SlideShare uma empresa Scribd logo
1 de 45
UNIVERSIDAD NACIONAL
“HERMILIO VALDIZAN”
FACULTAD DE MATEMATICA Y FÍSICA
CURSO: FISICA I
ANALISIS VECTORIAL
HUÁNUCO - PERÚ
2014
I. INTRODUCCIÓN
• Es una parte esencial de la matemática útil para
físicos, matemáticos, ingenieros y técnicos.
• Constituye una noción concisa y clara para
presentar las ecuaciones de modelo matemático
de las situaciones físicas
• Proporciona además una ayuda inestimable en la
formación de imágenes mentales de los
conceptos físicos.
II. VECTORES Y ESCALARES
1. ESCALARES: Aquellas que para expresarse
necesitan de un número real y su
correspondiente unidad. Ejm: La masa el tiempo;
la temperatura.
2. VECTORES: Aquellas que para expresarse
necesitan de una magnitud, una dirección y un
sentido Ejm: La velocidad, el desplazamiento, la
fuerza, etc.
3. TENSORIALES: Aquellas que tiene una
magnitud, múltiples direcciones y sentidos. Ejem:
El esfuerzo normal y cortante, la presión
III. VECTOR
• Ente matemático cuya determinación exige el
conocimiento de un módulo una dirección y un
sentido.
• Gráficamente a un vector se representa por un
segmento de recta orientado
• Analíticamente se representa por una letra con
una flecha encima.
OP
uuur
Elementos de un vector
1. Dirección:
Gráficamente viene representada por la recta
soporte. En el plano por un ángulo y en el
espacio mediante tres ángulos
III. Elementos de un vector
2. sentido: Es el elemento que indica la orientación
del vector . Gráficamente viene representada
por la cabeza de flecha.
3. Magnitud : Representa el valor de la magnitud
física a la cual se asocia. Gráficamente viene
representado por la longitud del segmento de
recta
IV. Clase de vectores
1. Vectores libres : Aquellos que no tienen un
aposición fija en el espacio. Tal cantidad se
representa por un número infinito de vectores
que tienen la misma magnitud, dirección y
sentido.
2. Vectores deslizantes: Aquellos que tienen una y
solo una recta a lo largo de la cual actúan.
Pueden representarse por cualquier vector que
tenga sus tres elementos iguales ubicado en la
misma recta.
3. Vectores fijos. Aquellos que tienen uno y solo un
punto de aplicación
V. Algebra vectorial
Antes de describir las operaciones de suma, resta,
multiplicación de vectores es necesario definir:
1.Vectores iguales. Aquellos que tienen sus tres
elementos idénticos
2.Vector opuesto: Aquel vector que tiene la misma
magnitud y dirección pero sentido opuesto
Algebra vectorial: Suma vectorial
• Considere dos vectores A y B como se muestra.
• El vector suma se puede determinar mediante la regla
del paralelogramo o del triángulo .
• La magnitud de la resultante R se detemina mediante la
ley de cosenos-
• La dirección mediante la ley de cosenos
2 2
2 cosR A B A B θ= + +
r rr r r
( )
AR B
sen sen senπ θ β ε
= =
−
rr r
Algebra vectorial: Resta vectorial
• Considere dos vectores A y B como se muestra.
• El vector suma se puede determinar mediante la regla
del paralelogramo o del triángulo .
• La magnitud del vector diferencia D es
• La dirección mediante la ley de cosenos
2 22 2
2 cos( ) 2 cos( )D A B A B A B A Bπ θ θ= + + − = + −
r r r rr r r r r
( )
AD B
sen sen senθ β α
= =
rr r
Leyes del algebra vectorial
1. Conmutatividad.
2. Asociatividad
Multiplicación de un escalar por un vector
Consideremos la multiplicación de un escalar c por un
vector . El producto es un nuevo vector . La
magnitud del vector producto es c veces la magnitud del
vector . Si c > 0 el vector producto tiene la misma
dirección y sentido de A. Por el contrario si c < 0 el
vector producto es de sentido opuesto a
cA
r
Propiedades de la Multiplicación de un
escalar por un vector
1. Les asociativa para la multiplicación.
Si b y c son dos escalares la multiplicación se escribe
2. Ley distributiva para la adición vectorial.
si c es un escalar, cuando este se multiplica por la
suma de dos vectores se tiene
Propiedades de la Multiplicación de un
escalar por un vector
3. Ley distributiva para la suma escalar.
Si b y c son la suma de dos escalares por el
vector A se tiene
Suma de varios vectores
Para sumar varios vectores se utiliza la ley del
poligono. Esto la aplicación sucesiva de la ley
del paralelogramo o del triángulo. Es decir
VI. VECTOR UNITARIO
• Es un vector colineal con el vector original
• Tiene un módulo igual a la unidad
• Se define como el vector dado entre su modulo
correspondiente es decir
ˆA
A
e
A
=
r
r
ˆAA A e=
r r
VECTOR UNITARIOS RECTANGULARES
• A cada uno de los ejes coordenado se le asigna
vectores unitarios
• Cada uno de estos vectores unitario a tiene
módulos iguales a la unidad y direcciones
perpendiculares entre sí.
ˆˆ ˆ, ,i j k
ˆˆ ˆi j k= =
VII. DESCOMPOSICIÓN VECTORIAL
Cualquier vector puede descomponerse en infinitas
componentes. El único requisito es que La suma de esta
componentes nos de le vector original. La
descomposición pude ser en un plan o en el espacio.
1. EN DOS DIRECIONES PERPENDICULARES EN EL
PLANO
DESCOMPOSICIÓN VECTORIAL
1. EN DOS DIRECIONES PERPENDICULARES EN EL
PLANO
ˆ ˆ
ˆ ˆcos
ˆ ˆ(cos )
ˆ
ˆ ˆˆ (cos )
x y
x y
A
A
A A A
A A i A j
A A i Asen j
A A i sen j
A Ae
e i sen j
θ θ
θ θ
θ θ
