbs;vaminsUvCaxusKñaeT.
eRKOgbgÁúMebtugeRbkugRtaMgRtUvkartMEhTaMticCaeRKOgbgÁúMebtugGarem: edaysarkarRtYtBinitüKuNPaB
ebtug)anl¥Cag nigRKwHrbs;vaRTnUvTMgn;pÞal;tUcCag.
        enAeBlEdlFñwmebtugGarem:manRbEvgFMCag 21m vanwgmanTMgn;pÞal;FMNas; EdleFVIeGayva
manPaBdabry³eBlyUr nigsñameRbHFM. dUcenHsMrab;FñwmEdlmanRbEvgEvg eKniymeRbIebtugeRbkug
RtaMg edaysarFñwmragFñÚmantMéléføkñúgkarsagsg; nigmü:aeTotvaeFVIkarmin)anl¥edaysarvargnUv


Basic Concept                                                                          2
NPIC




long-term shrinkage  nig creep. sMrab;s<anEdlmanElVgEvg²dUcCa segmental bridge b¤ cable-
stayed bridge eKeRbIEtebtugeRbkugRtaMgb:ueNÑaH.



2> Rbvtþirbs;ebtugeRbkugRtaMg                Historical Development of Prestressing
          ebtugeRbkugRtaMgminEmnCabec©keTsfμIeT enAqñaM 1872 visVkr P. H. Jackson EdlmkBI
California TTYl)annUvnIyb½RttkákmμsMrab;karrkeXIjRbB½n§eRbkugRtaMgedayeRbI tie rod edIm,I

begáItFñwm b¤FñÚBIdMubøúkdac;²BIKña ¬emIlrUbTI 1>1 a¦. enAqñaM 1888 visVkrsBa¢atiGaLWm:g; C. W.
Doehring TTYl)annIyb½RttkákmμsMrab;kareRbIRbB½n§eRbkugRtaMgenAkñúgkMraledayeRbI metal wire.

b:uEnþsMrab;kareRbIR)as;elIkdMbUgenHminsUvTTYl)aneCaKC½yeT edaysarkMhatbg;eRbkugRtaMgGaRs½y
nwgeBl. eRkaymkenAedImstvtSTI20 J. Lund mkBI Norway nig G.R. Steiner mkBIshrdæ)an
BüayamedIm,IedaHRsaybBaðaenH EtminTTYl)anlT§pleT.
          kñúgGMLúgeBld¾yUrCamYynwgkarvivDÆd¾tictYcedaysarminTan;rkeXIjnUvEdlersIusþg;x<s;Edl
GacykQñHkMhatbg;eRbkugRtaMg R. E. Dill )anrkeXIjnUvT§iBlrbs; shrinkage nig creep
rbs;ebtugeTAelIkMhatbg;rbs;eRbkugRtaMg. dUcenHKat;)anrkeXIjnUv post-tensioning én
unbonded rod EdlGacTUTat;nwgkMhatbg;kugRtaMgGaRs½ynwgeBlenAkñúgEdk EdlekItBIkarkat;bnßy

RbEvgrbs;Ggát;edaysar creep nig shrinkage. enAedImTsvtS 1920 W. H. Hewett )anbegáIt
nUveKalkarN_ circular prestressing EdleRbICamYynwgGagsþúkTwk b¤vtßúravEdlmanragmUl.
          visVkr)araMg Eugene Freyssinet )anesñInUvkareRbIR)as; high-strength steel nig high-
ductility steel edIm,IykQñHnUvkMhatbg;eRbkugRtaMgkñúgcenøaHqñaM 1926 dl; 1928.

          bc©úb,nñeKeRbIebtugeRbkugRtaMgsMrab;sMNg;GaKar sMNg;dI s<anEdlmanElVgEvg².l.

3> eKalKMniténebtugeRbkugRtaMg                       Basic Concepts of Prestressing

  k> esckþIepþIm Introduction
       kMlaMgeRbkugRtaMg P EdlbMeBjlkçxNÐragFrNImaRt niglkçxNÐdak;bnÞúkrbs;Ggát;RtUv)an
kMNt;edayeRbIeKalkarN_emkanik nigTMnak;TMngkugRtaMg-sac;lUteFob ¬rUbTI 1>2¦. eBlxøHeKRtUv
karsnμt;eGayFñwmebtugeRbkugRtaMgCa homogeneous nigeGLasÞic.


eKal KMnit                                                                              3
T.Chhay




         enAkñúgrUbTI 1>2 (a) bgðajBIFñwmctuekaNTMrsamBaØrgnUvkMlaMgeRbkugRtaMgcMp©it P . muxkat;
FñwmrgnUvkugRtaMgsgát;esμIKW
                       P
                f =−                                                                  (1.1)
                       Ac
Edl Ac = bd CaRkLaépÞrbs;muxkat;FñwmEdlmanTTwg b nigkMBs;srub d . sBaØadkRtUv)aneRbI
sMrab;kugRtaMg b¤kMlaMgsgát; nigsBaØabUksMrab;kugRtaMg b¤kMlaMgTaj.
         RbsinebImankMlaMgTTwgG½kS (transverse load) GnuvtþeTAelIFñwm enaHkugRtaMgEdl)anm:Um:g;
Gtibrma M EdlekItmanenAkNþalElVgKW
                         P Mc
                 ft =−     −                                                          (1.2a)
                         Ac I g


Basic Concept                                                                                 4
NPIC




nig                 fb = −
                              P Mc
                                +
                              Ac I g
                                                                                    (1.2b)

Edl          ft =  kugRtaMgenAsrésxagelIbMput
             f b = kugRtaMgenAsrésxageRkambMput

             c = h sMrab;muxkat;ctuekaN
                  1
                  2
                                                                           3
               m:Um:g;niclPaBrbs;muxkat;TaMgmUl ¬sMrab;muxkat;ctuekaN = bh ¦
             Ig =
                                                                          12
        BIrUbTI 1>2 (b) eyIgeXIjfaersIusþg;rgkarsgát;rbs;FñwmedIm,ITb;nwgkMlaMgxageRkARtUv)ankat;
bnßyedaykMlaMgeRbkugRtaMgcMp©it. edIm,Ikat;bnßykugRtaMgTajenAsrésxagelIbMput eKRtUvdak;
prestressing tendon BIeRkamG½kSNWtsMrab;muxkat;kNþalElVg ¬rUbTI 1>2 (c) nig (d)¦ . RbsinebIeK

dak; tendon enAcMNakp©it e BITIRbCMuTMgn;rbs;muxkat; eKTTYl)anm:Um:g; Pe eFobnwgG½kS cgc ehIy
kugRtaMgenAkNþalElVgkøayCa
                              P Pec Mc
                    ft =−        +    −                                             (1.3a)
                              Ac   Ig   Ig

nig                 fb = −
                              P Pec Mc
                              Ac
                                 −
                                   Ig
                                      +
                                        Ig
                                                                                    (1.3b)

        edaysarmuxkat;enARtg;TMrsamBaØminrgm:Umg;Edl)anBIbnÞúkTTwgG½kSxageRkA enaHsrésxag
                                                :
elIbMputrbs;muxkat;GacrgkugRtaMgTajFMedaysarkMlaMgeRbkugRtaMgcakp©it. edIm,IkMritkugRtaMgenH
eKRtUvdak; prestressing tendon CamYynwgcMNakp©ittUcCagcMNakp©itenAkNþalElVg b¤GacsßitenAelI
G½kS cgc .

      x> Basic Concept Method
        enAkñúg basic concept method eKkMNt;kugRtaMgénsrésxageRkAbMputrbs;muxkat;ebtug
eRbkugRtaMgedaypÞal;BIkMlaMgeRbkugRtaMgEdlGnuvtþtambeNþayG½kS nigbnÞúkTTwgG½kS. RbsinebI Pi
CakMlaMgeRbkugRtaMgedImmunkMhatbg; nig Pe CakMlaMg eRbkugRtaMgRbsiT§PaBeRkaykMhatbg; enaH
                         Pe
                    γ=
                         Pi
Edl γ = emKuNeRbkugRtaMgenAsl; (residual prestress factor). edayCMnYs r 2 = I g / Ac ¬Edl
r CakaMniclPaBénmuxkat;TaMgmUl¦ enaHeyIg)ansmIkardUcxageRkam³

        a. manEtkMlaMgeRbkugRtaMg



eKal KMnit                                                                               5
T.Chhay