= +
= +
= +
= +
=
= +
r r r
r
r
r
r
2 2
x yA A A= +
r
y
x
A
Atgθ =
DESCOMPOSICIÓN VECTORIAL
2. EN DOS DIRECIONES NO PERPENDICULARES EN
EL PLANO.
Para ello trace rectas paralelas y a las originales que
pasen por el extremo del vector original formándose un
paralelogramo cuyos lados son las componentes
a a b bA A A− −= +
r r r
DESCOMPOSICIÓN VECTORIAL
3.En el espacio. Cualquier vector puede
descomponerse en tres componentes
DESCOMPOSICIÓN VECTORIAL
3.En el espacio.
ˆˆ ˆ
ˆˆ ˆcos cos cos
ˆˆ ˆ(cos cos cos )
ˆ
ˆˆ ˆˆ (cos cos cos )
x y z
x y z
A
A
A A A A
A A i A j A k
A A i A j A k
A A i j k
A Ae
e i j k
β γ α
β γ α
β γ α
= + +
= + +
= + +
= + +
=
= + +
r r r r
r
r
r
r
2
2 2 2
x y zA A A A= + +
r
cos xA
Aα =
cos yA
Aβ =
cos Az
Aα =
VECTOR POSICIÓN
ˆˆ ˆr OP xi yj zk= = + +
uuurr
VECTOR POSICIÓN RELATIVO
1 2 1 2 1 2
ˆˆ ˆ( ) ( ) ( )r x x i y y j z z k∆ = − + − + −
r
VIII. PRODUCTO ESCALAR
El producto escalar o producto punto de dos
vectores A y B denotado por y expresado A
multiplicado escalarmente B, se define como el
producto de las magnitudes de los vectores A y
B por el coseno del ángulo que forman ellos.
Propiedades del producto escalar
1. El producto escalar es conmutativo
2. El producto escalar es distributivo
3. Producto de un escalar por el producto escalar
4. Producto escalar entre la suma de dos vectores
por un tercer vector
Propiedades del producto escalar
4. Producto escalar de dos vectores unitarios iguales
5. Producto escalar de dos vectores unitarios
diferentes.
6. Producto escalar de dos vectores
Propiedades del producto escalar
7. Producto escalar de dos vectores en forma de
componentes .
Entonces tenemos
8. Si el producto escalar de dos vectores es nulo.
Entonces dichos vectores son perpendiculares
. 0A B A B= ⇒ ⊥
r rr r
INTERPRETACIÓN DEL PRODUCTO ESCALER
Geométricamente esta situación se muestra en la
figura
VECTOR PROYECCIÓN ORTOGONAL
IX. PRODUCTO VECTORIAL
El producto escalar o producto cruz de dos vectores A y B,
es un tercer vector C el cual es perpendicular al plano
formado por los dos vectores y cuya magnitud es igual al
producto de sus magnitudes multiplicado por el seno del
ángulo entre ellos y cuyo sentido se determina mediante la
regla de la mano derecha. La notación del producto cruz es
REGLA DE LA MANO DERECHA
Primera forma: Tome la mano derecha y oriente el dedo índice
con el primer vector y el dedo corazón el segundo vector, el
dedo pulgar extendido nos da el vector producto de ambos.
Segunda forma: curve los dedos de la mano derecha
tendiendo a hacer girar al primer vector hacia el segundo; el
dedo pulgar extendido nos da el vector producto.
PROPIEDADES DEL PRODUCTO VECTORIAL
1. El producto vectorial no es conmutativo
2. El producto vectorial es distributivo
3. Multiplicación de un escalar por el producto vectorial.
4. Multiplicación vectorial de vectores unitarios
PROPIEDADES DEL PRODUCTO VECTORIAL
5. El producto vectorial de dos vectores en componentes es
6. La magnitud del producto vectorial es igual al área del
paralelogramo que tiene a los vectores A y B
7. Si el producto vectorial es nulo entonces los dos vectores
son paralelos.
ˆˆ ˆ
ˆˆ ˆ( ) ( ) ( )x y z y z z y x z z x x y y z
x y z
i j k
AxB A A A i A B A B j A B A B k A B A B
B B B
= = − − − + −
r r
( ) ( )Area AxB A Bsen A hθ= = =
r r
Ejemplo 01
• La figura muestra un cubo en donde se han
trazado distintos desplazamientos de un abeja
cuando cambia de la posici1,2,3 y 1.¿Cuanto
vale cada uno de los desplazamientos?. ¿Cual
es el desplazamiento total?.
Ejemplo 02
En la figura se muestra dos fuerzas actuando
sobre un cuerpo puntual. Si los módulos de ellas
son 200 N y 100 N, respectivamente. ¿Cuál es
la magnitud y la dirección de la fuerza
resultante?.
Ejemplo 03
• Un avión viaja en la dirección Este con una
velocidad de 480 km/h y entra a una región
donde el viento sopla en la dirección 30° Norte
del este con una velocidad de 160 km/h.
Determine la magnitud y dirección de la nave
SOLUCION
Ejemplo 04
La figura muestra un triángulo cuyos lados son
Demuestre el teorema de los cosenos
SOLUCION
Ejemplo 05
Sabiendo que el módulo de los vectores D y G
son 10 y unidades respectivamente.
Determine el vector unitario del vector
20 2
W A B C D E F G= + + + + + +
r r rr r r r r
Ejemplo 06
En la figura mostrada, determine el vector x, en
función de los vectores A y B. Si PQRS es un
cuadrado y PORQ es un cuadrante de círculo
Ejemplo 07
Descomponga el vector fuerza de 400 kN
representado en la figura en dos componentes,
una según la dirección AB y la otra
perpendicular a ella
Ejemplo 08
La resultante de la tres fuerzas mostradas en la
figura es vertical. Determine: (a) la magnitud de
la fuerza A y (b) la resultante del sistema
Ejemplo 09
Determine la resultante del sistema de vectores
fuerza mostrados en la figura
Ejemplo 10
Halle el vector unitario perpendicular al plano
formado por los vectores
Usando (a) el producto escalar y (b) el producto
vectorial.
ˆ ˆ ˆ ˆ2 6 3 4 3A i j k B i j k= − − = + −
r rr r
Ejemplo 11
Halle la ecuación del plano perpendicular al
vector y que pasa por el extremo
del vector
ˆ ˆ2 3A i j k= + +
rr
ˆ ˆ5 3B i j k= + +
rr