                            Pi ⎛ ect ⎞
                    ft =−      ⎜1 − 2 ⎟                                                  (1.4a)
                           Ac ⎝    r ⎠
                           P ⎛ ec ⎞
                    f b = − i ⎜1 + 2b ⎟                                                  (1.4b)
                           Ac ⎝    r ⎠
                    Edl ct nig cb CacMgayBITIRbCMuTMgn;rbs;muxkat; (G½kS cgc ) eTAsrésxagelIbMput
                nig xageRkambMput erogKña.
         b.     kMlaMgeRbkugRtaMgrYmnwgTMgn;pÞal;
                RbsinebITMgn;pÞal;rbs;FñwmbegáItm:Um:g; M D enARtg;muxkat;EdlBicarNa smIkar 1.4a nig
                1.4b køayCa
                            Pi ⎛ ect ⎞ M D
                    ft =−      ⎜1 − 2 ⎟ − t                                              (1.5a)
                           Ac ⎝    r ⎠ S
                           P ⎛ ec ⎞ M
                    f b = − i ⎜1 + 2b ⎟ + D                                              (1.5b)
                           Ac ⎝    r ⎠ Sb
                  Edl S t nig Sb Cam:UDulénmuxkat;sMrab;srésxagelIbMput nigxageRkambMput erogKña.




          rUbTI 1>3 bgðajBIKnøgrbs;EdkeRbkugRtaMg. rUbTI 1>3 (a) bgðajBIKnøgrbs;EdkeRbkugRtaMg
kñúgTMrg; harped EdlRtUv)aneKeRbIenAkñúg pretensioned beam nigsMrab;bnÞúkTTwkG½kSmanGMeBIcMcMnuc.
rUbTI 1>3 (b) bgðajBIKnøgrbs;EdkeRbkugRtaMgkñúgTMrg; draped EdlRtUv)aneKeRbIenAkñúg post-
tensioning beam.




Basic Concept                                                                                 6
NPIC




      bnÞab;BIkarsagsg; nigkartMeLIgkMralehIy eRKOgbgÁúMrgbnÞúkGefrEdlbegáIt)anCam:Um:g; M s .
CaTUeTA GaMgtg;sIueteBjeljrbs;bnÞúkenHekItmanbnÞab;BIsMNg;RtUv)ansagsg;rYcral; ehIykMhat


eKal KMnit                                                                            7
T.Chhay




bg;GaRs½ynwgeBlkñúgebtugeRbkugRtaMgekIteLIgrYcehIy. dUcenH kMlaMgeRbkugRtaMgCakMlaMgeRbkug
RtaMgRbsiT§PaB Pe . RbsinebIm:Um:g;srubEdlbNþalBIbnÞúkTMnajCa M T enaH
                 M T = M D + M SD + M L                                            (1.6)
Edl          m:Um:g;EdlbNþalBITMgn;pÞal;
          MD =

     M SD = m:Um:g;EdlbNþalBIbnÞúkefr

     M L = m:Um:g;EdlbNþalBIbnÞúlGefr

ehIysmIkar 1.5 nwgkøayCa
                         Pe ⎛ ect ⎞ M T
                 ft =−      ⎜1 − 2 ⎟ − t                                           (1.7a)
                         Ac ⎝   r ⎠ S
                        P ⎛ ecb ⎞ M
                 f b = − e ⎜1 + 2 ⎟ + T                                            (1.7b)
                        Ac ⎝    r ⎠ Sb
        rUbTI 1.4 bgðajBIKMrUénkarBRgaykugRtaMgenAelImuxkat;mansøabeRKaHfñak;rbs;Ggát;eRbkug
RtaMg. eKminGnuBaØateGaykugRtaMgTajenAkñúgebtugenAelIsrésxageRkAbMputrbs;muxkat;FMCagkug
RtaMgGnuBaØatGtibrmaEdleGayedaybTdæaneT ¬dUcCa ft = 0.5 f 'c enAkñúg ACI Code¦. Rb
sinebIvaFMCagtMélGnuBaØat eKRtUvdak;EdkBRgwgminEmneRbkugRtaMgeTAtamsmamaRtedIm,ITb;Tl;nwg
kMlaMgTajsrubEdlmankñúgeKalbMNgRKb;RKgsñameRbHenAdMNak;kalrgbnÞúkeFIVkar.

    K> C-Line Method
        sMrab; C-Line method b¤ line-of-pressure concept b¤ thrust concept FñwmebtugeRbkugRtaMg
RtUv)aneKsnμt;CaFñwmebtugsuT§eGLasÞic ehIyeKviPaKvaedayeRbIeKalkarN_eKalrbs;sþaTic. eKcat;
TukkMlaMgeRbkugRtaMgCakMlaMgsgát;xageRkA CamYynwgkMlaMgTajefr T enAkñúg tendon. eKeRbIsmI-
karlMnwg ∑ H = 0 nig ∑ M = 0 edIm,IrkSalMnwgrbs;muxkat;.
        rUbTI 1>5 bgðajBIkareRbobeFobExSskmμénkMlaMgsgát; C nigkMlaMgTaj T enAkñúgebtug
Garem: nigebtugeRbkugRtaMg. édXñas; a sMrab;ebtugeRbkugRtaMgmantMélefr EtvaERbRbYlBIsUnüenA
eBlrgeRbkugRtaMgeTAtMélGtibrmaenAeBlEdlvarg bnÞúkxageRkAeBjeljsMrab;ebtugeRbkugRtaMg.
        BIdüaRkamGgÁesrIrbs;kMNt;FñwmEdlbgðajenAkñúgrUbTI 1>6 eyIg)an
                 M = Ca = Ta                                                       (1.8)
                 e' = a − e                                                        (1.9a)
         edaysar C = T / a = M / T eK)an


Basic Concept                                                                              8
NPIC




                            M
                     e' =     −e                                                (1.9b)
                            T
             BIrUbeyIg)an
                               C Ce' ct
                      ft =−       −                                             (1.10a)
                               Ac   Ig
                               C Ce' cb
                      fb = −      +                                             (1.10b)
                               Ac   Ig

             b:uEnþenAkñúg tendon kMlaMg T esμInwgkMlaMgeRbkugRtaMg Pe dUcenH
                               Pe Pe e' ct
                      ft =−       −                                             (1.11a)
                               Ac   Ig
                               Pe Pe e' cb
                      fb = −      +                                             (1.11b)
                               Ac   Ig


eKal KMnit                                                                          9
T.Chhay




         edaysar I c = Ac r 2 enaHeyIgGacsresrsmIkar 1.11a nig b dUcxageRkam
                         Pe⎛ e' ct ⎞
                 ft =−     ⎜1 + 2 ⎟                                                 (1.12a)
                         Ac⎝    r ⎠
                        P ⎛ e' c ⎞
                 f b = − e ⎜1 − 2b ⎟                                                (1.12b)
                        Ac ⎝    r ⎠
         smIkar 1.12 a nig b nigsmIkar 1.7 a nig b RtUveGaytMélkugRtaMgenAsrésxageRkAdUcKña.




    X> Load-Balancing Method
        eKGacKNna nigviPaKFñwmebtugeRbkugRtaMgedayeRbI load-balancing method EdlbegáIt
eday Lin. viFIenHEp¥kelIkareRbIR)as;kMlaMgtamTisQrrbs;EdkeRbkugRtaMgEdlmanTMrg; draped b¤
harped edIm,ITb;Tl;nwgbnÞúkTMnajEdlmanGMeBIelIGgát;. rUbTI 1>7 bgðajBIkMlaMglMnwg (balancing

forces) sMrab;FñwmebtugebkugRtaMgEdlmanEdkeRbkugRtaMgTMrg; draped nig harped. kMlaMglMnwg

Rbtikmμ R esμInwgbgÁúMkMlaMgbBaÄrrbs;kMlaMgeRbkugRtaMg P . bgÁúMkMlaMgedkrbs;kMlaMgeRbkugRtaMg P
mantMélesμInwgkMlaMg P eBjEtmþgsMrab;karKNnakugRtaMgsrésxageRkArbs;ebtugEdlenAkNþal
ElVgsMrab;FñwmTMrsamBaØEdlmanRbEvgEvg. sMrab;muxkat;déTeTot eKeRbIbgÁúMkMlaMgedkrbs;kMlaMg P
Cak;Esþg.




Basic Concept                                                                           10
NPIC



             A. Loading-Balancing Distributed Loads and Parabolic Tendon Profile
                  BIrUbTI 1>8 eyIgGacsresrGnuKmn_)a:ra:bUldUcxageRkamsMrab;tMNageGayTMrg;rbs;
             tendon




                      Ax 2 + Bx + C = y                                                   (1.13)
             sMrab; x = 0 eyIgman y = 0 dUcenH C = 0
                              ehIy dy = 0 dUcenH B = 0
                                     dx
             sMrab; x = l / 2 eyIg)an y = a dUcenH A = 42a
                                                       l
                                    ∂ y   2
             eyIgman           q =T 2
                                    ∂x
                                                                                          (1.14)

                    eFVIDIepr:g;EsülBIrdgeTAelIsmIkar 1.13 ehIyCMnYs ∂ 2 y / ∂x 2 eTAkñúgsmIkar 1.14
             eyIg)an
                             4a           8Ta
                      q =T    2
                                   ×2 =                                                   (1.15a)
                             l            l2
                          ql 2
             b¤       T=
                           8a
                                                                                          (1.15b)

                            ql 2
                      Ta =                                                                (1.15c)
                             8
             dUcenH RbsibebI tendon manTMrg;)a:ra:bUlehIykMlaMgeRbkugRtaMgRtUv)ansMKal;eday P enaH
             balanced-load Edl)anBIsmIkar 1.15a køayCa
                             8 Pa
                      wb =                                                                (1.16)
                             l2
             BIrUbTI 1>9 bnÞúkTTwgG½kS wb BIrEdlmantMélesμIKña TisedApÞúyKña)anTUTat;KñaGs; dUcenHmin
             mankugRtaMgBt;ekIteLIgeT. edaysar T = C dUcenHeyIgGacCMnYs C eTAkñúg T )an. eday
             sarKμanm:Um:g;Bt; FñwmenArkSaPaBRtg; edayminmanragekag b¤ptenAépÞxagelIbMput.
                      kugRtaMgsrésxageRkAbMputrbs;ebtugeBjkMBs;rbs;muxkat;EdlenAkNþalElVgKW

eKal KMnit                                                                                    11
T.Chhay



                                   P'    C
                        f bt = −      =−                                               (1.17)
                                   Ac    Ac




         kugRtaMgenHmantMélefr ehIykMlaMg P' = P cos θ . rUbTI 1>10 bgðajBIplbUkkugRtaMgedIm,I
TTYl)an net stress. cMNaMfakMlaMgeRbkugRtaMgenAkñúg load-balancing method RtUvmanGMeBIenARtg;
TIRbCMuTMgn; (cgc) rbs;muxkat;Rtg;TMrsMrab;FñwmTMrsamBaØ nigenARtg; cgc rbs;muxkat;cugTMenrrbs;Fñwm
cantilever. eKRtUvdak;lkçxNÐEbbenHedIm,IkarBarm:Um:g;EdlKμanlMnwgcakp©it (eccentric unbalanced

moment).




       enAeBlEdlbnÞúkTTwgG½kSFMCag balancing load wb dUcenHbnÞúkKμanlMnwgbEnßm (additional
unbalanced load) wub begáIt)anm:Um:g; M ub = wubl 2 / 8 enAkNþalElVg. kugRtaMgsrésxageRkA

EdlRtUvKñanwgkrNIenHRtg;kNþalElVgkøayCa
Basic Concept                                                                             12
NPIC



                          P' M ub c
               f bt = −      m                                                    (1.18)
                          Ac   Ig

eKGacsresrsmIkar 1.18 CaBIrsmIkardUcxageRkam
                      P' M ub
               ft =−     − t                                                      (1.19a)
                      Ac   S
nig            fb = −
                      P' M ub
                      Ac
                         +
                           Sb
                                                                                  (1.19b)

      smIkar 1.19 nwgeGaytMélkugRtaMgsrésdUcKñanwgsmIkar 1.12 nigsmIkar 1.7 Edr. cMNaMfa
eKyk P' = P enARtg;muxkat;kNþalElVgeRBaHkMlaMgeRbkugRtaMgmanTisedkenARtg;muxkat; enaH
Edl θ = 0 .

4>     Computation of Fiber Stresses in a Prestressed Beam by the Basic Method

]TaheN_ 1>1³ rUbTI 1>11 bgðajBIragFrNImaRtrbs;Fñwm pretensioned dpble T 10LDT24 EdlRT
edayTMrsamBaØmanRbEvg 64 ft (19.51m) . vargnUvbnÞúkTMnajefrWSD nigbnÞúkGefrWL Edlmanpl
bnÞúksrub 420 plf (6.13kN / m) . kMlaMgeRbkugRtaMgedImmunkMhatbg;KW f pi ≅ 0.70 f pu = 189ksi
(1300MPa ) . ehIykMlaMgeRbkugRtaMgeRkaykMhatbg;KW f pe = 150ksi(1034MPa ) . KNnakugRtaMg
srésxageRkAbMputenAkNþalElVgEdlbNþalmkBI
        a. kMlaMgeRbkugRtaMgedImTaMgmUl nigKμanbnÞúkTMnajxageRkA

        b. lkçxNÐbnÞúkeFVIkarcugeRkayenAeBlEdlkMhatbg;eRbkugRtaMgekItmanehIy.

        kugRtaMgGnuBaØatmandUcxageRkam³
         f 'c = 6ksi TMgn;Rsal (41.4 MPa )

         f pu = 270ksi stress relieved (1860 MPa ) = specified tensile strength rbs; tendon

         f py = 220ksi(1520MPa ) = specified yield strength rbs; tendons

         f t = 12 f 'c = 930 psi (6.4MPa ) = kugRtaMgTajGnuBaØatGtibrmaenAkñúgebtug

         f 'ci = 4.8ksi(33.1MPa ) = kugRtaMgsgát;rbs;ebtugenAeBlrgeRbkugRtaMgedIm

         f ci = 0.6 f 'ci = 2.88ksi(19.9MPa ) = kugRtaMgGnuBaØatGtibrmaenAeBlrgeRbkugRtaMgedIm

         f c = 0.45 f 'c = kugRtaMgGnuBaØatGtibrmaenAkñúgebtugenAeBleFVIkar

        snμt;eRbI seven-wire-strand Ggát;p©it 0.5in.(12.7mm) cMnYndb;.
         Ac = 449in.2 (2897cm 2 )



eKal KMnit                                                                            13
T.Chhay




                            (
          I g = 22469in.4 935346cm 4   )
                                   (
          r 2 = I g / Ac = 50.04in.2 323cm 2   )
          cb = 17.77in.(451mm )

          ct = 6.23in.(158mm )

          ec = 14.77in.(375mm )

          ee = 7.77in.(197.4mm )

                          (
          Sb = 1264in.3 20713cm3   )
          St    = 3607in. (59108cm )
                        3          3


          WD = 359 plf (5.24kN / m )




dMeNaHRsay³
     a.   lkçxNÐdMbUgenAeBlrgeRbkugRtaMgedIm
          Aps = 10 × 0.153 = 1.53in.2 (990mm 2 )

          Pi = Aps f pi = 1.53 × 189000 = 289170lb(1287kN )

          Pe = 1.53 × 150000 = 229500lb(1020kN )