Mais conteúdo relacionado

Mais procurados

fenómenos electrostaticos
fenómenos electrostaticosfenómenos electrostaticos
fenómenos electrostaticosnacha_vodkachai
 
Lecture 03 potencial electrico
Lecture 03   potencial electricoLecture 03   potencial electrico
Lecture 03 potencial electricoRodolfo Bernal
 
Taller de aplicación sistemas ecuaciones lineales
Taller de aplicación   sistemas ecuaciones linealesTaller de aplicación   sistemas ecuaciones lineales
Taller de aplicación sistemas ecuaciones linealesAna Maria Luna
 
Vectores: el producto escalar
Vectores: el producto escalarVectores: el producto escalar
Vectores: el producto escalarPujante
 
Representación y expresiones analíticas de magnitudes
Representación y expresiones analíticas de magnitudesRepresentación y expresiones analíticas de magnitudes
Representación y expresiones analíticas de magnitudesLuis Rodríguez Suárez
 
Preguntas electrostática
Preguntas electrostáticaPreguntas electrostática
Preguntas electrostáticaeguarin
 
Diapositiva de vectores
Diapositiva de vectoresDiapositiva de vectores
Diapositiva de vectoreslilaecabrera
 
376053169 prueba-fisica-espejos-y-lentes
376053169 prueba-fisica-espejos-y-lentes376053169 prueba-fisica-espejos-y-lentes
376053169 prueba-fisica-espejos-y-lentesOscar Julian Acosta
 
Diferencias de potencial en un campo electrico uniforme formulas
Diferencias de potencial en un campo electrico uniforme formulas Diferencias de potencial en un campo electrico uniforme formulas
Diferencias de potencial en un campo electrico uniforme formulas Jonathan Barranco
 
Campo electrico distrubuciones continuas de carga clase 4
Campo electrico distrubuciones continuas de carga clase 4Campo electrico distrubuciones continuas de carga clase 4
Campo electrico distrubuciones continuas de carga clase 4Tensor
 
Trigonometría completo
Trigonometría completoTrigonometría completo
Trigonometría completoSilvia Vedani
 
Límites y continuidad en funciones de varias variables
Límites y continuidad en funciones de varias variablesLímites y continuidad en funciones de varias variables
Límites y continuidad en funciones de varias variableskellys vz
 
Ejercicios de división de polinomios
Ejercicios de división de polinomiosEjercicios de división de polinomios
Ejercicios de división de polinomiosracevedo5
 