Basic Concept                                                 14
NPIC




             m:Um:g;Edl)anBIbnÞúkpÞal;enAkNþalElVg
                              WD l 2 359(64 )2
                    MD =            =          × 12 = 2205696in. − lb(249kN .m )
                               8        8
             BIsmIkar 1.5 nig 1.7 eyIg)an
                             ⎛ ect ⎞ M D
                              Pi
                     ft =−   ⎜1 − 2 ⎟ − t
                             ⎝Ac r ⎠ S
                           289170 ⎛ 14.77 × 6.23 ⎞ 2205696
                        =−        ⎜1 −           ⎟−
                            449 ⎝       50.04 ⎠     3607

                         = +540.3 − 611.5 ≅ −70 psi (C )(0.5MPa )
                            P ⎛ ec ⎞ M
                     f b = − i ⎜1 + 2b ⎟ + D
                            Ac ⎝    r ⎠ Sb
                              289170 ⎛ 14.77 × 17.77 ⎞ 2205696
                        =−           ⎜1 +            ⎟+
                               440 ⎝       50.04     ⎠  1264

                        = −4022.1 + 1745 ≅ −2277 psi (C )(15.8MPa )
                        ≤ f ci = −2880 psi O.K.
     b.      lkçxNÐcugeRkayenAeBlrgbnÞúkeFVIkar
                m:Um:g;kNþalElVgbNþalmkBIbnÞúkbEnßmefr nigGefrKW
                                     420(64 )2
                    M SD + M L =               × 12 = 2580480in. − lb
                                        8
                 m:Um:g;srub M T = 2205696 + 2580480 = 4786176in. − lb(541kN .m)
                 kugRtaMgenAsrésxagelIbMput
                           Pe ⎛ ect ⎞ M T
                     ft =−    ⎜1 − 2 ⎟ − t
                           Ac ⎝   r ⎠ S
                           229500 ⎛ 14.77 × 6.23 ⎞ 4786176
                        =−         ⎜1 −          ⎟−
                             449 ⎝       50.04 ⎠    3607

                        = +429 − 1327 = −898 psi (C )(6.3MPa )
                        < f c = 0.45 × 6000 = 2700 psi    O.K.
                  kugRtaMgenAsrésxagelIbMput
                           Pe ⎛ ecb ⎞ M T
                     fb = −   ⎜1 + 2 ⎟ +
                           Ac ⎝   r ⎠ Sb
                           229500 ⎛ 14.77 × 17.77 ⎞ 4786176
                        =−         ⎜1 +           ⎟+
                             449 ⎝       50.04    ⎠  1264

                        = −3192 + 3786 = +594 psi (T )(4.1MPa )
                        < f t = 12 f 'c = 930 psi           O.K.



eKal KMnit                                                                         15
T.Chhay




5>    C-Line Computation of Fiber Stresses

]TahrN_ 1>2³ edaHRsay]TahrN_ 1>1 sMrab;lkçxNÐcugeRkayeBlbnÞúkeFVIkar edayeRbI C-line
method   .
dMeNaHRsay³              Pe = 229500lb

                         M T = 4786176in. − lb
                             M     4786176
                         a= T =              = 20.85in.
                             Pe    229500

                         e' = a − e = 20.85 − 14.77 = 6.08in.
         BIsmIkar 1.12
                                 Pe ⎛ e' ct ⎞
                         ft =−      ⎜1 + 2 ⎟
                                Ac ⎝     r ⎠
                                 229500 ⎛ 6.08 × 6.23 ⎞
                             =−          ⎜1 +         ⎟ = −898 psi (C )
                                   449 ⎝      50.04 ⎠
                                P ⎛ e' c ⎞
                         f b = − e ⎜1 − 2b ⎟
                                Ac ⎝    r ⎠
                                 229500 ⎛ 6.08 × 17.77 ⎞
                             =−          ⎜1 −           ⎟ = +594 psi (T )
                                   449 ⎝      50.04 ⎠



6>     Load-Balancing Computation of Fiber Stresses

]TahrN_ 1>3³ edaHRsay]TahrN_ 1>1 sMrab;lkçxNÐcugeRkayeBlbnÞúkeFVIkareRkayeBlkMhat
bg; edayeRbI load-balancing method.
dMeNaHRsay³              P ' = Pe = 229500lb           enAkNþalElVg
                         enAkNþalElVg a = ec = 14.77in. = 1.231 ft
         eyIgman balancing load
                                              8 × 229500 × 1.231
                                                                   = 552 plf (8.1kN / m )
                                  Pa
                         Wb = 8       2
                                          =
                                  l                  64 2
         dUcenHRbsinebIbnÞúkTMnajsrubmanRtwmEt 552 plf FñwmnwgrgkugRtaMg P' / Ac RbsinebIFñwm
         man tendon TMrg;)a:ra:bUledayminmancMNakp©itenAelITMr. enHedaysarEtbnÞúkTMnajRtUv)an
         rkSalMnwgeday tendon enAkNþalElVg. dUcenH
                        bnÞúkTMnajsrubEdlFñwmRtUvTTYl = WD + WSD + WL
                                                              = 359 + 420 = 779 plf



Basic Concept                                                                               16
NPIC




                           Wub = 779 − 552 = 227 plf
                                     Wub (l )2 227(64 )2
                           M ub =             =          × 12 = 1394688in. − lb
                                       8          8
             BIsmIkar 1.19 eyIg)an
                                     P' M ub   229500 1394688
                            ft =−       − t =−       −
                                     Ac   S     449     3607

                               = −511 − 387 = −898 psi (C )
                                   P' M ub      229500 1394688
                            fb = −    +     =−           +
                                   Ac    Sb      449        1264

                               = −511 + 1104 ≅ 594 psi (T )
                               ≤ f t = 930 psi  O.K.




eKal KMnit                                                                        17

Mais conteúdo relacionado

Destaque

Ii. materials and systems for prestressing
Ii. materials and systems for prestressingIi. materials and systems for prestressing
Ii. materials and systems for prestressing
Chhay Teng
 
Iii.partial loss of prestress
Iii.partial loss of prestressIii.partial loss of prestress
Iii.partial loss of prestress
Chhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
Chhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
Chhay Teng
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method
Chhay Teng
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
Chhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
Chhay Teng
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
Chhay Teng
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
Chhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
Chhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
Chhay Teng
 
Construction plan
Construction planConstruction plan
Construction plan
Chhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
Chhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
Chhay Teng
 
3.tension members
3.tension members3.tension members
3.tension members
Chhay Teng
 

Destaque (20)

Ii. materials and systems for prestressing
Ii. materials and systems for prestressingIi. materials and systems for prestressing
Ii. materials and systems for prestressing
 
Iii.partial loss of prestress
Iii.partial loss of prestressIii.partial loss of prestress
Iii.partial loss of prestress
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
Euron fl
Euron flEuron fl
Euron fl
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 
5.beams
5.beams5.beams
5.beams
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
Xi members in compression and bending
Xi members in compression and bendingXi members in compression and bending
Xi members in compression and bending
 
Euro upe
Euro upeEuro upe
Euro upe
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
Construction plan
Construction planConstruction plan
Construction plan
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
Euro sq
Euro sqEuro sq
Euro sq
 
3.tension members
3.tension members3.tension members
3.tension members
 
Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 

Semelhante a I. basic concepts

Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
Chhay Teng
 
Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and frames
Chhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
Chhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
Chhay Teng
 
4.compression members
4.compression members4.compression members
4.compression members
Chhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
Chhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
Chhay Teng
 
1.introduction
1.introduction1.introduction
1.introduction
Chhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
Chhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
Chhay Teng
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
Chhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
Chhay Teng
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equations
Chhay Teng
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
Chhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
Chhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
Chhay Teng
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
Chhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
Chhay Teng
 

Semelhante a I. basic concepts (20)

Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
 
Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and frames
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
4.compression members
4.compression members4.compression members
4.compression members
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
8. deflection
8. deflection8. deflection
8. deflection
 
1.introduction
1.introduction1.introduction
1.introduction
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 
4.internal loading developed in structural members
4.internal loading developed in structural members4.internal loading developed in structural members
4.internal loading developed in structural members
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
11. displacement method of analysis slope deflection equations
11. displacement method of analysis  slope deflection equations11. displacement method of analysis  slope deflection equations
11. displacement method of analysis slope deflection equations
 
Viii shear and diagonal tension
Viii shear and diagonal tensionViii shear and diagonal tension
Viii shear and diagonal tension
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
5. cables and arches
5. cables and arches5. cables and arches
5. cables and arches
 
មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍មេកានិកនៃសន្ទនីយ៍
មេកានិកនៃសន្ទនីយ៍
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 

Mais de Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
Chhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
Chhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
Chhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
Chhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
Chhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
Chhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
Chhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
Chhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
Chhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
Chhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
Chhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
Chhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
Chhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
Chhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
Chhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
Chhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
Chhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
Chhay Teng
 

Mais de Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

I. basic concepts

  • 1. NPIC I. KMniteKal Basic Concepts 1> esckþIepþIm Introduction ebtugmanersIusþg;xøaMgkñúgkarsgát; b:uEnþmanersIusþg;exSaykñúgkarTaj ¬EdlenAcenøaHBI 8% eTA 12% énersIusþg;sgát;¦. edaysarersIusþg;rgkarTajtUcEbbenH sñameRbHEdlekItBIkarBt;nwgekIt manenAdMNak;kaldMbUgénkardak;bnÞúk. edIm,Ikat;bnßy b¤karBarmineGaymansñameRbHenH eKRtUv GnuvtþkMlaMgcMp©it b¤cakp©ittamTisbeNþayrbs;Ggát;eRKOgbgÁúM. dUcenHkMlaMgenH)anbegáInersIusþg; kñúgkarBt; ersIusþg;kñúgkarkat; nigersIusþg;kñúgkarrmYlrbs;muxkat;. bnÞab;mkmuxkat;GaceFVIkarCa lkçN³eGLasÞic ehIymuxkat;manersIusþg;rgkarsgát;esÞIrEteBjenAeBlEdlbnÞúkTaMgGs;manGMeBI mkelIeRKOgbgÁúM. eKal KMnit 1
  • 2. T.Chhay kMlaMgEdleKGnuvtþtamTisbeNþayenHRtUv)aneKeGayeQμaHfa kMlaMgeRbkugRtaMg (prestres- sing force). kMlaMgeRbkugRtaMgCakMlaMgsgát;tamTisbeNþayrbs;Ggát;EdleFVIeGaymuxkat;rg kugRtaMgmunnwgGgát;rgbnÞúkefr nigbnÞúkGefr. eKkMNt;RbePTkMlaMgeRbkugRtaMg nigGaMgtg;sIuetrbs; vaedayQrelIRbePTénsMNg; RbEvgElVg nigPaBrlas; (slenderness). rUbTI 1>1 bgðajBITMrg;rbs; kMlaMgeRbkugRtaMgBIrRbePT. k> eRbobeFobCamYynwgebtugGarem: Comparison with Reinforced Concrete EdkenAkñúgebtugGarem:min)anGnuvtþkMlaMgrbs;vaeTAelIGgát;eT EdlpÞúyBIGMeBIrbs;EdkeRbkug RtaMg. enAeBlEdlkugRtaMgTajedaykarBt;FMCagersIusþg;Tajrbs;ebtug ebtugeRbkugRtaMgcab;epþIm eFVIkarCaebtugGarem:. edayRKb;RKgbrimaNrbs;kMlaMgeRbkugRtaMg eKGaceFVIrcnasm<½n§Ca flexible b¤ rigid eday minmanT§iBlelIersIusþg;rbs;vaeT. eKBi)aknwgTTYl)annUvlkçN³ flexible enAkñúgebtugGarem:Nas; RbsinebIeKcg;TTYl)anlkçN³esdækicx<s;. x> lkçN³esdækic©rbs;ebtugeRbkugRtaMg Economics of Prestressed Concrete Ggát;ebtugeRbkugRtaMgmankMBs;TabCagGgát;ebtugGarem:sMrab;RbEvg niglkçxNÐénkardak; bnÞúkdUcKña. CaTUeTAkMBs;rbs;Ggát;ebtugeRbkugRtaMgsßitenAcenøaH 65% eTA 80% énkMBs;rbs;ebtug Garem:. dUcenHvaRtUvkarebtugticCagGgát;ebtugGarem:BI 20% eTA 35% EtkarsnSMsMécbrimaNeb- tugenHmantulüPaBCamYynwgtMéld¾x<s;rbs;sMPar³EdlmanKuNPaBl¥EdlRtUvkarkñúgkarrgeRbkug- RtaMg. edaysarragFrNImaRt Ggát;ebtugeRbkugRtaMgmanBum<sμúKsμajCagebtugGarem:. eTaHbIvamantMélbEnßmCaeRcInk¾eday EtRbsinebIeKplitvaeRcIntMélrbs;vaminsUvCaxusKñaeT. eRKOgbgÁúMebtugeRbkugRtaMgRtUvkartMEhTaMticCaeRKOgbgÁúMebtugGarem: edaysarkarRtYtBinitüKuNPaB ebtug)anl¥Cag nigRKwHrbs;vaRTnUvTMgn;pÞal;tUcCag. enAeBlEdlFñwmebtugGarem:manRbEvgFMCag 21m vanwgmanTMgn;pÞal;FMNas; EdleFVIeGayva manPaBdabry³eBlyUr nigsñameRbHFM. dUcenHsMrab;FñwmEdlmanRbEvgEvg eKniymeRbIebtugeRbkug RtaMg edaysarFñwmragFñÚmantMéléføkñúgkarsagsg; nigmü:aeTotvaeFVIkarmin)anl¥edaysarvargnUv Basic Concept 2