Mais procurados (20)

fenómenos electrostaticos
fenómenos electrostaticosfenómenos electrostaticos
fenómenos electrostaticos
 
Lecture 03 potencial electrico
Lecture 03   potencial electricoLecture 03   potencial electrico
Lecture 03 potencial electrico
 
Taller de aplicación sistemas ecuaciones lineales
Taller de aplicación   sistemas ecuaciones linealesTaller de aplicación   sistemas ecuaciones lineales
Taller de aplicación sistemas ecuaciones lineales
 
Vectores: el producto escalar
Vectores: el producto escalarVectores: el producto escalar
Vectores: el producto escalar
 
Representación y expresiones analíticas de magnitudes
Representación y expresiones analíticas de magnitudesRepresentación y expresiones analíticas de magnitudes
Representación y expresiones analíticas de magnitudes
 
Analisis vectorial
Analisis vectorialAnalisis vectorial
Analisis vectorial
 
leyes de coulomb y campo electrico
leyes de coulomb y campo electricoleyes de coulomb y campo electrico
leyes de coulomb y campo electrico
 
Preguntas electrostática
Preguntas electrostáticaPreguntas electrostática
Preguntas electrostática
 
Diapositiva de vectores
Diapositiva de vectoresDiapositiva de vectores
Diapositiva de vectores
 
Elipse
ElipseElipse
Elipse
 
376053169 prueba-fisica-espejos-y-lentes
376053169 prueba-fisica-espejos-y-lentes376053169 prueba-fisica-espejos-y-lentes
376053169 prueba-fisica-espejos-y-lentes
 
Anexo 07 problemas
Anexo 07 problemasAnexo 07 problemas
Anexo 07 problemas
 
Diferencias de potencial en un campo electrico uniforme formulas
Diferencias de potencial en un campo electrico uniforme formulas Diferencias de potencial en un campo electrico uniforme formulas
Diferencias de potencial en un campo electrico uniforme formulas
 
Campo electrico distrubuciones continuas de carga clase 4
Campo electrico distrubuciones continuas de carga clase 4Campo electrico distrubuciones continuas de carga clase 4
Campo electrico distrubuciones continuas de carga clase 4
 
Vectores
VectoresVectores
Vectores
 
Análisis vectorial
Análisis vectorial Análisis vectorial
Análisis vectorial
 
Clase 07 - Vectores
Clase 07 - VectoresClase 07 - Vectores
Clase 07 - Vectores
 
Trigonometría completo
Trigonometría completoTrigonometría completo
Trigonometría completo
 
Límites y continuidad en funciones de varias variables
Límites y continuidad en funciones de varias variablesLímites y continuidad en funciones de varias variables
Límites y continuidad en funciones de varias variables
 
Ejercicios de división de polinomios
Ejercicios de división de polinomiosEjercicios de división de polinomios
Ejercicios de división de polinomios
 

Destaque

Antecedentes Historicos De La Geometria Analítica
Antecedentes Historicos De La Geometria AnalíticaAntecedentes Historicos De La Geometria Analítica
Antecedentes Historicos De La Geometria AnalíticaMajo Pascualli Peregrina
 
Analisis vectorial
Analisis vectorialAnalisis vectorial
Analisis vectorialTensor
 
Plan de clase : Componentes de un vector
Plan de clase : Componentes de un vectorPlan de clase : Componentes de un vector
Plan de clase : Componentes de un vectorScarlet Gray
 
ANÁLISIS VECTORIAL
ANÁLISIS VECTORIALANÁLISIS VECTORIAL
ANÁLISIS VECTORIALAbel Bellido
 
5. PRODUCTO ESCALAR
5. PRODUCTO ESCALAR5. PRODUCTO ESCALAR
5. PRODUCTO ESCALARedvinogo
 
Leyes de kirchhoff
Leyes de kirchhoffLeyes de kirchhoff
Leyes de kirchhofftiojusti
 
PLAN CURRICULAR ANUAL - MATEMÁTICA - TERCERO Y SEGUNDO DE BACHILLERATO
PLAN CURRICULAR ANUAL - MATEMÁTICA - TERCERO Y SEGUNDO DE BACHILLERATOPLAN CURRICULAR ANUAL - MATEMÁTICA - TERCERO Y SEGUNDO DE BACHILLERATO
PLAN CURRICULAR ANUAL - MATEMÁTICA - TERCERO Y SEGUNDO DE BACHILLERATOHectorWladimirGuerraSanchez
 
Problemas resueltos-cap-3-fisica-serway
Problemas resueltos-cap-3-fisica-serwayProblemas resueltos-cap-3-fisica-serway
Problemas resueltos-cap-3-fisica-serwayraguayop
 
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA Izion warek human
 
Ejercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia linealEjercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia linealalgebra
 
Algebra lineal problemas_resueltos
Algebra lineal problemas_resueltosAlgebra lineal problemas_resueltos
Algebra lineal problemas_resueltosmathbmc
 