  • 3. NPIC long-term shrinkage nig creep. sMrab;s<anEdlmanElVgEvg²dUcCa segmental bridge b¤ cable- stayed bridge eKeRbIEtebtugeRbkugRtaMgb:ueNÑaH. 2> Rbvtþirbs;ebtugeRbkugRtaMg Historical Development of Prestressing ebtugeRbkugRtaMgminEmnCabec©keTsfμIeT enAqñaM 1872 visVkr P. H. Jackson EdlmkBI California TTYl)annUvnIyb½RttkákmμsMrab;karrkeXIjRbB½n§eRbkugRtaMgedayeRbI tie rod edIm,I begáItFñwm b¤FñÚBIdMubøúkdac;²BIKña ¬emIlrUbTI 1>1 a¦. enAqñaM 1888 visVkrsBa¢atiGaLWm:g; C. W. Doehring TTYl)annIyb½RttkákmμsMrab;kareRbIRbB½n§eRbkugRtaMgenAkñúgkMraledayeRbI metal wire. b:uEnþsMrab;kareRbIR)as;elIkdMbUgenHminsUvTTYl)aneCaKC½yeT edaysarkMhatbg;eRbkugRtaMgGaRs½y nwgeBl. eRkaymkenAedImstvtSTI20 J. Lund mkBI Norway nig G.R. Steiner mkBIshrdæ)an BüayamedIm,IedaHRsaybBaðaenH EtminTTYl)anlT§pleT. kñúgGMLúgeBld¾yUrCamYynwgkarvivDÆd¾tictYcedaysarminTan;rkeXIjnUvEdlersIusþg;x<s;Edl GacykQñHkMhatbg;eRbkugRtaMg R. E. Dill )anrkeXIjnUvT§iBlrbs; shrinkage nig creep rbs;ebtugeTAelIkMhatbg;rbs;eRbkugRtaMg. dUcenHKat;)anrkeXIjnUv post-tensioning én unbonded rod EdlGacTUTat;nwgkMhatbg;kugRtaMgGaRs½ynwgeBlenAkñúgEdk EdlekItBIkarkat;bnßy RbEvgrbs;Ggát;edaysar creep nig shrinkage. enAedImTsvtS 1920 W. H. Hewett )anbegáIt nUveKalkarN_ circular prestressing EdleRbICamYynwgGagsþúkTwk b¤vtßúravEdlmanragmUl. visVkr)araMg Eugene Freyssinet )anesñInUvkareRbIR)as; high-strength steel nig high- ductility steel edIm,IykQñHnUvkMhatbg;eRbkugRtaMgkñúgcenøaHqñaM 1926 dl; 1928. bc©úb,nñeKeRbIebtugeRbkugRtaMgsMrab;sMNg;GaKar sMNg;dI s<anEdlmanElVgEvg².l. 3> eKalKMniténebtugeRbkugRtaMg Basic Concepts of Prestressing k> esckþIepþIm Introduction kMlaMgeRbkugRtaMg P EdlbMeBjlkçxNÐragFrNImaRt niglkçxNÐdak;bnÞúkrbs;Ggát;RtUv)an kMNt;edayeRbIeKalkarN_emkanik nigTMnak;TMngkugRtaMg-sac;lUteFob ¬rUbTI 1>2¦. eBlxøHeKRtUv karsnμt;eGayFñwmebtugeRbkugRtaMgCa homogeneous nigeGLasÞic. eKal KMnit 3
  • 4. T.Chhay enAkñúgrUbTI 1>2 (a) bgðajBIFñwmctuekaNTMrsamBaØrgnUvkMlaMgeRbkugRtaMgcMp©it P . muxkat; FñwmrgnUvkugRtaMgsgát;esμIKW P f =− (1.1) Ac Edl Ac = bd CaRkLaépÞrbs;muxkat;FñwmEdlmanTTwg b nigkMBs;srub d . sBaØadkRtUv)aneRbI sMrab;kugRtaMg b¤kMlaMgsgát; nigsBaØabUksMrab;kugRtaMg b¤kMlaMgTaj. RbsinebImankMlaMgTTwgG½kS (transverse load) GnuvtþeTAelIFñwm enaHkugRtaMgEdl)anm:Um:g; Gtibrma M EdlekItmanenAkNþalElVgKW P Mc ft =− − (1.2a) Ac I g Basic Concept 4
  • 5. NPIC nig fb = − P Mc + Ac I g (1.2b) Edl ft = kugRtaMgenAsrésxagelIbMput f b = kugRtaMgenAsrésxageRkambMput c = h sMrab;muxkat;ctuekaN 1 2 3 m:Um:g;niclPaBrbs;muxkat;TaMgmUl ¬sMrab;muxkat;ctuekaN = bh ¦ Ig = 12 BIrUbTI 1>2 (b) eyIgeXIjfaersIusþg;rgkarsgát;rbs;FñwmedIm,ITb;nwgkMlaMgxageRkARtUv)ankat; bnßyedaykMlaMgeRbkugRtaMgcMp©it. edIm,Ikat;bnßykugRtaMgTajenAsrésxagelIbMput eKRtUvdak; prestressing tendon BIeRkamG½kSNWtsMrab;muxkat;kNþalElVg ¬rUbTI 1>2 (c) nig (d)¦ . RbsinebIeK dak; tendon enAcMNakp©it e BITIRbCMuTMgn;rbs;muxkat; eKTTYl)anm:Um:g; Pe eFobnwgG½kS cgc ehIy kugRtaMgenAkNþalElVgkøayCa P Pec Mc ft =− + − (1.3a) Ac Ig Ig nig fb = − P Pec Mc Ac − Ig + Ig (1.3b) edaysarmuxkat;enARtg;TMrsamBaØminrgm:Umg;Edl)anBIbnÞúkTTwgG½kSxageRkA enaHsrésxag : elIbMputrbs;muxkat;GacrgkugRtaMgTajFMedaysarkMlaMgeRbkugRtaMgcakp©it. edIm,IkMritkugRtaMgenH eKRtUvdak; prestressing tendon CamYynwgcMNakp©ittUcCagcMNakp©itenAkNþalElVg b¤GacsßitenAelI G½kS cgc . x> Basic Concept Method enAkñúg basic concept method eKkMNt;kugRtaMgénsrésxageRkAbMputrbs;muxkat;ebtug eRbkugRtaMgedaypÞal;BIkMlaMgeRbkugRtaMgEdlGnuvtþtambeNþayG½kS nigbnÞúkTTwgG½kS. RbsinebI Pi CakMlaMgeRbkugRtaMgedImmunkMhatbg; nig Pe CakMlaMg eRbkugRtaMgRbsiT§PaBeRkaykMhatbg; enaH Pe γ= Pi Edl γ = emKuNeRbkugRtaMgenAsl; (residual prestress factor). edayCMnYs r 2 = I g / Ac ¬Edl r CakaMniclPaBénmuxkat;TaMgmUl¦ enaHeyIg)ansmIkardUcxageRkam³ a. manEtkMlaMgeRbkugRtaMg eKal KMnit 5
  • 6. T.Chhay Pi ⎛ ect ⎞ ft =− ⎜1 − 2 ⎟ (1.4a) Ac ⎝ r ⎠ P ⎛ ec ⎞ f b = − i ⎜1 + 2b ⎟ (1.4b) Ac ⎝ r ⎠ Edl ct nig cb CacMgayBITIRbCMuTMgn;rbs;muxkat; (G½kS cgc ) eTAsrésxagelIbMput nig xageRkambMput erogKña. b. kMlaMgeRbkugRtaMgrYmnwgTMgn;pÞal; RbsinebITMgn;pÞal;rbs;FñwmbegáItm:Um:g; M D enARtg;muxkat;EdlBicarNa smIkar 1.4a nig 1.4b køayCa Pi ⎛ ect ⎞ M D ft =− ⎜1 − 2 ⎟ − t (1.5a) Ac ⎝ r ⎠ S P ⎛ ec ⎞ M f b = − i ⎜1 + 2b ⎟ + D (1.5b) Ac ⎝ r ⎠ Sb Edl S t nig Sb Cam:UDulénmuxkat;sMrab;srésxagelIbMput nigxageRkambMput erogKña. rUbTI 1>3 bgðajBIKnøgrbs;EdkeRbkugRtaMg. rUbTI 1>3 (a) bgðajBIKnøgrbs;EdkeRbkugRtaMg kñúgTMrg; harped EdlRtUv)aneKeRbIenAkñúg pretensioned beam nigsMrab;bnÞúkTTwkG½kSmanGMeBIcMcMnuc. rUbTI 1>3 (b) bgðajBIKnøgrbs;EdkeRbkugRtaMgkñúgTMrg; draped EdlRtUv)aneKeRbIenAkñúg post- tensioning beam. Basic Concept 6
  • 7. NPIC bnÞab;BIkarsagsg; nigkartMeLIgkMralehIy eRKOgbgÁúMrgbnÞúkGefrEdlbegáIt)anCam:Um:g; M s . CaTUeTA GaMgtg;sIueteBjeljrbs;bnÞúkenHekItmanbnÞab;BIsMNg;RtUv)ansagsg;rYcral; ehIykMhat eKal KMnit 7