Problemas resueltos-cap-2-fisica-serway
Problemas resueltos-cap-2-fisica-serwayProblemas resueltos-cap-2-fisica-serway
Problemas resueltos-cap-2-fisica-serwayKeos21
 
1.2 plan de bloque matematicas tercero
1.2  plan de bloque matematicas tercero1.2  plan de bloque matematicas tercero
1.2 plan de bloque matematicas terceroSan bernabe de larraul
 
1.1 plan curricular anual matematicas tercero
1.1  plan curricular anual matematicas tercero1.1  plan curricular anual matematicas tercero
1.1 plan curricular anual matematicas terceroSan bernabe de larraul
 
Ejercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldorEjercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldorDiegoMendoz
 

Destaque (20)

Algebra vectorial 1
Algebra vectorial 1Algebra vectorial 1
Algebra vectorial 1
 
Antecedentes Historicos De La Geometria Analítica
Antecedentes Historicos De La Geometria AnalíticaAntecedentes Historicos De La Geometria Analítica
Antecedentes Historicos De La Geometria Analítica
 
Analisis vectorial
Analisis vectorialAnalisis vectorial
Analisis vectorial
 
Plan de clase : Componentes de un vector
Plan de clase : Componentes de un vectorPlan de clase : Componentes de un vector
Plan de clase : Componentes de un vector
 
BGU Área Matemática
BGU Área MatemáticaBGU Área Matemática
BGU Área Matemática
 
ANÁLISIS VECTORIAL
ANÁLISIS VECTORIALANÁLISIS VECTORIAL
ANÁLISIS VECTORIAL
 
5. PRODUCTO ESCALAR
5. PRODUCTO ESCALAR5. PRODUCTO ESCALAR
5. PRODUCTO ESCALAR
 
Leyes de kirchhoff
Leyes de kirchhoffLeyes de kirchhoff
Leyes de kirchhoff
 
Análisis Vectorial
Análisis VectorialAnálisis Vectorial
Análisis Vectorial
 
PLAN CURRICULAR ANUAL - MATEMÁTICA - TERCERO Y SEGUNDO DE BACHILLERATO
PLAN CURRICULAR ANUAL - MATEMÁTICA - TERCERO Y SEGUNDO DE BACHILLERATOPLAN CURRICULAR ANUAL - MATEMÁTICA - TERCERO Y SEGUNDO DE BACHILLERATO
PLAN CURRICULAR ANUAL - MATEMÁTICA - TERCERO Y SEGUNDO DE BACHILLERATO
 
Problemas resueltos-cap-3-fisica-serway
Problemas resueltos-cap-3-fisica-serwayProblemas resueltos-cap-3-fisica-serway
Problemas resueltos-cap-3-fisica-serway
 
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I  libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
libro de prob. fisica PROBLEMAS RESUELTOS DE FÍSICA I
 
PCA.-Planificación Curricular Anual (2016-2017)
PCA.-Planificación Curricular Anual (2016-2017)PCA.-Planificación Curricular Anual (2016-2017)
PCA.-Planificación Curricular Anual (2016-2017)
 
Ejercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia linealEjercicios resueltos de dependencia e independencia lineal
Ejercicios resueltos de dependencia e independencia lineal
 
Algebra lineal problemas_resueltos
Algebra lineal problemas_resueltosAlgebra lineal problemas_resueltos
Algebra lineal problemas_resueltos
 
Problemas resueltos-cap-2-fisica-serway
Problemas resueltos-cap-2-fisica-serwayProblemas resueltos-cap-2-fisica-serway
Problemas resueltos-cap-2-fisica-serway
 
Vectores y propiedades
Vectores y propiedadesVectores y propiedades
Vectores y propiedades
 
1.2 plan de bloque matematicas tercero
1.2  plan de bloque matematicas tercero1.2  plan de bloque matematicas tercero
1.2 plan de bloque matematicas tercero
 
1.1 plan curricular anual matematicas tercero
1.1  plan curricular anual matematicas tercero1.1  plan curricular anual matematicas tercero
1.1 plan curricular anual matematicas tercero
 
Ejercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldorEjercicios resueltos de el algebra de baldor
Ejercicios resueltos de el algebra de baldor
 

Semelhante a Analisis vectorial opta (20)

Analisis vectorial opta
Analisis vectorial optaAnalisis vectorial opta
Analisis vectorial opta
 
Analisis vectorial
Analisis vectorialAnalisis vectorial
Analisis vectorial
 
Fundamentos del Calculo Vectorial ccesa007
Fundamentos del Calculo Vectorial  ccesa007Fundamentos del Calculo Vectorial  ccesa007
Fundamentos del Calculo Vectorial ccesa007
 
Analisis vectorial
Analisis vectorial  Analisis vectorial
Analisis vectorial
 
Introduccion al calculo vectorial ccesa007
Introduccion al calculo vectorial  ccesa007Introduccion al calculo vectorial  ccesa007
Introduccion al calculo vectorial ccesa007
 
Vectores en r3
Vectores en r3Vectores en r3
Vectores en r3
 
1. analisis vectorial
1. analisis vectorial1. analisis vectorial
1. analisis vectorial
 
Vectores en r3
Vectores en r3Vectores en r3
Vectores en r3
 
Vectores 1º bach
Vectores 1º bachVectores 1º bach
Vectores 1º bach
 
Unidad 1
Unidad 1Unidad 1
Unidad 1
 
Vectores en física
Vectores en físicaVectores en física
Vectores en física
 
Fisicavectores
FisicavectoresFisicavectores
Fisicavectores
 
recurso 3-Vectores.pdf
recurso 3-Vectores.pdfrecurso 3-Vectores.pdf
recurso 3-Vectores.pdf
 
Vectores en-el-espacio
Vectores en-el-espacioVectores en-el-espacio
Vectores en-el-espacio
 
Analisis Vectorial
Analisis Vectorial  Analisis Vectorial
Analisis Vectorial
 
Producto punto
Producto puntoProducto punto
Producto punto
 
Cce fisica vectores
Cce fisica   vectoresCce fisica   vectores
Cce fisica vectores
 
Cce fisica vectores
Cce fisica   vectoresCce fisica   vectores
Cce fisica vectores
 
1 vectores
1 vectores1 vectores
1 vectores
 
Apuntes de vectores
Apuntes de vectoresApuntes de vectores
Apuntes de vectores
 

Mais de tactabambarapayanhuari (15)

Historia de los dispositivos
Historia de los dispositivosHistoria de los dispositivos
Historia de los dispositivos
 
Analisis dimencional
Analisis dimencionalAnalisis dimencional
Analisis dimencional
 
Análisis vectorial
Análisis vectorialAnálisis vectorial
Análisis vectorial
 
Hidrostatica
HidrostaticaHidrostatica
Hidrostatica
 
Electrostatica
ElectrostaticaElectrostatica
Electrostatica
 
Energia
EnergiaEnergia
Energia
 
Trabajo y potecia
Trabajo y poteciaTrabajo y potecia
Trabajo y potecia
 
Trabajo
TrabajoTrabajo
Trabajo
 
Dinamica
DinamicaDinamica
Dinamica
 
Hidrostatica (1)
Hidrostatica (1)Hidrostatica (1)
Hidrostatica (1)
 
Trabajo
TrabajoTrabajo
Trabajo
 
Estática
EstáticaEstática
Estática
 
Cinematica
CinematicaCinematica
Cinematica
 
Presentacion de analisis dimmencional
Presentacion de analisis  dimmencionalPresentacion de analisis  dimmencional
Presentacion de analisis dimmencional
 