  • 8. T.Chhay bg;GaRs½ynwgeBlkñúgebtugeRbkugRtaMgekIteLIgrYcehIy. dUcenH kMlaMgeRbkugRtaMgCakMlaMgeRbkug RtaMgRbsiT§PaB Pe . RbsinebIm:Um:g;srubEdlbNþalBIbnÞúkTMnajCa M T enaH M T = M D + M SD + M L (1.6) Edl m:Um:g;EdlbNþalBITMgn;pÞal; MD = M SD = m:Um:g;EdlbNþalBIbnÞúkefr M L = m:Um:g;EdlbNþalBIbnÞúlGefr ehIysmIkar 1.5 nwgkøayCa Pe ⎛ ect ⎞ M T ft =− ⎜1 − 2 ⎟ − t (1.7a) Ac ⎝ r ⎠ S P ⎛ ecb ⎞ M f b = − e ⎜1 + 2 ⎟ + T (1.7b) Ac ⎝ r ⎠ Sb rUbTI 1.4 bgðajBIKMrUénkarBRgaykugRtaMgenAelImuxkat;mansøabeRKaHfñak;rbs;Ggát;eRbkug RtaMg. eKminGnuBaØateGaykugRtaMgTajenAkñúgebtugenAelIsrésxageRkAbMputrbs;muxkat;FMCagkug RtaMgGnuBaØatGtibrmaEdleGayedaybTdæaneT ¬dUcCa ft = 0.5 f 'c enAkñúg ACI Code¦. Rb sinebIvaFMCagtMélGnuBaØat eKRtUvdak;EdkBRgwgminEmneRbkugRtaMgeTAtamsmamaRtedIm,ITb;Tl;nwg kMlaMgTajsrubEdlmankñúgeKalbMNgRKb;RKgsñameRbHenAdMNak;kalrgbnÞúkeFIVkar. K> C-Line Method sMrab; C-Line method b¤ line-of-pressure concept b¤ thrust concept FñwmebtugeRbkugRtaMg RtUv)aneKsnμt;CaFñwmebtugsuT§eGLasÞic ehIyeKviPaKvaedayeRbIeKalkarN_eKalrbs;sþaTic. eKcat; TukkMlaMgeRbkugRtaMgCakMlaMgsgát;xageRkA CamYynwgkMlaMgTajefr T enAkñúg tendon. eKeRbIsmI- karlMnwg ∑ H = 0 nig ∑ M = 0 edIm,IrkSalMnwgrbs;muxkat;. rUbTI 1>5 bgðajBIkareRbobeFobExSskmμénkMlaMgsgát; C nigkMlaMgTaj T enAkñúgebtug Garem: nigebtugeRbkugRtaMg. édXñas; a sMrab;ebtugeRbkugRtaMgmantMélefr EtvaERbRbYlBIsUnüenA eBlrgeRbkugRtaMgeTAtMélGtibrmaenAeBlEdlvarg bnÞúkxageRkAeBjeljsMrab;ebtugeRbkugRtaMg. BIdüaRkamGgÁesrIrbs;kMNt;FñwmEdlbgðajenAkñúgrUbTI 1>6 eyIg)an M = Ca = Ta (1.8) e' = a − e (1.9a) edaysar C = T / a = M / T eK)an Basic Concept 8
  • 9. NPIC M e' = −e (1.9b) T BIrUbeyIg)an C Ce' ct ft =− − (1.10a) Ac Ig C Ce' cb fb = − + (1.10b) Ac Ig b:uEnþenAkñúg tendon kMlaMg T esμInwgkMlaMgeRbkugRtaMg Pe dUcenH Pe Pe e' ct ft =− − (1.11a) Ac Ig Pe Pe e' cb fb = − + (1.11b) Ac Ig eKal KMnit 9
  • 10. T.Chhay edaysar I c = Ac r 2 enaHeyIgGacsresrsmIkar 1.11a nig b dUcxageRkam Pe⎛ e' ct ⎞ ft =− ⎜1 + 2 ⎟ (1.12a) Ac⎝ r ⎠ P ⎛ e' c ⎞ f b = − e ⎜1 − 2b ⎟ (1.12b) Ac ⎝ r ⎠ smIkar 1.12 a nig b nigsmIkar 1.7 a nig b RtUveGaytMélkugRtaMgenAsrésxageRkAdUcKña. X> Load-Balancing Method eKGacKNna nigviPaKFñwmebtugeRbkugRtaMgedayeRbI load-balancing method EdlbegáIt eday Lin. viFIenHEp¥kelIkareRbIR)as;kMlaMgtamTisQrrbs;EdkeRbkugRtaMgEdlmanTMrg; draped b¤ harped edIm,ITb;Tl;nwgbnÞúkTMnajEdlmanGMeBIelIGgát;. rUbTI 1>7 bgðajBIkMlaMglMnwg (balancing forces) sMrab;FñwmebtugebkugRtaMgEdlmanEdkeRbkugRtaMgTMrg; draped nig harped. kMlaMglMnwg Rbtikmμ R esμInwgbgÁúMkMlaMgbBaÄrrbs;kMlaMgeRbkugRtaMg P . bgÁúMkMlaMgedkrbs;kMlaMgeRbkugRtaMg P mantMélesμInwgkMlaMg P eBjEtmþgsMrab;karKNnakugRtaMgsrésxageRkArbs;ebtugEdlenAkNþal ElVgsMrab;FñwmTMrsamBaØEdlmanRbEvgEvg. sMrab;muxkat;déTeTot eKeRbIbgÁúMkMlaMgedkrbs;kMlaMg P Cak;Esþg. Basic Concept 10
  • 11. NPIC A. Loading-Balancing Distributed Loads and Parabolic Tendon Profile BIrUbTI 1>8 eyIgGacsresrGnuKmn_)a:ra:bUldUcxageRkamsMrab;tMNageGayTMrg;rbs; tendon Ax 2 + Bx + C = y (1.13) sMrab; x = 0 eyIgman y = 0 dUcenH C = 0 ehIy dy = 0 dUcenH B = 0 dx sMrab; x = l / 2 eyIg)an y = a dUcenH A = 42a l ∂ y 2 eyIgman q =T 2 ∂x (1.14) eFVIDIepr:g;EsülBIrdgeTAelIsmIkar 1.13 ehIyCMnYs ∂ 2 y / ∂x 2 eTAkñúgsmIkar 1.14 eyIg)an 4a 8Ta q =T 2 ×2 = (1.15a) l l2 ql 2 b¤ T= 8a (1.15b) ql 2 Ta = (1.15c) 8 dUcenH RbsibebI tendon manTMrg;)a:ra:bUlehIykMlaMgeRbkugRtaMgRtUv)ansMKal;eday P enaH balanced-load Edl)anBIsmIkar 1.15a køayCa 8 Pa wb = (1.16) l2 BIrUbTI 1>9 bnÞúkTTwgG½kS wb BIrEdlmantMélesμIKña TisedApÞúyKña)anTUTat;KñaGs; dUcenHmin mankugRtaMgBt;ekIteLIgeT. edaysar T = C dUcenHeyIgGacCMnYs C eTAkñúg T )an. eday sarKμanm:Um:g;Bt; FñwmenArkSaPaBRtg; edayminmanragekag b¤ptenAépÞxagelIbMput. kugRtaMgsrésxageRkAbMputrbs;ebtugeBjkMBs;rbs;muxkat;EdlenAkNþalElVgKW eKal KMnit 11
  • 12. T.Chhay P' C f bt = − =− (1.17) Ac Ac kugRtaMgenHmantMélefr ehIykMlaMg P' = P cos θ . rUbTI 1>10 bgðajBIplbUkkugRtaMgedIm,I TTYl)an net stress. cMNaMfakMlaMgeRbkugRtaMgenAkñúg load-balancing method RtUvmanGMeBIenARtg; TIRbCMuTMgn; (cgc) rbs;muxkat;Rtg;TMrsMrab;FñwmTMrsamBaØ nigenARtg; cgc rbs;muxkat;cugTMenrrbs;Fñwm cantilever. eKRtUvdak;lkçxNÐEbbenHedIm,IkarBarm:Um:g;EdlKμanlMnwgcakp©it (eccentric unbalanced moment). enAeBlEdlbnÞúkTTwgG½kSFMCag balancing load wb dUcenHbnÞúkKμanlMnwgbEnßm (additional unbalanced load) wub begáIt)anm:Um:g; M ub = wubl 2 / 8 enAkNþalElVg. kugRtaMgsrésxageRkA EdlRtUvKñanwgkrNIenHRtg;kNþalElVgkøayCa Basic Concept 12