MI FUTURO
MI FUTUROMI FUTURO
MI FUTURO
 

Analisis vectorial opta

  • 1. UNIVERSIDAD NACIONAL “HERMILIO VALDIZAN” FACULTAD DE MATEMATICA Y FÍSICA CURSO: FISICA I ANALISIS VECTORIAL HUÁNUCO - PERÚ 2014
  • 2. I. INTRODUCCIÓN • Es una parte esencial de la matemática útil para físicos, matemáticos, ingenieros y técnicos. • Constituye una noción concisa y clara para presentar las ecuaciones de modelo matemático de las situaciones físicas • Proporciona además una ayuda inestimable en la formación de imágenes mentales de los conceptos físicos.
  • 3. II. VECTORES Y ESCALARES 1. ESCALARES: Aquellas que para expresarse necesitan de un número real y su correspondiente unidad. Ejm: La masa el tiempo; la temperatura. 2. VECTORES: Aquellas que para expresarse necesitan de una magnitud, una dirección y un sentido Ejm: La velocidad, el desplazamiento, la fuerza, etc. 3. TENSORIALES: Aquellas que tiene una magnitud, múltiples direcciones y sentidos. Ejem: El esfuerzo normal y cortante, la presión
  • 4. III. VECTOR • Ente matemático cuya determinación exige el conocimiento de un módulo una dirección y un sentido. • Gráficamente a un vector se representa por un segmento de recta orientado • Analíticamente se representa por una letra con una flecha encima. OP uuur
  • 5. Elementos de un vector 1. Dirección: Gráficamente viene representada por la recta soporte. En el plano por un ángulo y en el espacio mediante tres ángulos
  • 6. III. Elementos de un vector 2. sentido: Es el elemento que indica la orientación del vector . Gráficamente viene representada por la cabeza de flecha. 3. Magnitud : Representa el valor de la magnitud física a la cual se asocia. Gráficamente viene representado por la longitud del segmento de recta
  • 7. IV. Clase de vectores 1. Vectores libres : Aquellos que no tienen un aposición fija en el espacio. Tal cantidad se representa por un número infinito de vectores que tienen la misma magnitud, dirección y sentido. 2. Vectores deslizantes: Aquellos que tienen una y solo una recta a lo largo de la cual actúan. Pueden representarse por cualquier vector que tenga sus tres elementos iguales ubicado en la misma recta. 3. Vectores fijos. Aquellos que tienen uno y solo un punto de aplicación
  • 8. V. Algebra vectorial Antes de describir las operaciones de suma, resta, multiplicación de vectores es necesario definir: 1.Vectores iguales. Aquellos que tienen sus tres elementos idénticos 2.Vector opuesto: Aquel vector que tiene la misma magnitud y dirección pero sentido opuesto
  • 9. Algebra vectorial: Suma vectorial • Considere dos vectores A y B como se muestra. • El vector suma se puede determinar mediante la regla del paralelogramo o del triángulo . • La magnitud de la resultante R se detemina mediante la ley de cosenos- • La dirección mediante la ley de cosenos 2 2 2 cosR A B A B θ= + + r rr r r ( ) AR B sen sen senπ θ β ε = = − rr r
  • 10. Algebra vectorial: Resta vectorial • Considere dos vectores A y B como se muestra. • El vector suma se puede determinar mediante la regla del paralelogramo o del triángulo . • La magnitud del vector diferencia D es • La dirección mediante la ley de cosenos 2 22 2 2 cos( ) 2 cos( )D A B A B A B A Bπ θ θ= + + − = + − r r r rr r r r r ( ) AD B sen sen senθ β α = = rr r
  • 11. Leyes del algebra vectorial 1. Conmutatividad. 2. Asociatividad
  • 12. Multiplicación de un escalar por un vector Consideremos la multiplicación de un escalar c por un vector . El producto es un nuevo vector . La magnitud del vector producto es c veces la magnitud del vector . Si c > 0 el vector producto tiene la misma dirección y sentido de A. Por el contrario si c < 0 el vector producto es de sentido opuesto a cA r
  • 13. Propiedades de la Multiplicación de un escalar por un vector 1. Les asociativa para la multiplicación. Si b y c son dos escalares la multiplicación se escribe 2. Ley distributiva para la adición vectorial. si c es un escalar, cuando este se multiplica por la suma de dos vectores se tiene
  • 14. Propiedades de la Multiplicación de un escalar por un vector 3. Ley distributiva para la suma escalar. Si b y c son la suma de dos escalares por el vector A se tiene
  • 15. Suma de varios vectores Para sumar varios vectores se utiliza la ley del poligono. Esto la aplicación sucesiva de la ley del paralelogramo o del triángulo. Es decir
  • 16. VI. VECTOR UNITARIO • Es un vector colineal con el vector original • Tiene un módulo igual a la unidad • Se define como el vector dado entre su modulo correspondiente es decir ˆA A e A = r r ˆAA A e= r r
  • 17. VECTOR UNITARIOS RECTANGULARES • A cada uno de los ejes coordenado se le asigna vectores unitarios • Cada uno de estos vectores unitario a tiene módulos iguales a la unidad y direcciones perpendiculares entre sí. ˆˆ ˆ, ,i j k ˆˆ ˆi j k= =
  • 18. VII. DESCOMPOSICIÓN VECTORIAL Cualquier vector puede descomponerse en infinitas componentes. El único requisito es que La suma de esta componentes nos de le vector original. La descomposición pude ser en un plan o en el espacio. 1. EN DOS DIRECIONES PERPENDICULARES EN EL PLANO
  • 19. DESCOMPOSICIÓN VECTORIAL 1. EN DOS DIRECIONES PERPENDICULARES EN EL PLANO ˆ ˆ ˆ ˆcos ˆ ˆ(cos ) ˆ ˆ ˆˆ (cos ) x y x y A A A A A A A i A j A A i Asen j A A i sen j A Ae e i sen j θ θ θ θ θ θ = + = + = + = + = = + r r r r r r r 2 2 x yA A A= + r y x A Atgθ =
  • 20. DESCOMPOSICIÓN VECTORIAL 2. EN DOS DIRECIONES NO PERPENDICULARES EN EL PLANO. Para ello trace rectas paralelas y a las originales que pasen por el extremo del vector original formándose un paralelogramo cuyos lados son las componentes a a b bA A A− −= + r r r
  • 21. DESCOMPOSICIÓN VECTORIAL 3.En el espacio. Cualquier vector puede descomponerse en tres componentes
  • 22. DESCOMPOSICIÓN VECTORIAL 3.En el espacio. ˆˆ ˆ ˆˆ ˆcos cos cos ˆˆ ˆ(cos cos cos ) ˆ ˆˆ ˆˆ (cos cos cos ) x y z x y z A A A A A A A A i A j A k A A i A j A k A A i j k A Ae e i j k β γ α β γ α β γ α = + + = + + = + + = + + = = + + r r r r r r r r 2 2 2 2 x y zA A A A= + + r cos xA Aα = cos yA Aβ = cos Az Aα =
  • 23. VECTOR POSICIÓN ˆˆ ˆr OP xi yj zk= = + + uuurr
  • 24. VECTOR POSICIÓN RELATIVO 1 2 1 2 1 2 ˆˆ ˆ( ) ( ) ( )r x x i y y j z z k∆ = − + − + − r
  • 25. VIII. PRODUCTO ESCALAR El producto escalar o producto punto de dos vectores A y B denotado por y expresado A multiplicado escalarmente B, se define como el producto de las magnitudes de los vectores A y B por el coseno del ángulo que forman ellos.
  • 26. Propiedades del producto escalar 1. El producto escalar es conmutativo 2. El producto escalar es distributivo 3. Producto de un escalar por el producto escalar 4. Producto escalar entre la suma de dos vectores por un tercer vector
  • 27. Propiedades del producto escalar 4. Producto escalar de dos vectores unitarios iguales 5. Producto escalar de dos vectores unitarios diferentes. 6. Producto escalar de dos vectores
  • 28. Propiedades del producto escalar 7. Producto escalar de dos vectores en forma de componentes . Entonces tenemos 8. Si el producto escalar de dos vectores es nulo. Entonces dichos vectores son perpendiculares . 0A B A B= ⇒ ⊥ r rr r
  • 29. INTERPRETACIÓN DEL PRODUCTO ESCALER Geométricamente esta situación se muestra en la figura
  • 31. IX. PRODUCTO VECTORIAL El producto escalar o producto cruz de dos vectores A y B, es un tercer vector C el cual es perpendicular al plano formado por los dos vectores y cuya magnitud es igual al producto de sus magnitudes multiplicado por el seno del ángulo entre ellos y cuyo sentido se determina mediante la regla de la mano derecha. La notación del producto cruz es
  • 32. REGLA DE LA MANO DERECHA Primera forma: Tome la mano derecha y oriente el dedo índice con el primer vector y el dedo corazón el segundo vector, el dedo pulgar extendido nos da el vector producto de ambos. Segunda forma: curve los dedos de la mano derecha tendiendo a hacer girar al primer vector hacia el segundo; el dedo pulgar extendido nos da el vector producto.
  • 33. PROPIEDADES DEL PRODUCTO VECTORIAL 1. El producto vectorial no es conmutativo 2. El producto vectorial es distributivo 3. Multiplicación de un escalar por el producto vectorial. 4. Multiplicación vectorial de vectores unitarios
  • 34. PROPIEDADES DEL PRODUCTO VECTORIAL 5. El producto vectorial de dos vectores en componentes es 6. La magnitud del producto vectorial es igual al área del paralelogramo que tiene a los vectores A y B 7. Si el producto vectorial es nulo entonces los dos vectores son paralelos. ˆˆ ˆ ˆˆ ˆ( ) ( ) ( )x y z y z z y x z z x x y y z x y z i j k AxB A A A i A B A B j A B A B k A B A B B B B = = − − − + − r r ( ) ( )Area AxB A Bsen A hθ= = = r r
  • 35. Ejemplo 01 • La figura muestra un cubo en donde se han trazado distintos desplazamientos de un abeja cuando cambia de la posici1,2,3 y 1.¿Cuanto vale cada uno de los desplazamientos?. ¿Cual es el desplazamiento total?.
  • 36. Ejemplo 02 En la figura se muestra dos fuerzas actuando sobre un cuerpo puntual. Si los módulos de ellas son 200 N y 100 N, respectivamente. ¿Cuál es la magnitud y la dirección de la fuerza resultante?.
  • 37. Ejemplo 03 • Un avión viaja en la dirección Este con una velocidad de 480 km/h y entra a una región donde el viento sopla en la dirección 30° Norte del este con una velocidad de 160 km/h. Determine la magnitud y dirección de la nave SOLUCION
  • 38. Ejemplo 04 La figura muestra un triángulo cuyos lados son Demuestre el teorema de los cosenos SOLUCION
  • 39. Ejemplo 05 Sabiendo que el módulo de los vectores D y G son 10 y unidades respectivamente. Determine el vector unitario del vector 20 2 W A B C D E F G= + + + + + + r r rr r r r r
  • 40. Ejemplo 06 En la figura mostrada, determine el vector x, en función de los vectores A y B. Si PQRS es un cuadrado y PORQ es un cuadrante de círculo
  • 41. Ejemplo 07 Descomponga el vector fuerza de 400 kN representado en la figura en dos componentes, una según la dirección AB y la otra perpendicular a ella
  • 42. Ejemplo 08 La resultante de la tres fuerzas mostradas en la figura es vertical. Determine: (a) la magnitud de la fuerza A y (b) la resultante del sistema
  • 43. Ejemplo 09 Determine la resultante del sistema de vectores fuerza mostrados en la figura
  • 44. Ejemplo 10 Halle el vector unitario perpendicular al plano formado por los vectores Usando (a) el producto escalar y (b) el producto vectorial. ˆ ˆ ˆ ˆ2 6 3 4 3A i j k B i j k= − − = + − r rr r
  • 45. Ejemplo 11 Halle la ecuación del plano perpendicular al vector y que pasa por el extremo del vector ˆ ˆ2 3A i j k= + + rr ˆ ˆ5 3B i j k= + + rr