  • 13. NPIC P' M ub c f bt = − m (1.18) Ac Ig eKGacsresrsmIkar 1.18 CaBIrsmIkardUcxageRkam P' M ub ft =− − t (1.19a) Ac S nig fb = − P' M ub Ac + Sb (1.19b) smIkar 1.19 nwgeGaytMélkugRtaMgsrésdUcKñanwgsmIkar 1.12 nigsmIkar 1.7 Edr. cMNaMfa eKyk P' = P enARtg;muxkat;kNþalElVgeRBaHkMlaMgeRbkugRtaMgmanTisedkenARtg;muxkat; enaH Edl θ = 0 . 4> Computation of Fiber Stresses in a Prestressed Beam by the Basic Method ]TaheN_ 1>1³ rUbTI 1>11 bgðajBIragFrNImaRtrbs;Fñwm pretensioned dpble T 10LDT24 EdlRT edayTMrsamBaØmanRbEvg 64 ft (19.51m) . vargnUvbnÞúkTMnajefrWSD nigbnÞúkGefrWL Edlmanpl bnÞúksrub 420 plf (6.13kN / m) . kMlaMgeRbkugRtaMgedImmunkMhatbg;KW f pi ≅ 0.70 f pu = 189ksi (1300MPa ) . ehIykMlaMgeRbkugRtaMgeRkaykMhatbg;KW f pe = 150ksi(1034MPa ) . KNnakugRtaMg srésxageRkAbMputenAkNþalElVgEdlbNþalmkBI a. kMlaMgeRbkugRtaMgedImTaMgmUl nigKμanbnÞúkTMnajxageRkA b. lkçxNÐbnÞúkeFVIkarcugeRkayenAeBlEdlkMhatbg;eRbkugRtaMgekItmanehIy. kugRtaMgGnuBaØatmandUcxageRkam³ f 'c = 6ksi TMgn;Rsal (41.4 MPa ) f pu = 270ksi stress relieved (1860 MPa ) = specified tensile strength rbs; tendon f py = 220ksi(1520MPa ) = specified yield strength rbs; tendons f t = 12 f 'c = 930 psi (6.4MPa ) = kugRtaMgTajGnuBaØatGtibrmaenAkñúgebtug f 'ci = 4.8ksi(33.1MPa ) = kugRtaMgsgát;rbs;ebtugenAeBlrgeRbkugRtaMgedIm f ci = 0.6 f 'ci = 2.88ksi(19.9MPa ) = kugRtaMgGnuBaØatGtibrmaenAeBlrgeRbkugRtaMgedIm f c = 0.45 f 'c = kugRtaMgGnuBaØatGtibrmaenAkñúgebtugenAeBleFVIkar snμt;eRbI seven-wire-strand Ggát;p©it 0.5in.(12.7mm) cMnYndb;. Ac = 449in.2 (2897cm 2 ) eKal KMnit 13
  • 14. T.Chhay ( I g = 22469in.4 935346cm 4 ) ( r 2 = I g / Ac = 50.04in.2 323cm 2 ) cb = 17.77in.(451mm ) ct = 6.23in.(158mm ) ec = 14.77in.(375mm ) ee = 7.77in.(197.4mm ) ( Sb = 1264in.3 20713cm3 ) St = 3607in. (59108cm ) 3 3 WD = 359 plf (5.24kN / m ) dMeNaHRsay³ a. lkçxNÐdMbUgenAeBlrgeRbkugRtaMgedIm Aps = 10 × 0.153 = 1.53in.2 (990mm 2 ) Pi = Aps f pi = 1.53 × 189000 = 289170lb(1287kN ) Pe = 1.53 × 150000 = 229500lb(1020kN ) Basic Concept 14
  • 15. NPIC m:Um:g;Edl)anBIbnÞúkpÞal;enAkNþalElVg WD l 2 359(64 )2 MD = = × 12 = 2205696in. − lb(249kN .m ) 8 8 BIsmIkar 1.5 nig 1.7 eyIg)an ⎛ ect ⎞ M D Pi ft =− ⎜1 − 2 ⎟ − t ⎝Ac r ⎠ S 289170 ⎛ 14.77 × 6.23 ⎞ 2205696 =− ⎜1 − ⎟− 449 ⎝ 50.04 ⎠ 3607 = +540.3 − 611.5 ≅ −70 psi (C )(0.5MPa ) P ⎛ ec ⎞ M f b = − i ⎜1 + 2b ⎟ + D Ac ⎝ r ⎠ Sb 289170 ⎛ 14.77 × 17.77 ⎞ 2205696 =− ⎜1 + ⎟+ 440 ⎝ 50.04 ⎠ 1264 = −4022.1 + 1745 ≅ −2277 psi (C )(15.8MPa ) ≤ f ci = −2880 psi O.K. b. lkçxNÐcugeRkayenAeBlrgbnÞúkeFVIkar m:Um:g;kNþalElVgbNþalmkBIbnÞúkbEnßmefr nigGefrKW 420(64 )2 M SD + M L = × 12 = 2580480in. − lb 8 m:Um:g;srub M T = 2205696 + 2580480 = 4786176in. − lb(541kN .m) kugRtaMgenAsrésxagelIbMput Pe ⎛ ect ⎞ M T ft =− ⎜1 − 2 ⎟ − t Ac ⎝ r ⎠ S 229500 ⎛ 14.77 × 6.23 ⎞ 4786176 =− ⎜1 − ⎟− 449 ⎝ 50.04 ⎠ 3607 = +429 − 1327 = −898 psi (C )(6.3MPa ) < f c = 0.45 × 6000 = 2700 psi O.K. kugRtaMgenAsrésxagelIbMput Pe ⎛ ecb ⎞ M T fb = − ⎜1 + 2 ⎟ + Ac ⎝ r ⎠ Sb 229500 ⎛ 14.77 × 17.77 ⎞ 4786176 =− ⎜1 + ⎟+ 449 ⎝ 50.04 ⎠ 1264 = −3192 + 3786 = +594 psi (T )(4.1MPa ) < f t = 12 f 'c = 930 psi O.K. eKal KMnit 15
  • 16. T.Chhay 5> C-Line Computation of Fiber Stresses ]TahrN_ 1>2³ edaHRsay]TahrN_ 1>1 sMrab;lkçxNÐcugeRkayeBlbnÞúkeFVIkar edayeRbI C-line method . dMeNaHRsay³ Pe = 229500lb M T = 4786176in. − lb M 4786176 a= T = = 20.85in. Pe 229500 e' = a − e = 20.85 − 14.77 = 6.08in. BIsmIkar 1.12 Pe ⎛ e' ct ⎞ ft =− ⎜1 + 2 ⎟ Ac ⎝ r ⎠ 229500 ⎛ 6.08 × 6.23 ⎞ =− ⎜1 + ⎟ = −898 psi (C ) 449 ⎝ 50.04 ⎠ P ⎛ e' c ⎞ f b = − e ⎜1 − 2b ⎟ Ac ⎝ r ⎠ 229500 ⎛ 6.08 × 17.77 ⎞ =− ⎜1 − ⎟ = +594 psi (T ) 449 ⎝ 50.04 ⎠ 6> Load-Balancing Computation of Fiber Stresses ]TahrN_ 1>3³ edaHRsay]TahrN_ 1>1 sMrab;lkçxNÐcugeRkayeBlbnÞúkeFVIkareRkayeBlkMhat bg; edayeRbI load-balancing method. dMeNaHRsay³ P ' = Pe = 229500lb enAkNþalElVg enAkNþalElVg a = ec = 14.77in. = 1.231 ft eyIgman balancing load 8 × 229500 × 1.231 = 552 plf (8.1kN / m ) Pa Wb = 8 2 = l 64 2 dUcenHRbsinebIbnÞúkTMnajsrubmanRtwmEt 552 plf FñwmnwgrgkugRtaMg P' / Ac RbsinebIFñwm man tendon TMrg;)a:ra:bUledayminmancMNakp©itenAelITMr. enHedaysarEtbnÞúkTMnajRtUv)an rkSalMnwgeday tendon enAkNþalElVg. dUcenH bnÞúkTMnajsrubEdlFñwmRtUvTTYl = WD + WSD + WL = 359 + 420 = 779 plf Basic Concept 16
  • 17. NPIC Wub = 779 − 552 = 227 plf Wub (l )2 227(64 )2 M ub = = × 12 = 1394688in. − lb 8 8 BIsmIkar 1.19 eyIg)an P' M ub 229500 1394688 ft =− − t =− − Ac S 449 3607 = −511 − 387 = −898 psi (C ) P' M ub 229500 1394688 fb = − + =− + Ac Sb 449 1264 = −511 + 1104 ≅ 594 psi (T ) ≤ f t = 930 psi O.K. eKal KMnit 17